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Concept inventories (CIs) are commonly used in pre-post instruction to study student conceptual change.
For consistency in assessment interpretation, a CI’s assessment construct is desired to maintain invariance
across different test times. In this study, the longitudinal measurement invariance (LMI) analysis under the
confirmatory factor analysis framework was used to examine the stability of the factor structure between
pretest and post-test of two commonly used CIs, i.e., the Force Concept Inventory (FCI) and Conceptual
Survey of Electricity and Magnetism (CSEM). A number of existing and modified models were examined
in this paper. The results confirmed that all factor models of the FCI fitted well with both pre- and post-test
data. For CSEM, acceptable fits were obtained with a reduced version of the CI. When reliability analysis
was performed for the factors of these models, most modified models were found to be more reliable than
the existing models. The modified models were further tested in LMI analysis, in which a sequence of
models with increasingly restrictive parameter constraints was examined. For the FCI, LMI analysis
demonstrated the existence of partial strict invariance, i.e., common factor structures, factor loadings, and
item thresholds, and equally observed residual variances for all the items except items 2 and 29. For the
CSEM, after excluding 10 items, a reduced version was found to hold the strict invariance criteria. These
findings reveal that changes in scores of the whole FCI and the reduced CSEM can be attributed to changes
in the latent constructs measured by the CIs, which confirms these two CIs as reliable instruments to study
students’ conceptual change over time in introductory physics courses.
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I. INTRODUCTION

In physics education, the Force Concept Inventory (FCI)
[1] and the Conceptual Survey of Electricity and
Magnetism (CSEM) [2] have been widely used in pre-
and postinstruction measurement to evaluate students’
learning gain [3]. Popular methods to analyze the change
in pre- and postmeasurement include pre-post score change
[4] and the normalized gain [5–8].
From pre- to post-test, students’ conceptual understand-

ings often change significantly, which influence how
students interact with the context and content of test items
[9]. As a result, the latent construct measured by a concept
inventory (CI) can also vary from pre- to post-test, which

can pose a question on the consistency of data interpreta-
tion between pre- and post-test. Therefore, it is necessary to
evaluate to what extent a CI can maintain invariance on its
latent construct between different test times [10]. In
empirical research, the changes of latent construct mea-
sured by a CI between pre- and post-test have been
observed for several CIs [11–13]. The change of latent
construct is also supported by the existing theories on
conceptual change, which assume that students’ conceptual
understanding is restructured through instruction [14–17].
For example, the results of FCI at pretest show predomi-
nantly non-Newtonian views, while at post-test a signifi-
cant portion of Newtonian views often emerge, which can
also be in mixed states between Newtonian and non-
Newtonian views depending on the instruction [1,9,12].
To study the possible changes of the latent constructs

across test times, one may use the longitudinal measure-
ment invariance (LMI) analysis [18,19], which evaluates
the degree to which measurements of an instrument on a
population at different test times yield measures of the same
psychometric attributes. It has been suggested that the
establishment of measurement invariance across test con-
ditions is essential for evaluation of the effectiveness of a
specific teaching method (e.g., tests of pre-post score
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change assessed by a CI) [20]. However, there exists
limited research on evaluating the LMI of the CIs in
science education, which may adversely impact interpre-
tation of pre-post test data that are frequently used to
evaluate the effectiveness of teaching [21]. This study
contributes to supplement the literature on LMI analysis of
the FCI and CSEM, and to establish empirical baselines for
comparing the latent abilities or observed scores assessed
by these CIs between pre- and post-test.

II. LITERATURE REVIEW

A. Students’ conceptual structure change
from fragmentation to integration

Over the past five decades, a large number of studies
have demonstrated that students come into science classes
holding a variety of preinstruction conceptions, which are
inconsistent with the scientific concepts (see a compre-
hensive review in Ref. [16]). These preinstruction con-
ceptions have also been labeled as misconceptions [22],
alternative conceptions [23], facets [24], expressions of
phenomenological primitives (p prims) [14], children’s
initial explanatory framework [17], etc., based on different
theoretical perspectives of conceptual change, e.g., see
Refs. [14,17,25].
Theories of conceptual change are generally character-

ized by one of two prominent but competing theoretical
perspectives: (i) knowledge as theory, and (ii) knowledge
as elements [15,26]. From the knowledge-as-theory
perspective, researchers advocate that students’ preinstruc-
tion conceptions could be considered as coherent theorylike
thinking, e.g., see Refs. [17,25]. On the other hand,
researches holding the knowledge-as-elements perspective
argue that students’ preinstruction conceptions are diverse
and have no theoretical structure in any deep sense [15].
The debate about the structure of students’ preinstruction

conceptions has been going on for a long time, and recent
studies have tried to find a middle ground between the two
perspectives [9,27–31]. For example, Bao and his col-
leagues [9,29] revealed that students tend to progress from
the “consistent naive model states” to the “mixed model
states” (a combination of the correct and incorrect answers
in different contexts), and finally to the “consistent expert
model states.” Similarly, the knowledge integration per-
spective also assumes that, as students progress from lower
to higher conceptual understanding levels, their knowledge
structure becomes more integrated [30,32–35]. Recently,
researchers in learning progression also characterized
students’ thinking into several gradually sophisticated
levels, which may be completely inaccurate, entirely
correct, or someplace in between [27,31].
What is in agreement among these previous studies is

that students’ preinstruction conceptions do not change
easily under traditional instruction. Therefore, specifically
designed teaching strategies are required to help students

achieve conceptual change [36,37]. However, educators
hold different opinions regarding to what degree should
students’ preinstruction conception be reconstructed. For
instance, some researchers argue that students’ conceptual
structure should be fundamentally or radically recon-
structed after effective instruction [14,38]. By contrast,
other researchers consider the coexistence of preinstruction
conceptions and scientific ones (e.g., student model state
and model space [9], the conceptual profile change model
[39], and the multiple knowledge system model [40,41]).
To sum up, although a consensus on the structures of

students’ preinstruction conceptions has yet to be achieved,
it has been agreed that such structures are different from
that of the experts and it can be reconstructed through
instruction [14–17]. The structures of students’ conceptual
understanding can be analyzed based on student responses
across a variety of items in a CI [42], thus, the latent
construct measured by a CI can change from pretest to post-
test. In other words, the possible pre-post changes of latent
constructs of CI may impact how students’ assessment
results are interpreted. In the next section, the possible pre-
post changes of latent constructs of FCI and CSEM will be
discussed in detail.

B. The latent construct of FCI and CSEM

In science education, CIs have been widely used to
assess student’s conceptual changes from pre- to post-
instruction [43–45]. Typically a CI is a research-based
instrument in the multiple-choice form designed to assess a
number of key concepts within the target content area or
subject matter [46]. For each question or item, the answer
choices include one correct option and several incorrect
options (distractors), which are designed to elicit common
student misconceptions.
Among the many CIs in physics, the FCI is the most

widely used, which also provides an example for the
development of other CIs [1]. The latent construct mea-
sured by the FCI has also been extensively studied. For
example, Huffman and Heller [47] found different factor
structures through principal component analysis of data,
which showed a two-factor structure for a sample of 145
high school students and a one-factor structure for a sample
of 750 university students. Recently, Scott, Schumayer, and
Gray [48] again explored the factor structures of FCI
through exploratory factor analysis (EFA) of post-test data
from 2150 college students. Their results suggested that
while a unidimensional construct is sufficient to explain
the variance of the FCI data, a five-factor structure was
superior [48].
In recent studies, statisticalmodels from the item response

theory (IRT) family have also been used to explore the latent
construct measured by the FCI. Many studies have con-
firmed the unidimensionality of FCI using different IRT
models, e.g., Rasch model [49], two-parameter logistic IRT
model [48], and the three-parameter logistic IRTmodel [50].
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Multidimensional IRT (MIRT) models have also been
applied to study the possible multidimensional latent con-
struct of the FCI [51,52]. For example, Scott and Schumayer
[51] used the MIRT model to analyze a related dataset from
Scott, Schumayer, andGray [48] and confirmed that the five-
factor structure was optimal.
In addition to the exploratory approach adapted by the

studies mentioned above, some recent studies took the
confirmatory approach to assess the multidimensional con-
struct of the FCI, e.g., see Refs. [52,53]. For example, Eaton
and Willoughby [53] applied confirmatory factor analysis
(CFA) on a dataset from 20 822 students. The results
confirmed the expertlike multidimensional model proposed
by the creators of the FCI [1]. Meanwhile, results of CFA on
smaller sample sizes suggested that the models of multidi-
mensional construct proposed by Scott et al. [48] and Eaton
andWilloughby [53] had more stable performances than the
model proposed byHestenes et al. [1]. Taking a confirmatory
MIRT approach, Stewart et al. [52] tested a set of construct
models using post-test data from 4716 college students. The
optimal model suggested that the FCI can differentiate
students’ understanding among several related concepts,
including Newton’s 1st and 2nd laws, one-dimensional
and three-dimensional kinematics, and addition of forces.
Similar studies have also been conducted on the CSEM,

which is designed to assess introductory students’ con-
ceptual understandings of electricity and magnetism [2]. In
the original paper, an 11-factor model was established,
which is too many for a 32-item CI. Recently, two addi-
tional studies have tried to analyze the latent factor
structures of the CSEM [54,55]. Zabriskie and Stewart
[55] explored the factor structures of the CSEM through a
MIRT approach using two datasets from different institu-
tions, which produced two different optimal factor models,
a nine-factor model and an eight-factor model, for the two
populations, respectively. The results suggested that the
optimal factor models identified in their study were not
generalizable. In Eaton et al.’s study, a six-factor model
identified using EFA was found to be more general as it
was also validated with another population sample using
CFA [54].

C. Changes of the latent constructs
between pre- and post-test

In recent studies, the pre-post changes of the latent
constructs of FCI have been partially explored [12,13]. For
example, Semak et al. [13] applied EFA on 427 matched
pre-post FCI data and identified a five-factor structure for
the pretest data and a six-factor structure for the post-test
data. The six-factor structure of the post-test was also
suggested to be more aligned with that of an expert. In
another study, Eaton et al. [12] examined the changes of
non-Newtonian views as measured by the FCI from pre- to
postinstruction. It was found that the coherent non-
Newtonian views were similar in both pre- and post-test,

which corroborated with the existing literature on that the
construct of non-Newtonian views has been well estab-
lished before instruction. Similar studies have also been
conducted with other CIs. For example, Davenport [11]
applied EFA on pre-post data from the Force Motion
Conceptual Evaluation (FMCE) [56] and found that the
FMCE data from pre- and post-test yielded six-factor
structures, however, the nature of the factor structures
was slightly different.
Summarizing the related literature, it appears that the

latent constructs of a CI often change between pre- and
post-test, which is consistent with existing theories of
conceptual change. There is also evidence showing that
constructs representing student naïve views often maintain
from pretest to post-test, which are well documented by
empirical studies in the literature. What often changes are
the constructs representing expertlike knowledge, which
are the learning goals of instruction. To thoroughly evaluate
the possible pre-post changes of the latent constructs of CIs,
longitudinal measurement invariance (LMI) is introduced
in the next section.

D. Evaluation of the longitudinal
measurement invariance

Measurement invariance refers to the degree to
which measurements of an instrument under different
conditions yield measures of the same psychometric
attributes [57]. In cross-section analysis, measurement
invariance across different groups can be used to
examine whether the latent construct measured by a
specific instrument is the same or not across population
samples, which provides a function for detecting pos-
sible structural bias. In the longitudinal analysis (e.g.,
pre- and post-test), measurement invariance of tests
conducted at different times with the same population
is evaluated, which is referred to as LMI.
The most widely used method to evaluate measure

invariance is the confirmatory factor analysis (CFA)
[20,58,59]. In CFA, a student’s response on an item is
modeled as the sum of the product of a latent variable
and a factor loading, an item intercept, and some residual
error for the item [60]. Following this relationship, Widaman
and his colleagues suggested a four-level scale to evaluate
measurement invariance, i.e., configural, metric, scalar, and
strict invariance [18,19]. The configural invariance only
requires the same measurement pattern with freedom in
factor loadings across different conditions. The metric
invariance, which is also called weak factor invariance,
further requires identical factor loadings across different
conditions on the basis of configural invariance. However,
the configural and metric invariance are insufficient to
guarantee the comparability of observed or latent scores
across time or groups. To do this, the scalar and strict
invariance must hold across different conditions. The scalar
invariance, also called strong factor invariance, requires both
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invariant factor loadings and invariant intercepts across time.
The strict factor invariance further requires identical item
residual variances over scalar invariance.
The establishment of measurement invariance has been

suggested as necessary evidence of validation for assess-
ment instruments in science education [20]. This study is
conducted to examine whether the latent constructs mea-
sured by the FCI and CSEM may change between pre- and
post-test under the CFA framework. While the latent
constructs of the FCI and CSEM are still undetermined,
their factor structures are first reexamined using the
dataset collected in this study. After establishing construct
validities of the two CIs, LMI analysis is conducted with
the pre-post data of each of the CIs. In addition, since
student knowledge has also developed from pretest to post-
test, the influence of student knowledge states on LMI will
also be explored. Specifically, the following questions are
studied:

1. What are the best-fit models of latent construct
measured by the two CIs at pre-test and post-test?

2. To what extent do the LMI hold for each of the two
CIs from pre- to post-test?

3. To what extent do the LMI vary in each of the two
CIs as a result of changes in students’ understand-
ings from pre- to post-test.

III. METHODOLOGY

A. Participants and instruments

This study investigates the factor structures and LMI of
the FCI (1995 version) and CSEM (form H). The dataset
of the FCI was collected in a large state university with a
U.S. ranking of top 60 and an acceptance rate of 52%
(NFCI ¼ 474). The dataset of the CSEM was collected in
another large state university with a U.S. ranking of the top
100 and an acceptance rate of 60% (NCSEM ¼ 499).
For both the FCI and CSEM samples, students were

enrolled in the related calculus-based introductory physics
courses. These students took the FCI or CSEM as a pretest
during the first week of the course and as a post-test during
the week before the final exam. For the dataset of FCI,
students’ mean score was 33.77% (Cronbach’s α ¼ 0.760)
at pretest and 45.56% (Cronbach’s α¼0.825) at post-test.
For the dataset of CSEM, students’mean score was 27.38%
(Cronbach’s α ¼ 0.543) at pretest and 45.70% (Cronbach’s
α ¼ 0.748) at post-test. The main goal of this study is to
evaluate the LMI of the two CIs. The pre-post test scores
provided here give the background information of the
student population, since the LMI is a result of both the
characteristics of the population and the instrument. Hence,
it is important to understand the limitation of this type of
study that any analysis outcomes from any study are
dependent on both the population and the instrument,
and should not be considered as a feature of the instrument
only.

B. Models of factor structures

For the FCI, three models of factor structures identified
and validated in previous studies [48,53] were fitted to
the pre- and post-test data (see the first three models in
Table I, namely, HWS6, SSG5, and EW5). Among these,
the HWS6 was adapted from the expertlike measurement
model proposed by the creators of the FCI [1], the SSG5
was proposed by Scott et al. [48] through EFA, and the
EW5 was suggested by Eaton andWilloughby [53] through
expert considerations of the items on the FCI. In the
model fit computation, some items have been removed
due to poor model fit. All the factor names in these three
models were analogous to those given in Eaton and
Willoughby [53].
To represent more complete factor structures of the full

FCI, three modified models have been proposed in this
study, in which the items removed in previous studies are
reassigned to different dimensions based on experts’
considerations (see the last three models in Table I). For
easy comparisons, the factors in the modified models are
given almost identical names based on the original models.
To establish clear factor structures, some cross-loading
items in the new models, e.g., item 26 in the F2 “2nd law”
and F6 “superposition” of the HWS6 model, are only
loaded to one factor based on experts’ views. Meanwhile,
some items, e.g., items 1, 2, and 3 in the F5 “forces” of the
HWS6 model are reassigned into a different more suitable
dimension according to experts’ considerations.
Regarding the factor structures of CSEM, there exists

only one study, which identified an EFA driven 6-factor
model labeled as Eaton6 shown in Table II [54]. Among the
factors, F1 concerns students’ understandings of action or
reaction pairs in the context of electricity and magnetism.
F2 addresses the electric forces on a charge given a charge
distribution or an external electric field. F3 contains two
items, which probe students’ understandings of the mag-
netic field due to current-carrying wires. F4 includes
questions that probe students’ understandings of the mag-
netic force on charged particles. F5 is related to students’
understandings of electric force or field in the context of an
electric potential difference. F6 concerns relations between
electric fields, electric forces, and electric potentials. With
this six-factor model, item 19 is cross loaded in both F5 and
F6, which is an undesired outcome, and will be addressed
in a modified model.
When the Eaton6 model was fitted to the pre- and post-

test CSEM data of this study, the overall fit statistics were
acceptable, while the reliabilities of the fourth and fifth
factors was found questionable with the pretest data (see
more details Sec. IV. C). Hence, a slightly modified model,
Eaton5M, was proposed (Table II). In the modified model,
the original F5 of Eaton6 is removed due to low reliability.
For the three items associated with F5 in Eaton6, item 18 is
excluded from the new model due to a negative estimate of
the factor loading, and items 19 and 20 are reassigned into
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TABLE II. The two factor models of CSEM examined in this study. Note that in the Eaton6 model, items 1, 2, 14,
22, 28, 30, and 32 were excluded and in the Eaton5M model, items 1, 2, 13, 14, 18, 21, 22, 28, 30, and 32 were
excluded.

Model Factor Items

Eaton6 F1 Newton’s 3rd law 4, 5, 7, 24
F2 F⃗E ¼ qE⃗þ Superpos: 8, 6, 9, 12, 3, 17, 16
F3 B⃗ by I 23, 26
F4 F⃗B ¼ qv⃗ × B⃗ 21, 27, 25, 29, 31, 16, 13
F5 E⃗ ¼ −∇V 20, 18, 19
F6 q in fields 11, 15, 10, 19

Eaton5M F1 Newton’s 3rd law 4, 5, 7
F2 F⃗E ¼ qE⃗þ Superpos: 8, 6, 9, 12, 3
F3 B⃗ by I 23, 26
F4 Electromagnetic interaction 27, 25, 29, 31, 24
F5 q in fields 11, 15, 10, 19, 20, 17, 16

TABLE I. The six factor models of FCI examined in this study. Note that in the HWS6 model, item 29 was
excluded; in the SSG5 model, items 1, 2, 3, and 29 were excluded; and in the EW5 model, items 1, 2, 3, 9, 14, and 26
were excluded.

Model Factor Items

HWS6 F1 Kinematics 12, 14, 19, 20, 21
F2 2nd Law 9, 22, 26, 27
F3 1st Law 6, 7, 8, 10, 23, 24
F4 3rd Law 4, 15, 16, 28
F5 Forces 1, 2, 3, 5, 11, 13, 18, 25, 30
F6 Superposition 17, 25, 26

SSG5 F1 Identification of forces 5, 11, 13, 18, 30
F2 1st law with 0 force 6, 7, 8, 10, 12, 16, 24, 29
F3 2nd law with kinematics 19, 20, 21, 22, 23, 27
F4 1st law with canceling forces 16, 17, 25
F5 3rd law 4, 15, 28

EW5 F1 1st lawþ kinematics 6, 7, 8, 10, 20, 23, 24
F2 2nd lawþ kinematics 9, 12, 14, 19, 21, 22, 27
F3 3rd Law 4, 15, 16, 28
F4 Force identification 5, 11, 13, 18, 30
F5 Mixed 17, 25, 26

HWS6M F1 Kinematics 1, 2, 3, 12, 14, 19, 20, 21
F2 2nd Law 9, 22, 27
F3 1st Law 6, 7, 8, 10, 23, 24
F4 3rd Law 4, 15, 16, 28
F5 Identification of forces 5, 11, 13, 18, 25, 29, 30
F6 Superposition 17, 25, 26

SSG5M F1 Identification of forces 5, 11, 13, 18, 30
F2 1st law with 0 force 6, 7, 8, 10, 12, 24, 29
F3 2nd law with kinematics 1, 2, 3, 9, 14, 19, 20, 21, 22, 23, 27
F4 Superposition 17, 25, 26
F5 3rd law 4, 15, 16, 28

EW5M F1 1st lawþ kinematics 6, 7, 8, 10, 20, 23, 24
F2 2nd lawþ kinematics 1, 2, 3, 9, 12, 14, 19, 21, 22, 27
F3 3rd law 4, 15, 16, 28
F4 Identification of forces 5, 11, 13, 18, 30, 29
F5 Superposition 17, 25, 26
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F5, which targets the concept of force caused by an electric
field (as suggested by the creators of the CSEM [2]).
In addition, items 16 and 17 are reassigned to F5, since

these were loaded poorly on F2 in Eaton6 [54], and were
also suggested by the creators of the CSEM as probing
student understandings similar to those measured by the
other items in F5 of Eaton5M [2]. With these changes, F5 in
Eaton5M is conceptually interpreted as relations between
electric fields, electric forces, and electric potentials, which
is similar to the original F6 in Eaton6 but with a few more
items included.
Finally, F4 in the new model targets student under-

standings of electromagnetic interaction, which keeps four
items (27, 25, 29, 31) from the original F4 in Eaton6, and
adds item 24 from the original F1. Item 24 is moved to F4
from the original F1 because it probes student under-
standings of electromagnetic interaction regarding the
forces between two current-carrying wires. Items 16 and
13 are removed from the new F4 since they probe under-
standings of electrostatics instead of magnetism [54].
To sum up, a total of 10 items are excluded in the new

model, while 7 items were excluded in the original Eaton6
model. Then, the LMI analysis will only be conducted for
the reduced version of CSEM using the Eaton5M model
(see more details in Table II). Future studies are suggested
to be conducted to reexamine these models with fewer
items excluded using different datasets.

C. Analysis

All analysis is conducted using the R packages lavann
[61] and semTools [62]. Specifically, the lavann package is
used to conduct the CFA and following LMI analysis, and
the semTools is used to compute the composite reliability
[(CR), much like the Cronbach’s α] for a CI and its different
subscales. For continuous data, the maximum likelihood
(ML) estimator is commonly used for CFA. In this study,
the weighted least squares mean and variance-adjusted
(WLSMV) estimator is used for the ordered categorical
data collected by the CIs. It has been shown that, for
categorical data, the WLSMV estimator is superior to the
ML estimator in terms of both the model rejection rates and
the appropriate estimation of factor loadings [63,64]. The
comparative fit index (CFI), the Tucker-Lewis index (TLI),

and the root mean square error of approximation (RMSEA)
are used to determine an acceptable model fit: CFI ≥ 0.95,
TLI ≥ 0.95, RMSEA ≤ 0.08 [65].
After the factor structures of the two CIs are identified

for both pre- and post-test data, a set of longitudinal CFAs
are applied to examine the LMI between pre- and post-test.
Within the longitudinal CFA approach, data of different
tests are integrated into one model in which the residuals of
the same item at different test times are allowed to covary
over time. Because all items in the FCI or CSEM are scored
dichotomously, the data must be considered as ordered
categorical. For categorical data, the factor loadings and
thresholds must be varied in tandem [66], which further
makes the steps of LMI testing different from those with
continuous data. That is, the step of metric measurement
invariance testing is dropped in the procedure of testing
LMI with categorical data [67]. Accordingly, Edossa et al.
[67] have clearly described the procedure of testing LMI
with categorical data, which includes a sequence of models
with increasingly restrictive constraints, i.e., configural
invariance, strong invariance, and strict invariance. The
necessary parameter restrictions in the testing procedure for
LMI with categorical data are summarized in Table III.
Historically, the Satorra-Bentler-scaled chi-square statis-

tic (SB-χ2) has been used to test measurement invariance by
comparing the difference of the fit between models [68].
However, the χ2 difference test has been criticized due to its
sensitivity to sample size [69]. As a result, different statistics
have been recommended and used in this study [70], with
which a condition of ΔCFI > 0.01 and ΔRMSEA > 0.015
between two consecutive models (e.g., the configural and
strong invariance model) is considered unacceptable to
establish measurement invariance.

IV. RESULTS

A. Factor structures of the FCI

The six factor models of the FCI (in Table I) were fitted
to the pre- and post-test data separately. The fit statistics are
presented in Table IV. All the six models show adequate fit
to the data in both pre- and post-test judging by χ2=dfð≤3Þ,
CFI (≥0.95), TLI (≥0.95), and RMSEA (≤0.08) [65]. For
the pre-test data, it was found that the EW5 model showed
the best fit to the data judging by all fit statistics, i.e., lowest

TABLE III. Testing for longitudinal measurement invariance with categorical data. The asterisk (*) indicates that the parameter is
freely estimated across test time points. Fixed ¼ the parameter is fixed to equity in the pre- and post-test. Fixed at 0=0 ¼ factor means
parameters are fixed at 0 at both pre- and post-test. Fixed at 0=� ¼ factor means parameters are fixed at 0 at pretest and freely estimated
at post-test. Fixed at 1=1 ¼ the residual variances are fixed at 1 at both pre- and post-test. Fixed at 1=� ¼ the residual variances are fixed
at 1 at pre-test and freely estimated at post-test.

Factor loadings Thresholds Residual variances Factor means

Configural invariance * * Fixed at 1=1 Fixed at 0=0
Strong invariance Fixed Fixed Fixed at 1=� Fixed at 0=�
Strict invariance Fixed Fixed Fixed at 1=1 Fixed at 0=�
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χ2=df with p ¼ 0.114, highest CFI and TLI, and lowest
RMSEA. From pre- to post-test, model performance
became worse for all six models according to all fit
statistics. That is, these models seem to provide more
accurate descriptions of the latent constructs of the FCI in
the pretest than that in the post-test. For post-test data, the
best performing model was the SSG5 judging by χ2=df,
CFI, TLI, and RMSEA.
In contrast to the model fit statistic, the total and

component reliability estimates increased from pre- to
post-test, which indicates that the influence of measure-
ment error in test scores is smaller after instruction. The
total reliability estimates of all six models are in the range
of good (≥0.80) to excellent (≥0.90) [71]. The reliabilities
of the three modified models are slightly better than those
of the three original models from the literature due to the
removal of certain items in the original models, which
decreases the number of total items.
However, the reliability estimates for some factors

of the three original models show unacceptable values
of composite reliability. The HWS6 model has the worst
performance in reliability: the values of CR for factors F1
and F2 are below the minimally acceptable level in both
pre- (0.622 and 0.629 for F1 and F2, respectively) and post-
test (0.439 and 0.608 for F1 and F2, respectively). The
other two models only show some unreliable measures in
the pretest: the SSG5 model has two unreliable factors,
F3 (0.609) and F4 (0.636), and the EW6 model has one,
F2 (0.621). After examining the items that contribute to
reliability issues of these factors, it has been found that
these items mainly address Newton’s second law and its
resulting kinematics (see Table I for details). These items
have been adjusted in the three modified models. After the
adjustment, all the reliability estimates of all three modified
models have achieved the minimally acceptable level

except for F2 in HWS6M. As a result, the subsequent
LMI analysis of FCI will focus on the two models
containing all items with reliable measurement for all
subscales, i.e., the SSG5M and EW5M model.

B. Longitudinal measurement invariance of the FCI

The procedure of LMI evaluation of FCI consists of a
sequence of three models with increasingly restrictive
parameter constraints, i.e., configural invariance, strong
invariance, and strict invariance. The model fit deterioration
between two consecutive models are examined using
changes of CFI and RMSEA. In this part of the study,
two of the modified models, SSG5M and EW5M, are
examined, and the results are shown in Table V.
SSG5M is a five-factor model for the FCI. The first

step of LMI testing is to examine configural invariance.
For the configural invariance model, all the factor loadings
and thresholds are estimated without constraints, and the
residual variances are fixed for identification purposes.
For SSG5M, the configural invariance model produces
an acceptable model fit ( χ2=df ¼ 1.211, TLI ¼ 0.980,
CFI ¼ 0.981, RMSEA ¼ 0.021). This result suggests that
FCI shares similar factor structures between pre- and post-
test. In the second step, the strong invariance model is
applied, in which the factor loadings and thresholds are set
to be identical between pre- and post-test, and the residual
variances of the indicators are estimated without con-
straints. The result still indicates an acceptable model fit
(χ2=df¼1.296, TLI¼0.971, CFI¼0.973, ΔCFI¼−0.008,
ΔRMSEA ¼ 0.004). The third step applies the strict
measurement invariance model, in which the factor load-
ings, thresholds, and residual variances are constrained to
be identical between pre- and post-test. The result (Table V,
SSG4M strict invariance model) shows an adequate fit with
χ2=df¼1.409, TLI¼0.960, CFI¼0.962, ΔCFI¼−0.011,

TABLE IV. Fit statistics for the six models of FCI applied to the pre- and post-test datasets separately. The reliability estimates for the
subscales and the whole FCI were computed using CR. Values of CR below the minimally acceptable level (0.65) were underlined.

Test
occasion

RMSEA
(90% Upper CI)

Composite reliability

Model χ2 df χ2=df P TLI CFI F1 F2 F3 F4 F5 F6 Total

HWS6 Pre 432.195 360 1.201 0.000 0.972 0.975 0.021 (0.027) 0.622 0.439 0.723 0.777 0.767 0.800 0.873
Post 633.086 360 1.759 0.000 0.954 0.959 0.040 (0.045) 0.629 0.608 0.786 0.785 0.829 0.826 0.905

SSG5 Pre 270.463 241 1.122 0.093 0.985 0.987 0.016 (0.025) 0.844 0.679 0.609 0.636 0.819 / 0.857
Post 385.329 241 1.599 0.000 0.967 0.971 0.036 (0.042) 0.882 0.748 0.691 0.740 0.815 / 0.887

EW5 Pre 318.193 289 1.101 0.114 0.987 0.989 0.015 (0.024) 0.742 0.621 0.777 0.844 0.800 / 0.869
Post 512.296 289 1.773 0.000 0.957 0.962 0.040 (0.046) 0.804 0.677 0.785 0.882 0.826 / 0.902

HWS6M Pre 438.984 389 1.128 0.041 0.982 0.984 0.016 (0.024) 0.670 0.395 0.723 0.777 0.806 0.800 0.875
Post 638.421 389 1.641 0.000 0.958 0.963 0.037 (0.042) 0.672 0.450 0.786 0.785 0.822 0.826 0.902

SSG5M Pre 441.160 395 1.117 0.054 0.983 0.985 0.016 (0.023) 0.844 0.697 0.709 0.800 0.777 / 0.875
Post 647.553 395 1.639 0.000 0.958 0.962 0.037 (0.042) 0.882 0.743 0.746 0.826 0.785 / 0.902

EW5M Pre 457.787 395 1.159 0.016 0.977 0.979 0.018 (0.025) 0.742 0.657 0.777 0.814 0.800 / 0.875
Post 651.720 395 1.650 0.000 0.958 0.962 0.037 (0.042) 0.804 0.700 0.785 0.812 0.826 / 0.902
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ΔRMSEA ¼ 0.029. However, this model appears to have a
significant deterioration of model fit based on the change of
CFI (ΔCFI ¼ −0.011). For all the models, the residual
invariance changes are quite small, as indicated byΔRMSEA.
Following the suggestion from Cheung and Rensvold

[72], the modification indices (MIs) from the strict invari-
ance model are evaluated along with the factor-ratio test,
which can be used to evaluate which indicators of the
SSG5M model are responsible for the small residual
invariance changes. The results indicate that the residuals
of item 29 in factor F2, “1st lawwith 0 force,” differ between
pre- and post-test (MI ¼ 35.116). Therefore, a partial strict
invariance model with freely estimated variance for item 29
at the post-test is fitted, which is less restrictive than the
restrictions imposed in the fully strict invariance model. The
partial strict invariance model reveals little degrading of fit
compared to the strong invariance model ( χ2=df ¼ 1.384,
TLI ¼ 0.963, ΔCFI ¼ −0.008, ΔRMSEA ¼ 0.003).
The final results of partial strict LMI analysis of FCI

across pre- and post-test using the factor structures sug-
gested by the SSG5M model is presented in Fig. 1, which
shows that the standardized factor loadings ranged from
0.222 to 0.908 at the pretest and from 0.211 to 0.930 at the
post-test. The intercorrelations between the five factors
were moderate, which ranged from 0.307 to 0.851 at pretest
and from 0.389 to 0.745 at post-test. It is noted that from
pre- to post-test the majority of intercorrelations between
the five factors show slight increases except for correlations
between F2 and F3 and between F4 and F5. Meanwhile,
from pre- to post-test the correlations of the same factors in
different times range from 0.534 to 0.963, which are larger
than the correlations between different factors in different
test times for each of the five factors.
EW5M is also a five-factor model for FCI. The differences

between EW5M and SSG5M are the assignments of four
items, i.e., items 12, 20, 23, and 29 (see Table I). Despite
these differences, the LMI analysis of EW5M yields very
similar results. Again, the configural invariance model

produces an acceptable fit statistic ( χ2=df ¼ 1.235,
TLI ¼ 0.977, CFI ¼ 0.979, RMSEA ¼ 0.022), and the
strong measurement invariance does not show a meaningful
deterioration in a model fit ( χ2=df ¼ 1.300, TLI ¼ 0.971,
ΔCFI ¼ −0.006, ΔRMSEA ¼ 0.003). The strict mea-
surement invariance model results in a significant deterio-
ration of model fit (ΔCFI ¼ −0.013). Again, item 29 is
responsible for the lack of residual invariance between pre-
and post-test (MI ¼ 28.355). However, after releasing the
variance for item 29 from the post-test data, the partial strict
invariance model (model A) still shows significant deterio-
ration of model fit (ΔCFI ¼ −0.011). According to the
MIs from the partial strict invariance model A, item 2 is
identified as responsible for the lack of residual invariance
(MI ¼ 24.181), which leads to themaking of a second partial
strict invariance model (model B), in which the variances are
freely estimated for both item 2 and item 29 at post-test in
addition to the restrictions imposed in the fully strict
invariance model. The results of model B do not show a
meaningful degrading of fit compared to the strong invari-
ancemodel ( χ2=df¼1.397, TLI ¼ 0.961,ΔCFI ¼ −0.010,
ΔRMSEA ¼ 0.004). Following the five-factor EW5M
model, the FCI is also found to maintain a partial strict
measurement invariant between pre- and post-test.
The final EW5M mapping with factor loadings and

correlations is shown in Fig. 2, which reveals that the
majority of the standardized factor loadings show slight
increases from pretest to post-test except for item 29. The
intercorrelations between the five factors are moderate,
which ranged from 0.319 to 0.875 at pretest and from 0.395
to 0.787 at post-test. From pre- to post-test, the majority
of intercorrelations between the five factors show slight
increases except for the correlations between F1 and F2 and
between F3 and F5. Finally, from pre- to post-test, the
correlations of the same factor in different times range from
0.534 to 0.935, which are larger than the correlations
among different latent factors in different test times for each
of the five factors.

TABLE V. Model fit statistics of the SSG5M and EW5M models of the FCI for longitudinal measurement invariance restrictions.

Model χ2 df χ2=df p TLI CFI ΔCFI RMSEA (90% Upper CI) ΔRMSEA

SSG5M
Configural 1979.854 1635 1.211 0.000 0.980 0.981 / 0.021 (0.024) /
Strong 2145.040 1655 1.296 0.000 0.971 0.973 −0.008 0.025 (0.028) 0.004
Strict 2373.779 1685 1.409 0.000 0.960 0.962 −0.011 0.029 (0.032) 0.004
Partial Stricta 2330.547 1684 1.384 0.000 0.963 0.965 −0.008 0.028 (0.031) 0.003

EW5M
Configural 2019.595 1635 1.235 0.000 0.977 0.979 / 0.022 (0.025) /
Strong 2151.781 1655 1.300 0.000 0.971 0.973 −0.006 0.025 (0.028) 0.003
Strict 2415.401 1685 1.433 0.000 0.958 0.960 −0.013 0.030 (0.033) 0.005
Partial Strict Aa 2376.142 1684 1.411 0.000 0.960 0.962 −0.011 0.029 (0.032) 0.004
Partial Strict Bb 2351.849 1683 1.397 0.000 0.961 0.963 −0.010 0.029 (0.032) 0.004

aFreely estimated variance for item 29 at the post-test.
bFreely estimated variance for items 2 and 29 at the post-test.
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FIG. 1. Partial strict LMI model of the FCI (Freely estimated variance for item 29 at the post-test time). The modified SSG5M model
suggested the following five factors: F1 ¼ Identification of Forces, F2 ¼ 1st Law with 0 Force, F3 ¼ 2nd Law with Kinematics,
F4 ¼ Superposition, and F5 ¼ 3rd law. Because of the data’s longitudinal structure, the latent factors are allowed to correlate across
time (the correlation between identical latent factors in the different time was in red curves; the correlation between different latent
factors in the different time was in blue curves), and identical items over the two test occasions were allowed to covary except for item 29
(green curves). All parameters are standardized.

FIG. 2. Partial strict LMI model of the FCI (Freely estimated variance for items 2 and 29 at post-test time). The modified EW5M
model suggested the following five factors: F1 ¼ 1st Lawþ Kinematics, F2 ¼ 2nd Lawþ Kinematics, F3 ¼ 3rd Law, F4 ¼
Identification of forces, and F5 ¼ Superposition. Because of the data’s longitudinal structure, the latent factors are allowed to
correlate across time (the correlation between identical latent factors in the different time was in red curves; the correlation between
different latent factors in the different time was in blue curves), and identical items over the two test occasions were allowed to covary
except for items 2 and 29 (green curves). All parameters are standardized.
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C. Factor structures of CSEM

In this part of the study, the factor structures of CSEM
are analyzed with the Eaton6 model [54] and the modified
Eaton5M model (see Table II). The results of fit statistics
are presented in Table VI, which shows that the two models
have adequate fits in both pre- and post-test judging
by χ2=df ð≤3Þ, CFI (≥0.95), TLI (≥0.95), and RMSEA
(≤0.08) [65]. In addition, for the Eaton5M model, the p
values of chi squares are larger than 0.05 in both pre- and
post-test, which indicate that the model fits the data nearly
perfectly.
The total reliability estimates also suggest that the

modified Eaton5 model is more reliable than the original
Eaton6 model. Although the Eaton5M has two fewer items
than Eaton6 does, the values of CR of Eaton5M are higher
than that of Eaton6 in both pre- (0.710 vs 0.678) and post-
test (0.872 vs 0.866). Regarding the individual factors,
Eaton5M has larger reliability indexes on most factors
(except for F2) than Eaton6 does in both pre- and post-test.
For example, the reliability of F1 in the pretest has been
improved from a minimally acceptable level (0.648 in
Eaton6) to a respectable level (0.819 in Eaton5M) after
excluding item 24. These results suggest that for the data in
this study, Eaton5M provides better measurement consis-
tency than Eaton6.
However, even after the modification, Eaton5M still has

several factors with unacceptable reliability (<0.60) at
pretest. For example, three items (17, 16, 20) are added
to the factor “q in fields” (F6 in Eaton6 model and F5 in
Eaton5M model), but the reliability index is only slightly
improved from 0.563 to 0.566 in the pretest. Meanwhile,
for F4, the internal consistency has improved from 0.197 to
0.360, but the reliability estimate is still unacceptable.
These results suggest that these factors may introduce

inconsistency of measures in the pretest, which should be
further studied in future research.
Since Eaton5M appears to be a more reliable model over

the original Eaton6 model, the subsequent LMI analysis of
CSEM will be conducted with the Eaton5M only.

D. Longitudinal measurement invariance
of the CSEM

The LMI analysis is conducted for the reduced CSEM
aligned with the Eaton5M model, and the results are shown
in Table VII. The configural invariance model produces
an acceptable model fit ( χ2=df ¼ 1.056, p ¼ 0.125,
TLI ¼ 0.993, CFI ¼ 0.994, RMSEA ¼ 0.011). This result
suggests that the reduced CSEM shares similar factor
structures between pre- and post-test. The strong invariance
model (common factor loadings and thresholds across
pre- and post-test) also fits at an acceptable level
(χ2=df ¼ 1.118, p < 0.01, TLI ¼ 0.987, CFI ¼ 0.987,
RMSEA ¼ 0.015). The changes of CFI and RMSEA reveal
little deterioration in model fit (ΔCFI ¼ −0.007,
ΔRMSEA ¼ 0.004). Fit results for the strict invariance
model (common factor loadings, thresholds and residual
variances across pre- and post-test) also indicate an
acceptable fit (χ2=df ¼ 1.192, p ¼ 0.125, TLI ¼ 0.976,
CFI ¼ 0.978, RMSEA ¼ 0.020). Again, the changes of
CFI and RMSEA indicate no meaningful deterioration in
model fit (ΔCFI ¼ −0.009, ΔRMSEA ¼ 0.005).
Therefore, following the five-factor solution suggested

by the Eaton5M model, the reduced CSEM has been found
to hold strict measurement invariance across pre- and post-
test (see Fig. 3). As shown in Fig. 3, all the standardized
factor loadings have slight increases from pretest to post-
test. Unlike the two factor models of FCI, the intercorre-
lations among the five factors of CSEM all have positive

TABLE VI. Fit statistics for the two models of CSEM applied to the pre- and post-test datasets separately. The reliability estimates for
the subscales identified by different models and the whole FCI were computed using CR. Values of CR below the minimally acceptable
level (0.65) were underlined, and the unacceptable values of CR (<0.60) were further marked with an asterisk (*).

Composite reliability

Model Test occasion χ2 df χ2=df P TLI CFI RMSEA (90% Upper CI) F1 F2 F3 F4 F5 F6 Total

Eaton6 Pre 273.866 258 1.061 0.000 0.983 0.986 0.011 (0.022) 0.648 0.663 0.688 0.068� 0.197� 0.563� 0.678
Post 340.137 258 1.318 0.000 0.976 0.980 0.025 (0.032) 0.841 0.725 0.753 0.650 0.500� 0.689 0.866

Eaton5 Pre 227.643 199 1.144 0.080 0.969 0.973 0.017 (0.027) 0.819 0.626 0.688 0.360� 0.566� / 0.710
Post 229.260 199 1.152 0.070 0.991 0.992 0.017 (0.027) 0.880 0.658 0.753 0.655 0.730 / 0.872

TABLE VII. Model fit statistics of the Eaton5M model of CSEM for longitudinal measurement invariance restrictions.

Model χ2 df χ2=df P TLI CFI ΔCFI RMSEA (90% Upper CI) ΔRMSEA

Configural 882.143 835 1.056 0.125 0.993 0.994 / 0.011 0.017 /
Strong 946.533 847 1.118 0.009 0.985 0.987 −0.007 0.015 0.021 0.004
Strict 1036.036 869 1.192 0.000 0.976 0.978 −0.009 0.020 0.024 0.005
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values at post-test, ranging from 0.155 to 0.837. At pretest,
F4 has negative correlations with F2 (−0.131) and F5
(−0.015). From pre- to post-test, the correlations of the
same factor in different test times are also moderate,
ranging from 0.291 to 0.729.

V. DISCUSSION

A. The factor structures of FCI and CSEM

In this study, the factor structures of FCI and CSEM have
been examined using CFA for both pre- and post-test data.
In the analysis, several factor models suggested by previous
studies are also included. It has been found that, for FCI,
three factor models, which were suggested by the creators
of the FCI (HWS6 model) [1], by Scott et al. (SSG5 model)
[48], and by Eaton and Willoughby (EW5 model) [53],
all fit the data well. Among the three models, EW5 fits
the pretest data best, while the SSG5 model fits best with
the post-test data. The results are in agreement with the
findings of Eaton and Willoughby, who conducted CFA of
the FCI with a large scale post-test dataset [53]. For CSEM,
the EFA driven factor model identified by Eaton et al.
(Eaton6 model) [54] has also been examined. It has found
that the Eaton6 model can fit moderately well with the data
in this study, which further indicates the generalizability of
the Eaton6 model.

However, the reliabilities of certain factors measured by
the two CIs have shown unacceptable values of CR. For
FCI, the items in the unreliable factors mainly address
Newton’s second law and kinematics. For CSEM, the items
in the unreliable factors mainly address the magnetic forces
on charged particles and the relationship between electric
potential and electric field. In addition, all the unreliable
measures occur in the pretest data only.
Based on the previous models, various modifications

have been explored to make the unacceptable factors more
reliable, which produce three modified models for FCI
(HWS6M, SSG5M, and EW5M) and one for CSEM
(Eaton5M). For FCI, the CR values of the factors in the
two modified models (SSG5M and EW5M) have achieved
the minimally acceptable level (0.65). For CSEM, while the
internal consistency of the unreliable factors has improved
in the modified models, the reliability estimates are still
below the acceptable level. Nevertheless, the modified
factor models proposed in the current study seem to
perform better than previous models.

B. The stability of latent constructs measured
by FCI and CSEM between pre- and post-test

In the current study, the LMI analysis has been con-
ducted for FCI and CSEM to examine the stability of latent
constructs measured by these two CIs. For the FCI, the

FIG. 3. Strict LMI model of the reduced CSEM. The modified Eaton5 model suggested the following five factors: F1 ¼ Nettons’s 3rd
law, F2 ¼ F⃗E ¼ qE⃗þ Superpos, F3 ¼ B⃗ by I, F4 ¼ Electromagnetic interaction, and F5 ¼ q in fields. Because of the data’s
longitudinal structure, the latent factors are allowed to correlate across time (the correlation between identical latent factors in the
different time was in red curves; the correlation between different latent factors in the different time was in blue curves), and identical
items over the two test occasions were allowed to covary. All parameters are standardized.
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SSG5M and EW5M models fit well with both pre- and
post-test data. For CSEM, the Eaton5M model is the only
reliable model, and fits the data very well.
The test of configural invariance establishes the equiv-

alence of conceptual constructs for the FCI and the reduced
CSEM between pre- and post-test. The results for the FCI
are different from prior findings, which show different
factors for pre- and post-test through EFA [13]. However, it
is noteworthy that the current study is the first to examine
the pre-post measurement invariance of FCI under the CFA
framework. The different findings may be due to different
factor analysis methods applied, i.e., the current study uses
CFA, while EFA was used in the previous study [13].
The test of strong invariance establishes the comparabil-

ity of latent abilities and observed scores between pre- and
post-test. Given the importance of intervention studies in
understanding the effectiveness of a specific teaching
method [6], it is essential to establish strong invariance
of the CIs in science education [20]. When the conceptual
constructs measured by a CI are not invariant between tests,
changes of scores may not reflect change along with the
latent constructs of interest [21], but rather changes of the
latent structures themselves. For example, such issues have
been concerned for students’ understanding of mechanics
measured by the FCI [12,13], and to some extent, this study
provides empirical evidence for these studies.
The test of strict invariance shows that the residual

variances are invariant between pre- and post-test for the
reduced CSEM and only partial strict invariance can be
established for FCI. Specifically, when the SSG5M model
is fitted to the FCI dataset, the residuals of item 29 vary
between pre- and post-test. For the EW5M model, two
items have been documented as responsible for the lack of
residual invariance, i.e., item 29 and item 2. However, as a
highly constrained model, strict invariance is rarely held in
practice [73].

C. Association between students’ concepts
and the latent constructs measured by a CI

The latent constructs inferred from test data cannot be
observed directly. Meanwhile, the structures of students’
conceptual understandings can be analyzed based on
student responses across a variety of items in a CI [42].
Results of such an analysis are always the outcome of the
interactions between the instrument and the students. When
the two threads of analysis are in agreement, the latent
constructs measured by a CI can be viewed as represen-
tative factors underlying students’ understandings.
Regarding teaching and learning, many researchers con-

sider that students’ conceptual understandings are recon-
structed through instruction [14–17]. On the one hand, some
researchers argue that students’ conception structure should
be fundamentally or radically reconstructed after effective
instruction [14,38]. Meanwhile, other researchers consider
the coexistence of preinstruction conceptions and scientific

conceptions in students’ conception structure (e.g., student
model state and model space [9], the conceptual profile
change model [39], and the multiple knowledge system
model [40,41]). The latter models resonatewith some recent
neuroscience studies, which have shown that experts may
still have an incorrect preinstruction conception encoded in
their brain neural networks that must be inhibited in order to
reject incorrect tasks (see a functional magnetic resonance
imaging study in Ref. [74], and an event-related potential
study in Ref. [75]).
Nevertheless, views on conceptual reconstruction add

new meaning for considering longitudinal measurement
invariance (LMI) of CIs. Since students’ conceptual con-
structs are expected to change from pretest to post-test, it is
then a question as to what extent such changes may exist
among different student populations. In this study, the full-
FCI LMI analysis demonstrates partial strict invariance for
the FCI. These results suggest that, for introductory-level
college students (at least for the sample in this study), the
latent constructs of FCI do not change from pretest to post-
test. However, for the CSEM, only the 22-item reduced test
maintains strict invariant between pre- and post-test.
These two commonly used CIs also provide insights into

the possible influences from students’ prior knowledge on
measurement invariance of latent constructs. It is commonly
assumed (and also has been confirmed) that introductory-
level college students may be more familiar with the
mechanics content than that of electricity and magnetism
content (see a large-scale investigation in the U.S. for the
performance of freshmen college students in these two
content areas before physics instruction in Bao et al.
[76]). That is, students’ prior knowledge of mechanics
may be more accessible than that of electricity and magnet-
ism. At pretest students may have some level of expertlike
understandings in mechanics, and therefore, the pre-post
conceptual change can be viewed as redistribution of
probabilities for cueing naïve and expert views [9], both
of which are included in the factor construct model. As a
result, the structure of the factor model would maintain
consistency between pre- and post-test. On the other hand,
for electricity and magnetism, students typically have little
understanding at pretest and their answers reflect significant
guessing, while on the post-test, students will start to show
some meaningful understanding of the content domains.
Therefore, students’ conceptual understandings on electric-
ity and magnetism at pre- and post-test should have sub-
stantial structural differences, which lead to theweaker LMI
on CSEM between pre- and post-test.
This hypothesis can be partially confirmed by the results

from this study, which show that the full FCI held partial
strict invariance, while the CSEM has to exclude some
items (i.e., the reduced CSME) in order to hold strict
invariance. To further examine this hypothesis, LMI analy-
sis of a CI can be conducted for student samples with large
differences, e.g., high school students vs introductory-level
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college students, which should warrant attention in future
research.
Based on the discussion, it is also suggested that the lack of

LMI for a CI should not necessarily invalidate the CI. In the
case when students’ understandings are significantly restruc-
tured, such as on topics with CSEM, the latent constructs
measured on the pretest will inevitably be significantly
different from that of the post-test. In such cases, the goal
of assessment should not aim tomaintain LMI, but rather, it is
more productive to analyze the differences between pre-post
latentconstructs inorder tomakemeaningful inferenceson the
nature of students’ conceptual changes.

D. Limitations and suggestions for further study

This research has some limitations that need to be
considered when interpreting the outcomes. First, the data-
sets used for conducting LMI analysis were collected from
only two universities in the United States. The results cannot
be generally extended to students from other universities
and education systems. It would be beneficial to inspect if
similar results can be replicated with students from different
institutions and education settings. Nevertheless, this study
provides a case of empirical analysis of the measurement
invariance of CIs from pre- to post-test, which is lacking in
current literature. The current study illustrates a way to
examine the LMI of CIs in the science education field.
Future studies are encouraged to further validate the related
models with extended student populations.
Second, the findings of LMI are based on selected previous

models [48,53,54], which may not reflect the optimal factor
structuresofFCIandCSEM.Hence, othermodels, e.g., the set
of theoretical models by Stewart and his colleagues [52,55],
may also be explored in LMI analysis for these CIs.

Finally, the CSEM has to exclude some items in order
to hold strict invariance. Therefore, the reduced version
cannot fully represent the content assessment of the
original CSEM.

VI. CONCLUSION

The current study illustrates a way to examine the LMI of
FCI and CSEM. For the FCI, the factor models fit well with
both pre- and post-test data. For CSEM, acceptable fits are
obtained with a reduced version of the CI. However, the
combining reliability analysis suggests that the previous
models from the literature should be revised. Accordingly,
several modified factor models were proposed. Overall, the
LMI on the FCI demonstrates the existence of partial strict
invariance, while LMI analysis on a reduced version of the
CSEM indicates strict invariance.
These findings provide the first piece of empirical

evidence that pre-post changes of FCI scores and the
reduced CSEM can be attributed to ability changes along
the same latent constructs measured by the CIs. These
results further establish the CIs’ reliability for assessment of
students’ conceptual changes over time in introductory
physics courses.
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