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This study examines whether including more contextual information in data analysis could improve our
ability to identify the relation between students’ online learning behavior and overall performance in an
introductory physics course. We created four linear regression models correlating students’ pass-fail events
in a sequence of online learning modules with their normalized total course score. Each model takes into
account an additional level of contextual information than the previous one, such as student learning
strategy and duration of assessment attempts. Each of the latter three models is also accompanied by a
visual representation of students’ interaction states on each learning module. We found that the best
performing model is the one that includes the most contextual information, including instruction condition,
internal condition, and learning strategy. The model shows that while most students failed on the most
challenging learning module, those with normal learning behavior are more likely to obtain higher total
course scores, whereas students who resorted to guessing on the assessments of subsequent modules tended
to receive lower total scores. Our results suggest that considering more contextual information related to
each event can be an effective method to improve the quality of learning analytics, leading to more accurate
and actionable recommendations for instructors.
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I. INTRODUCTION

Online learning platforms provide a rich variety of data
on students’ learning behavior, enabling researchers to
explore the relation between learning behavior and learning
outcome, motivation, course completion, and other student
characteristics. For example, Kortemeyer [1,2] examined
both the relation between frequency of material access and
students’ course outcome and the relation between discus-
sion forum posts and learning outcome; Formanek et al. [3]
studied the relation between number of video views, dis-
cussion forum participation, peer grading participation and
students’ level of motivation and engagement in a massive
open online course (MOOC); Lin et al. [4] correlated
students’ access of instructional videos with course perfor-
mance. In the broader field of learning analytics, more
sophisticated analytic methods and algorithms have been
developed to either identify patterns in students’ online
learning behavior [5–8] or predict academic achievement
based on large datasets [9–13].

Inmost of those studies, students’online learningbehavior
is characterized by the count, frequency, or total duration of
one or more types of online learning events, such as the
number of discussion forum posts or frequency of video
views. However, the same type of learning event occurring
under different contexts could be generated by distinct types
of student learning behavior. For example, a failed problem
solving attempt followedbyone ormorevideo access or page
access events suggests that the student is trying to learn how
to solve the problem, while a sequence of failed homework
attempts without accessing relevant instructional materials
could imply that the student is randomly guessing, especially
when the duration of the attempts are short. However, both
kinds of failed attemptswould contribute equally to the count
or frequency of problem attempt data. Gašević et al. [14]
suggested three types of contextual conditions that can have
significant impact on learning analytics, based onWinne and
Hadwin’s self-regulated learning model [15]: Instruction
condition: such as the course mode, course content, choice
of technology, and instructional design. Internal condition:
such as the level of utilization of learning tools and the
learner’s level of prior knowledge. Learning products and
strategy: including learner’s strategy for completing learning
tasks, and the quality of the learning product such as
annotations or discussion posts.
A number of recent studies have emphasized to varying

degrees the context in which online learning events took
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place, in addition to the number or frequency of events. For
example, Wilcox and Pollock [16] examined the impact of
four types of contextual information associated with
students’ answering of online conceptual assessments,
Seaton et al. [17] looked at the impact of the time duration
of resource access, and Alexandron et al. and Pallazo et al.
[18,19] utilized time duration and IP address to detect
possible copying behavior in students’ problem-solving
events. Seaton et al. [20] examined the difference in
resource usage that took place when students are complet-
ing different tasks in a MOOC.
In this study, we ask the question: Can outcomes of

learning analytics be improved by considering more con-
textual information associated with each learning event,
without increasing the complexity of the analytic methods?
We increased the contextual information associated with
each event in three steps, and demonstrated that each step led
to increasingly informative descriptions of students’ online
learning behavior, which enabled us to provide increasingly
accurate answers to our second research question: How does
students’ overall performance in a physics course correlate
with their online learning behavior? In other words, do
students that are often referred to as “struggling” in a physics
course study online learning resources differently from those
who perform well in the course, and if so, what are the most
characteristic differences?
To answer this question, we collected students’ online

learning data from a sequence of 10 online learning modules
(OLMs) which were assigned as homework to be completed
over two weeks. Each module contains an instructional
component and an assessment component with 1–2 prob-
lems. Previous studies have shown that the mastery-based
learning design of the OLMs can not only improve student
learning outcome [21,22] but also increase the interpret-
ability and information richness of learning data [23].
The main events analyzed in the current study are the

outcomes of each module, as measured by passing, failing,
or aborting the assessment component, resulting in 10
events per student. For each pass-fail event, we extracted
three types of contextual information: where, when, and
how? More specifically,

1. Where was it: On which of the 10 modules did each
pass-fail event take place?

2. When did it happen: Did the pass-fail event take
place before or after the student accessed the
instructional material in each module, and after
how many attempts did the student choose to access
the instructional material?

3. How did it happen: For each pass-fail event, how
much time was spent on solving the problems?
Multiple previous studies have linked abnormally
short problem-solving duration with either random
guessing or answer copying [18,19,23–27].

Each context corresponds to one of the conditions
proposed by Gašević [14]: the “where” reflects the

instructional condition of online materials being organized
in a sequence of OLMs, the “when” reflects students’
internal state of choosing whether to access the learning
resources, and the “how” serves as one indication of the
strategy of producing the learning product.
We refer to the combination of a pass-fail event and its

associated contextual information as an “interaction state,”
or “state” for short. We created three different levels of
interaction states with each level including additional
contextual information than the previous level, as explained
in detail in Sec. III. B. Therefore, each level contains more
states than the previous one.
Students’ overall performance in the course is measured

by their normalized final course score, which includes
scores from homework, two midterms and one final exam,
lab activities, and classroom clicker questions. The final
course scores directly determine students’ letter grade for
the course.
Three linear regression models were constructed to

associate each of the three levels of interaction states with
students’ final course score, as well as a baseline model
for comparison. To address the issue of collinearity [28]
between the large number of variables, we selected for
each model a subset of significant variables using a regu-
larized linear regression algorithm LASSO [29], and recon-
structed the linear models using those LASSO-selected
subsets. Complementary to the linearmodels,we also plotted
students’ transition between different states on neighboring
modules using a series of parallel coordinate graphs,which is
an updated version of the data visualization scheme devel-
oped in an earlier study [30]. As detailed in Sec. IV, a
complete description of student learning was obtained by
combining the linear model with the corresponding parallel
coordinate graph for each level.
In Sec. V, we interpret and compare the outcomes of

analysis based on the three levels of interaction states, and
discuss the benefit of including increasing amounts of
contextual information on each event. We show that, in this
case, the inclusion of more contextual information results in
more informative descriptions of students’ learning behav-
ior. The model that includes all three types of contextual
information reveals a characteristic difference in the way
top and bottom students complete certain OLMs, which
provides the most accurate actionable recommendations for
instructors. We also discuss the implications of the current
results for both instructors and education researchers, as
well as caveats and future directions of the current study.

II. STUDY SETUP

A. Design of OLM sequence

The OLM sequence is created using the Obojobo
learning objects platform, developed as free and open
source software by the Center for Distributed Learning
at University of Central Florida [31]. Each OLM consists of
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an instructional component (IC) and an assessment com-
ponent (AC) (cf. Fig. 1). The AC contains 1–2 multiple
choice problems and allows a total of 5 attempts. Each of
the first 4 attempts are sets of isomorphic problems
assessing the same physics knowledge but with different
surface features or different numbers. On the 5th attempt,
the same problem on the 1st attempt is presented to the
students again. On four of the modules used in the current
study, a new set of isomorphic problems is presented to
students on each of the first 3 attempts, while the same
problems on the 1st and 2nd attempt were repeated on the
4th and 5th attempts. Each IC contains a variety of learning
resources, including text, figures, videos, and practice
problems, focusing on explaining one or two basic con-
cepts or introducing problem solving skills that are assessed
by the problems in the AC. Upon opening a new module, a
student must make one attempt at the AC before being
allowed access to the IC. From a pedagogical perspective,
the required first attempt could improve students’ learning
from the IC [32], via the “preparation for future learning”
effect [33]. From a research perspective, the first attempt
serves as a de facto pretest that can measure students’
incoming knowledge of the content.
Access to the IC is locked whenever the student is

attempting the AC and is unlocked after the answers are
submitted. Students are required to access the OLM
sequence in the order given. In the 2017 implementation,
due to platform limitations, students could access the next
module once they had submitted their 1st attempt on the
current module. However, students were not explicitly
informed of that information, and were encouraged to
complete the current module by either passing the AC or
using up all attempts before moving on to the next one. We
found that in less than 3% of the cases a student accessed
the next module in sequence before passing the current one.
Those events are excluded from the current analysis.
The OLM sequence used in the current study consists of

10 modules covering the subject of work and mechanical
energy. The first six modules introduce the concepts
of work, kinetic and potential energy, and conservation of
mechanical energy. The AC for those modules consists
of mostly conceptual questions (with the exception of
module 3, work and kinetic energy). Modules 7–10 focused
on solving increasingly complex mechanical energy prob-
lems, and theACs consist of numerical calculation problems.

The problems in the AC are inspired by either common
homework problems [34] or research-based assessment
instruments [35]. Readers can access the OLM sequence
following the URL provided in Ref. [36]. Because of current
platform limitations, all the problems were given in a
multiple-choice format.

B. Implementation of the OLM sequence

The OLM sequencewas implemented in a large calculus-
based college introductory physics course in fall of 2017,
taught in a traditional lecture format. Of the 236 students
who registered for the class, 184 were male and 52 were
female, 107 were ethnic minorities.
The OLM sequence was assigned to students as home-

work. Modules 1–6 were released one week before mod-
ules 7–10, and all 10 modules were due 2.5 weeks after the
release of the first six modules. Completing all 10 modules
was worth 9% of the total course score, and each module
was weighted equally. The modules were released con-
currently with classroom lectures on the same topic. The
contents of the modules were tested on both the 2nd
midterm exam and the final exam of the course. No other
assignments were assigned to the students during the
2.5 week period. A total of 230 students attempted at least
one module, and 223 students attempted all 10 modules.

III. METHODS

This section describes in detail how we first extract
learning events and contextual information from the raw
click-stream data, then integrate the learning events with
increasing amounts of contextual information to generate
three levels of interaction states for each module, with each
level containing one additional type of contextual infor-
mation. We then describe the three linear regression models
created using the three levels of interaction states, plus a
baseline model that includes only pass-fail events. We also
describe how we address the problem of collinearity within
variables using LASSO.

A. Analysis of students’ click-stream data

Students’ click-stream data collected from the Obojobo
platform are analyzed using R and the tidyverse package
[37,38]. For the current study, we extracted the following
types of information from the click-stream data:
AC attempt outcome and duration.—An AC attempt is

recorded as “pass” if the student answers every question
correctly, otherwise it is recorded as “fail.” The duration of
each attempt is recorded as the time between the student
clicks a button to start the attempt, and when the student
clicks another button to submit the answers.
Study sessions.—A study session is defined as all

students’ interaction with the IC between two consecutive
AC attempts on a given module. The duration of a single
study session is the sum of all the events that took place

FIG. 1. Schematic illustration of the design of online learning
module. Two modules in a sequence are shown.
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during the session, including viewing page content and
attempting practice problems. Since each module allows a
maximum of 5 attempts, and require one attempt before
allowing access to the IC, a student can have a maximum of
4 study sessions. However, we observed that in 93% of the
cases, each student only had one study session on a given
module. In only 6% of the cases did a student have a second
study session longer than 60 sec and at least 30% as long as
their longest study session in thatmodule. For those6%of the
cases, we only consider the first of the two study sessions,
which is usually the longer one. In the remaining 1% of the
cases, the second (and 3rd) study session are neglected
because they are either shorter than 30% of the longest study
session, or last less than 60 sec. These choices are unlikely to
impact the outcome of the current analysis, because we only
consider whether a student had a study session, and how
many attempts were made before and after the study session,
not the duration of each study session.

B. Students’ interaction states with OLMs

1. Defining interaction states with increasing levels of
contextual information

Level I (3 states).—The first level of interaction states
includes information on “where” a pass-fail event took
place, i.e., whether a student passed or failed the AC of a
specific module. We define the following three interaction
states for each module:

• Pass (P): A student passes the AC within the first 3
attempts. The reason for this choice is that (i) on four
of the modules the AC will provide a different
problem only on the first 3 attempts, and will repeat
the 1st problem on the 4th attempt; (ii) many students
do not have the knowledge or skill to pass the AC on
their 1st attempt, so they essentially have 2 attempts
after studying the IC to be considered as pass, which
provides some tolerance for “slips,” such as putting in
the wrong number in the calculator.

• Fail (F): Students who cannot pass the AC within the
first 3 attempts. In other words, either passed on the
4th or 5th attempt or failed on all 5 attempts.

• Abort (A): Students who did not pass the module and
did not use up all 5 attempts before moving on to the
next module.

Information of the specific module on which each state
occurred is added by combining the module number with
the above states when constructing the linear regression
model, which is described in detail in Sec. III. C. 1.
Level II (six states).—The second level adds information

on “when” a pass-fail event took place with respect to the
related study event, on top of the three states in level I.
More specifically, we divided students according to
whether their passing or failing of the AC took place
before or after studying the IC. Table I lists the six states in
this level, with examples of common sequences of events
belonging to each state, using “S” to represent a study
session, and “P” or “F” to represent the outcome of each
attempt. All possible event sequences can be categorized
into those six states.
The rationale for dividing P and F states according to

whether the outcome is achieved before or after the study
session is straightforward: students who can pass the
module before studying are likely to have stronger incom-
ing knowledge than those who passed after studying. On
the other hand, those who studied immediately after the
first or second failing attempt likely are more motivated to
learn than those who studied after more than 3 failed
attempts or did not study at all.
Level III (nine states).—The third level adds contextual

information on “how” each pass-fail event is generated by
further dividing the BSP, ASP, and ASF states according to
the duration of the attempts. Different cutoff values have
been proposed in several earlier studies to distinguish
between an abnormally short attempt and a regular problem
solving attempt. In the current analysis, we estimated the
cutoff to be 35 sec, by fitting the attempt duration
distribution using scale mixtures of skew-normal distribu-
tion models, detailed in the next section. On modules 2 and
6, the cutoffs are adjusted to 17 and 24 sec, respectively, on
attempts after the study session due to shorter overall
attempt durations. We assert that students who spent less
than the cutoff times on an AC attempt are unlikely to have
put in an authentic effort to solve or even read the
problem body.
Therefore, we divide each of the BSP, ASP, and ASF

states into two new states, based on if the students’ attempts
are classified as “brief” or “normal” based on their attempt
durations. For example, the BSP state is divided into

TABLE I. Definition of level II states. Note that “fail” states are defined as failing the first three attemps on each
module. The example column presents the most common event sequence for each state.

State name State label Definition Example

Before study pass BSP Pass with no study session fF;Pg
After study pass ASP Pass with study session before the 3rd attempt fF;S;F;Pg
After study fail ASF Fail with study session before the 3rd attempt fF;S;F;F;Pg
Late study LS Fail with study session after the 3rd attempt fF;F;F;S;F;Pg
No study NS Fail with no study session fF;F;F;F; Fg
Abort AB Fail and did not use all 5 attempts fF;S;Fg
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BSP-B and BSP-N (before study pass-brief and before
study pass-normal). For BSP and ASP, the attempt duration
is taken from the passing attempt which is also the last
attempt. On ASF, the duration is taken as the longest of the
first 3 attempts. The resulting nine interaction states and the
relation between the three levels are listed in Table II.
Determining the duration cutoff between brief and normal

attempts.—Previous studies showed the cutoff between brief
and normal attempts can be determined by fitting the
distribution of the problem-solving duration using multi-
component mixture models (e.g., Refs. [39,40]), finding the
cutoff between the shortest component and the second
shortest component as demonstrated in Fig. 2.
In the current study, we fit the distribution of problem

solving duration from students’ 1st AC attempts collected
from all 10 modules, using scale mixtures of normal or
skew-normal distributions, since previous studies have
suggested that students’ problem solving duration distri-
bution are likely skewed [24,39,40]. There are two reasons
for using the duration data from the 1st attempt. First,
because students are required to make their 1st AC attempt
before studying the IC, they are more likely to make a
random guess. Therefore, the population of brief attempts is
more similar to normal attmps,making it easier to separate
the short duration component from the rest of the data.

Second, on the 1st attempt, students who made a normal
attempt must have read the problem text carefully, whereas
students who made a brief attempt likely did not, leading to
a larger difference in duration between the two compo-
nents. On their 2nd and 3rd attempts, students may be able
to read the problem text faster on some modules where the
problems are more similar to the 1st attempt, resulting in
smaller difference in duration. For those modules, the
cutoff for 2nd and 3rd attempts are being adjusted (see
below). The reason for aggregating the duration data from
all 10 modules is based on the assumption that brief
attempts should be largely independent of the context of
the problem, since the student was not actually solving it.
Aggregating the duration data will increase the accuracy for
estimating the cutoff.
Model fitting is conducted with package mixsmsn [41],

and details are presented in the Appendix. Based on the
results from model fitting, the cutoff between brief and
normal attempts is initially set at 35 sec for all modules. To
check if this 35 sec uniform cutoff is reasonable for all
modules and all attempts, we compared it to the mean of the
log duration distribution of attempts made both before and
after a study session. We use the mean of log-duration
distribution since the distribution is approximately log-
normal on many modules. Attempts longer than 7200 sec
are excluded as outliers. For attempts before the study
session, the mean log-durations of all modules are between
70 and 200 sec, much longer than 35 sec, with harder
modules having shorter mean durations. For attempts after
the study session, on two modules (2 and 6) the mean log-
durations are 35 and 53 sec, respectively; only about half as
long as the duration of attempts before study on the same
modules. Both modules contain conceptual problems, and
the problems presented on the 2nd or 3rd attempt are very
similar to the one on the 1st attempt. It is reasonable to
assume that students can correctly solve the problem on
their 2nd or 3rd attempt by looking at the new diagram and
without fully reading the problem body again. Therefore,
for those two modules, we treat the shortest 15% of the
attempts as brief, and adjust the cutoffs to 17 and 24 sec,
respectively, for attempts after study. On all other modules,
the mean duration of attempts after study either increased or
decreased slightly (m4). Therefore the same 35 sec cutoff is
used for all other modules except m2 and m6.

C. Modeling linear relation between interaction states
and total course score

1. Initial construction of linear models

We construct three linear regression models between
students’ interaction states on each module and their final
course score for each of the three levels of interaction states,
in the form of Eq. (1), where for the ith student, yi is the
standardized final course score with mean of 0 and standard
deviation of 1 (referred to as final course z score in the rest
of the paper), ϵi represents the “noise term” that accounts

TABLE II. Correspondence between level I, II, and III states.

Level I Level II Level III

P BSP BSP-N
BSP-B

ASP ASP-N
ASP-B

F ASF ASF-N
ASF-B

LS LS
NS NS

A AB AB

FIG. 2. Example of a mixture model fit of the duration
histogram of 1st attempts on all 10 modules combined, with
maximum duration of 350 sec. The blue line indicating the 35 sec
cutoff used in the current study.
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for all other effects not explained by the interaction states
on the modules. We assume that ϵi are identical and
independently normally distributed with mean 0:

yi ¼ β0 þ
XS

s¼2

β1;sδi;1;s þ
XS

s¼2

β2;sδi;2;s þ � � �

þ
XS

s¼2

β10;sδi;10;s þ ϵi: ð1Þ

In the model above, δi;m;s are dummy variables with
δi;m;s ¼ 1 if the ith student has interaction state s for
module m, and δi;m;s ¼ 0 otherwise, for i ¼ 1; 2;…; n;
m ¼ 1; 2;…; 10, and s ¼ 1; 2;…; S. Here n ¼ 223 is the
number of students who completed all 10 modules, and S is
the maximum number of interaction states defined in each
level of linear model. The variables δi;m;s combine infor-
mation contained in the module number, such as different
content and difficulty of each module, with students’
interaction states. Consequently, the model parameter β0
represents the expected final course score for students in a
“reference state” for every module, while βm;s measures the
difference in the final score by being in state s in modulem
compared to the reference state.
For each of the three levels, the reference state is set to be

the first state with s ¼ 1. According to the three levels, we
study the effects with number of states S to be 3, 6, and, 9
respectively. Specifically, the reference state is listed as
follows for each level.

I. Final course z score ∼ 3 states. Reference state: P
II. Final course z score ∼ 6 states. Reference state: BSP
III. Final course z score ∼ 9 states. Reference state:

BSPN
In each level, the reference state is selected as the

interaction state that is most likely associated with the
highest level of content knowledge from an instructor’s
point of view. The intercept reflects the predicted final
course z-score if all modules are in the reference state.
For comparison, we also create a baseline linear regres-

sion model between the number of modules a student failed
and aborted and their final course score:

yi ¼ α0 þ αFxF;i þ αAxA;i þ ϵi; ð2Þ

where yi is the standardized final course z score for student
i and xF;i and xA;i are the number of modules the student
failed or aborted, respectively. The parameter α0 stands for
the expected score of students who passed all modules and
αF (and αA, respectively) represents the amount of points
decreased in the course final z score for failing (aborting,
respectively) one more module.

2. Addressing collinearity within regression variables
using LASSO

Collinearity and regularized regression.—To construct
the linear model (1), we are estimating p ¼ 10S − 9
unknown coefficients; i.e., 21, 51, and 81, respectively,
for levels I, II, and III. The fact that p is nonnegligible to the
number of students n ¼ 207 can induce significant issue in
the regression. In particular, it is likely that the space
constructed by the predictors is (nearly) singular, which
means some of the covariates are (nearly) linear combina-
tions of others. This issue is known as collinearity and it can
cause a highly inaccurate and unstable [28], if not non-
existent, model estimation since the ordinary least square
solution of 1 relies on the assumption that the covariate
space is nonsingular. In the presence of collinearity, the
estimated relationship can be spurious and redundant, as
the effect of one covariate can be replaced by the combi-
nation of others.
In remedy of the collinearity, we employ least absolute

shrinkage and selection operator (LASSO) estimation
[29,42], assuming only a small proportion of the states
significantly influence the final course score. The LASSO
regression regularizes the estimation by imposing a penalty
of model size to the square sum of errors, defined as in the
following equation:

ðβ̂0; β̂Þ ¼ argminðβ0;βÞ
Xn

i¼1

ðyi − β0 − δ⊤i βÞ2 þ λβ1; ð3Þ

where the vector δi ¼ ðδi;m;s; 1 ≤ m ≤ 10; 1 ≤ s ≤ SÞ⊤
contains the binary state dummy variable for each state
in all ten modules, and β contains the corresponding
coefficients. The tuning parameter λ controls the strength
of penalty in the model, and hence the sparsity of the
estimation. We select λ by a tenfold cross validation with
the minimum mean squared error.
LASSO estimation assumes that a small subset of β is

nonzero and is well known for its model selection con-
sistency under certain conditions (cf., Ref. [43]). In other
words, the estimator (3) is able to select the correct subset
of features relevant to the overall course score with
high probability. That is, with a large sample size, model
(3) selects the relevant models and states and excludes the
irrelevant with probability near one. We use for feature
selection and then regress the final course z-score against
the selected modules and states. Assume only a subset of
interaction states in all the modules are relevant to students’
final performance in the course, denoted as S0 ¼ f1 ≤
j ≤ p∶βj ≠ 0g. Let Ŝ0 ¼ f1 ≤ j ≤ p∶β̂j ≠ 0g be the index
set of significant features selected in Eq. (3) and δŜ0 be the
design matrix for the corresponding modules and states. We
estimate the corresponding coefficients β⋆ from the follow-
ing regression:
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y ¼ δ⊤̂
S0
β⋆ þ ϵ; ð4Þ

where y and ϵ are the vector form of the final course z score
and noise respectively. Note that in Eq. ð4Þ the irrelevant
states are not included in the predictors.

D. Visualizing students’ transition between interaction
states in an OLM sequence

To visualize how students transition between interaction
states from one module to the next, we plot data from the 10
modules on a sequence of nine parallel coordinate dia-
grams, as shown in Figs. 3–5. The two vertical axes on each
of the nine diagrams represent the interaction states on two
adjacent modules. Each student is represented as a line
starting from one interaction state on the left axis and
ending on another interaction state on the right axis. One or
more overlapping lines form a path indicating a transition

between two interaction states on two adjacent modules,
where a horizontal path means that one or more student
remained in the same state on the two modules. The student
population is divided equally into top 1=3, middle 1=3, and
bottom 1=3 cohorts according to their final course score,
with each cohort plotted on its own sequence of parallel
coordinate diagrams. The most populated major paths that
add up to half of the population within each cohort are
highlighted by a yellow line, with the line widths propor-
tional to the size of the major path. The current visuali-
zation scheme has two differences from the version in the
earlier study [30]: 1. The ordering of states is now based on
the results of the linear model. States that are more
frequently correlated with lower course grades are placed
lower on the graph, with reference state being placed at the
top of the graph. 2. Adjacent paths are no longer clustered
into a single path, as it cannot be argued that adjacent states
are more similar to each other than distant states.

FIG. 3. Parallel coordinate graphs using level I (three) states.

FIG. 4. Parallel coordinate graphs using level II (six) states.
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In addition, variables in the linear model selected by the
LASSO estimation algorithm are highlighted by three types
of labels on the axis: hollow triangles represent selected
variables with β⋆̂

S0
not significantly different from zero,

solid squares represent variables with β⋆̂
S0

significantly

different from 0 at α < 0.05 level, and solid spheres
represent with β⋆̂

S0
significantly different from 0 at α <

0.01 level. Selected variables with β⋆̂
S0
> 0 are represented

by dark cyan (#1A9F76) labels, and those with β⋆̂
S0
< 0 are

represented by pollo blue (#8DA0CB) labels. Each label is
repeated 3 times on the three graphs for the three cohorts.

IV. RESULTS

A. Baseline model

The intercept and coefficients of the baseline regression
model (adjusted R2 ¼ 0.18, F ¼ 16.21, p < 0.01) are
listed in Table III. As expected, the average final score
for students who passed all modules differs significantly
from the average of all students, and the number of both
failed and aborted modules are negatively correlated with
final course score, with correlation coefficients signifi-
cantly different from zero at α < 0.01 level.

B. Level I: Three interaction states

For level I (three states on each module), 17 out of 21
variables are selected by the LASSO algorithm, resulting

in a linear model of adjusted R2 ¼ 0.20; F ¼ 4.07;
df ¼ 189; p < 0.01. The coefficients of the model are
shown in Table IV. Most of the variables are negatively
correlated with the final score, which is expected since the
P state is selected as the reference state for each module. In
addition to the intercept, six variables have coefficients that
are significantly different from zero, in which five of those
are on modules 6–10. This is likely because the difficulty
of the modules increases towards the end of the sequence.
Surprisingly, the F state on module 10 is positively
correlated with the final score, indicating that students
with high final scores are more likely to fail on this module.
On the parallel coordinate graph (Fig. 3), the three states

are ordered as P, F, A, since on all modules (except on m10)
the coefficients for both F and A states are negative, with

FIG. 5. Parallel coordinate graphs using level III (nine) states.

TABLE III. Estimated coefficients and p values for the baseline
linear regression model (2).

State Coefficients (α) p

Intercept 0.74 0.00**
F −0.15 0.00**
A −0.32 0.00**

TABLE IV. Estimated coefficients and p values of regression
(4) for the three-state model (level I).

Module State Coefficients (β⋆) p

NA Intercept 0.80 0.00**
m1 A −0.14 0.61
m1 F −0.24 0.08
m2 A −0.31 0.49
m2 F −0.13 0.36
m3 F −0.06 0.72
m4 A −0.50 0.03*
m4 F −0.17 0.18
m5 F −0.21 0.09
m6 F −0.40 0.04*
m7 A −0.48 0.01*
m7 F −0.32 0.03*
m8 A −0.36 0.29
m8 F −0.17 0.19
m9 A −0.52 0.24
m9 F −0.30 0.02*
m10 A −1.02 0.23
m10 F 0.25 0.04*
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the A states being more negative. Four of the six significant
variables correspond to the start or end point of a major
path. Of which, m7-A is on the end of a significant path in
the bottom cohort only; m7-F is at the junction of two major
paths on all three cohorts; m9-F is on 2 major paths in the
bottom cohort and one major path in the middle cohort;
m10-F is on the end of a major path in the middle
cohort only.

C. Level II: Six interaction states

For level II, 24 out of 51 variables are selected by the
LASSO algorithm, resulting in a linear model with adjusted
R2 ¼ 0.33, F ¼ 5.268; df ¼ 182; p < 0.01, the coeffi-
cients of which are shown in Table V. In addition to the
intercept, 10 variables have coefficients that are signifi-
cantly different from zero at the α ¼ 0.05 level, one of
which, m1-ASF, is significant at the α ¼ 0.01 level. Most
of the variables are negatively correlated with the final
score, except for m8-ASP, m9-ASP, m10-ASP, and
m10-NS.
The ordering of states on the corresponding parallel

coordinate graph (Fig. 4) reflects the fact that LS, NS and
AB states on multiple modules are significantly negatively
correlated with final course score. Of the 10 significant
variables, 3 of which: m5-LS, m7-NS, m7-AB are not
located on any major path in any of the cohorts, and one

variable, m5-AB, is located on a small major path in the
bottom third cohort. It is likely that those variables reflect
the behavior of a small fraction of students with excep-
tionally low final course score.
Of the remaining 6 significant variables that are also

located on at least one major path, there are several
noteworthy observations:

1. Among passing states, ASP and BSP (reference
state) are similar in their correlation with final course
score, except on m1 and m8. On m1, ASP is
significantly negatively correlated with final course
score, but is also on a major path in all three cohorts.
A possible explanation is that the fraction of students
with the highest final scores can pass this module,
which introduces the definition of kinetic energy,
prior to studying the content. Surprisingly, m8-ASP
is positively correlated with final course grade
compared to m8-BSP, and is on a major path in
both the top and middle cohort, but not in the bottom
cohort. This implies that students with high final
scores are more likely to pass the module after
studying the IC rather than passing on their initial
attempt. Both m9-ASP and m10-ASP are also
positively correlated with final score, with m10-
ASP being marginally significant (p ¼ 0.06).

2. For failing states (ASF, LS, and NS), m7-ASF still
sits on multiple major paths on all three cohorts,
suggesting that only a few top students in the class
can pass m7, and the IC of m7 is not helping the
majority of students. On the other hand, m9-NS
connects three major paths in the bottom cohort,
while almost no student occupied that state.

D. Level III: Nine interaction states

For level III, 20 out of 90 variables are selected by the
LASSO algorithm (Table VI), producing a minimum linear
model with adjusted R2 ¼ 0.39; F ¼ 7.69; df ¼ 186;
p < 0.01. Eight of the 20 variables have correlation
coefficients that are significantly different from 0 at the
α ¼ 0.05 level, two of which are significant at the α ¼ 0.01
level. Two variables have positive correlation coefficients,
but neither are significant.
For the parallel coordinates graph, we noticed that m3-

ASF-B, m9-ASF-B, and m10-BSP-B are the only three
variables that are significantly correlated with lower final
score at the α ¼ 0.01 level, and both ASF-B and BSP-B
states also have significant negative correlations on several
other modules. In comparison, BSP-N (reference state) is
positively correlated with final score (significant positive
intercept), while ASFN on most modules are indistinguish-
able from BSPN since it is not selected by LASSO on any
module except m1. To visually represent this large differ-
ence between ASF-B/BSP-B and ASF-N/BSP-N, we
placed BSP-B and ASF-B at the bottom of the graph just
above AB, where ASP-B is placed next to ASP-N since our

TABLE V. Estimated coefficients and p values of regression
(4) for the six-state model (level II).

Module State Coefficients (β⋆) p

NA Intercept 0.75 0.00**
m1 ASP −0.26 0.04*
m1 ASF −0.51 0.00**
m3 ASP −0.24 0.06
m3 ASF −0.40 0.02*
m4 NS −0.55 0.10
m4 AB −0.36 0.16
m5 LS −0.45 0.04*
m5 NS −0.21 0.43
m5 AB −1.18 0.02*
m6 ASF −0.19 0.41
m6 NS −0.51 0.11
m7 ASF −0.36 0.01*
m7 LS −0.51 0.06
m7 NS −0.79 0.03*
m7 AB −0.57 0.02*
m8 ASP 0.31 0.03*
m8 LS −0.22 0.33
m8 NS −0.13 0.54
m9 ASP 0.11 0.42
m9 ASF −0.14 0.35
m9 NS −0.46 0.02*
m10 ASP 0.25 0.06
m10 NS 0.29 0.11
m10 AB −1.25 0.11
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algorithm did not detect any difference between the two
states. The other states are ordered similar to level II.
When compared to the level II graph, major paths and

LASSO selected variables for m1–m6 are quite similar,
indicating that on those modules, most BSP, ASP, and ASF
events in level II belong to BSP-N, ASP-N, and ASF-N in
level III. The two noteworthy features are as follows:
(i) while m1-ASP was significantly correlated with final
score in level II, m1-ASP-N and m1-ASP-B are not
selected by LASSO as necessary variables in level III;
(ii) m3-ASF-B is a significant negatively correlated vari-
able, similar to m3-ASF in level II.
On the other hand, the level III model tells a very

different story on m7–m10:
1. Most interaction states on m7 are no longer selected

by LASSO for explaining the variance in the final
course grade. Compared to level II, in which 4 states
are selected with 3 being significant, only m7-NS
is selected in level III, and the correlation is not
significant. Meanwhile, m7-ASF-N still serves as a
“hub” connecting multiple major paths in all three
cohorts.

2. BSP-B and BSP-N sates on m8–m9 have different
compositions between the three cohorts. On m8–m9,
most BSP events in the top cohort belongs to BSP-N,
while for the bottom cohort a significant fraction of
BSP events belong to BSP-B. This seems to be a
likely reason why m8-ASP-N in level III has a much
weaker positive correlation compared to what was
observed for m8-ASP in level II, since the current

reference state, BSP-N, is occupied by more students
with higher course score.

3. Interaction states on m8–m10 differ significantly
between top and bottom cohorts. With the current
arrangement of states, the bottom third cohort aggre-
gated onto a “corridor” consisting of major paths
between LS, NS, BSP-B, andASF-B states extending
from m8 to m10, “anchored” by several significant
LASSO selected variables. In contrast, this corridor is
almost empty for the top cohort, and less populated
for the middle third cohort. The top cohort is mostly
concentrated on BSP-N and ASP-N states between
m8–m10, which are only sparsely occupied by the
bottom cohort.

V. DISCUSSION

A. Including more contextual information led to better
descriptions of student behavior

Our analysis demonstrates that by increasing the amount
of contextual information associated with each pass-fail
event, we can obtain more informative and accurate
descriptions of students’ online learning behavior.
The baseline regression model [Eq. (2)] reveals little

more than the fact that high performing students pass more
modules. By including the module number information, the
level I model shows that passing modules m6–m9 are better
indicators of higher final course score. However, it is
difficult to understand why failing on m10 is positively
correlated with final course score. Note that the LASSO
algorithm selected 17 out of 20 variables in this model,
indicating that it has only limited ability to identify character-
istic behavioral differences between students with high and
low total course score. The R2 value for both models (0.18
and 0.22, respectively) are below the recommended criteria
of 0.25 for moderate effect in social science data [44],
whereas the level II (0.33) and level III (0.39) models are
within the range of moderate effects (0.25 < R2 < 0.64Þ.
The level II states added the contextual information on

whether each pass-fail event happened before or after
accessing the instructional materials. The level II model
reveals that on modules m5, m7, m8, and m9, students with
lower final score not only have lower passing rates, but are
also more reluctant to access the instructional materials
after repeated failure (LS and NS states). This could imply
that those students either have less motivation to study or
have otherwise lost confidence in their ability to learn from
the IC. On the other hand, two observations are difficult to
make sense of. First, the ASP states on m8, m9, and m10
are positively associated with final score, which implies
that students with higher scores are more likely to fail
their initial attempts and needed to study the IC.
Second, Fig. 4 shows that many students in the bottom
third cohort transitioned from NS and ASF states on m9 to
BSP state on m10, which contains a harder problem than
m9 in the AC.

TABLE VI. Estimated coefficients and p values of regression
(4) for the nine-state model (level III).

Module State Coefficients (β⋆) p

NA Intercept 0.52 0.00**
m1 ASF-N −0.37 0.01*
m3 ASF-B −0.63 0.01**
m3 ASP-B −0.70 0.12
m4 NS −0.53 0.08
m4 AB −0.17 0.48
m5 LS −0.45 0.02*
m5 AB −0.98 0.05
m6 NS −0.33 0.28
m7 NS −0.45 0.16
m8 ASP-N 0.09 0.55
m8 ASF-B −0.55 0.11
m8 LS −0.50 0.02*
m8 BSP-B −0.33 0.05*
m8 NS −0.24 0.26
m9 ASF-B −1.13 0.00**
m9 BSP-B −0.03 0.85
m9 NS −0.21 0.26
m10 ASP-N 0.19 0.16
m10 BSP-B −0.65 0.00**
m10 AB −1.35 0.07
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The level III model included information on whether
the pass-fail event was completed over a brief interval
(less than 35 sec). The addition of this information seems
to be important for identifying characteristic behavioral
differences between students with high and low final course
scores, as it allows the LASSO algorithm to select only 20
out of 90 variables. The resulting model accounted for more
variance in the final course score using 4 fewer variables
than the level II model.
The level III parallel coordinate graph (Fig. 5) shows a

clear “corridor” from m8 to m10 for the bottom third
cohort, consisting of major paths connecting either brief
passing attempts (BSP-B) or consecutive failed attempts
without study (LS or NS). In contrast, the top third cohort
mainly concentrated on normal passing attempts either
before or after studying the IC (BSP-N and ASP-N) on the
same modules, whereas the middle third cohort has more
failed normal attempts (ASF-N). Remarkably, for all three
cohorts, the major paths between m8-m10 all originated
from the same ASF-N state on m7. This observation
suggests that failing on m7 is not a characteristic difference
between high and low performing students, but their
different choices after experiencing the setback on m7
is: while the top and most of the middle cohort continued
with learning (with the middle cohort being less success-
ful), most of the bottom cohort gave up and resorted to
guessing on the following modules.
The level III model also provides an explanation for the

anomalous observations on level I and II models: many P
and BSP events from the bottom 1=3 cohort on m9 and m10
are BSP-B events (attempts shorter than 35 sec), while only
a few students in this cohort studied the IC of the module.
Based on previous research [18,19,23,24], one possible
interpretation is that students in the bottom 1=3 cohort are
more likely to have copied the answers to the problems
from another source.

B. Implications for instructors

One of the important goals of learning analytics is to
provide instructors with actionable recommendations to
improve student learning. In that regard, the level III model
is far superior to the other models.
The simple baseline model and level I model both rely on

pass-fail events alone, which is similar towhat is provided by
many commercial online homework platforms. According to
these two models, the average instructor can do little more
than ask students to “work harder and pass more modules,
especially onm6–m9.”The level IImodel suggests that some
students might have lost confidence toward the end, but the
patterns are inconsistent. In addition, levels I and II models
could mislead the instructor into believing that the bottom
third cohort eventually mastered the content or even out-
performed the top and middle cohorts on m9 and m10.
On the other hand, the level III model tells a more

complete and accurate story with three main takeaways:

1. On modules m1–m6, there are no qualitative
differences in learning strategy for students with
varying levels of ability to succeed in the course.
In other words, almost everyone is trying to learn in
the beginning.

2. Module 7 is challenging for most students as the
instructional materials are insufficient for helping
them learning how to solve the problems in the AC.

3. After experiencing a setback on m7, students with
low course final scores are much more likely to
employ a guessing (or copying) strategy on the rest
of the modules.

Given those takeaways, rather than telling students to
“study harder” or “do better,” a more helpful message could
be “Everybody experiences setbacks—it is alright to fail!
The key to success is to not give up.” In addition, two
interventions could potentially be beneficial for boosting
students’ confidence:

1. Improve the quality of instruction on m7 to increase
the chance of success especially for low performing
students.

2. Conduct activities that develop a growth mindset,
which has been shown to be beneficial for student
success [45–47].

Looking at the content of each module (which can be
accessed via [36]), m1–m6 mostly focused on introducing
the basic concepts of work and mechanical energy, whereas
m7–m10 were designed to develop students’ ability to
solve numerical problems. The transition from conceptual
understanding to mathematical modeling took place
between m6, which contains two conceptual problems
on the conservation of mechanical energy, and m7, which
contains both a conceptual problem and a numerical
calculation problem on the same topic. Our results suggest
that this transition is very challenging for most students,
and could have an impact on the confidence of some
students. Therefore, instructors need to provide more
scaffolding to facilitate students in this transition. A
valuable future direction will be to investigate if the
difficulty in the conceptual-mathematical transition can
be observed for other topics in introductory physics and in
other learning environments.

C. Implications for researchers conducting data-driven
online learning research

First of all, we demonstrated that instead of employing
more sophisticated algorithms, fine-tuning different param-
eters, or using larger datasets, including detailed contextual
information for each event analyzed can in some cases also
be an effective approach for improving not only the
accuracy of data analysis models, but more importantly
in improving the ability to provide actionable and targeted
instructional suggestions for instructors.
Second, this study highlights the importance of the

instructional design and platform capability in learning
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analytics. The contextual data that are crucial for the
construction of the level II and III models are grounded
in the unique OLM design blending assessment with
instructional resources, which is made possible by the
flexibility of the Obojobo platform. It is often the case that
platform capability and instructional design can determine
both the variety and accuracy of information that can be
extracted from student log data [22,48], and in turn limits
the depth of learning analytics. For example, the RISE
project [49] is limited to simple analysis and visualization
with limited contextual information, using data from
generic online learning platforms. Therefore, it can be
beneficial for all parties involved if data scientists and
online learning researchers play a more active role in the
design, development, or adoption of online learning plat-
forms and online courses, rather than passively stay on the
receiving end of educational data.

D. Caveats

One limitation of the current analysis is the use of a
universal 35 sec cutoff between brief and normal attempts.
While this stringent criterion is favorable for avoiding false
positives, it may not capture a significant number students
who are not trying very hard on complex calculation
problems that cannot be correctly solved within several
minutes even by experts. This might explain why we still
observe some students in the bottom cohort shift from late
study and abort states on m9 to the BSP-N state on m10. In
fact, for m9 and m10, exploratory data analysis [30]
identified a separate distribution spending longer than
average time solving the problem, while achieving a better
correct response rate. Spending more than average time on
those problems could be a characteristic behavior of the top
1=3 cohort just as brief problem solving is characteristic for
the bottom 1=3 cohort.
Another imperfection of the current analysis is that the

scores on the OLM sequence are included in the total
final course grade, which violates the conditions for linear
regression. However, we think that this is a negligible
small effect because (i) the OLM sequence only accounts
for 9% of the total grade and (ii) all students received at
least 90% of the score if they passed the module in 5
attempts. As a result, the failed states used in the linear
model do not directly correlate to the module scores.

E. General discussion and future directions

It is important to clarify that the purpose of the current
work is not to create a predictive model for the course final
score. Instead, our focus is on identifying and making sense
of different behavior patterns among students with different
levels of course performance, as well as demonstrating the
value of integrating contextual information with events to
obtain a more accurate and interpretable description of
student learning. This choice of focus provides justification
for a number of decisions made in the current study.

First, we did not use one part of our data to generate the
regression model and reserve other parts for verification, as
would be the standard process for creating a predictive
model. Such an operation is not essential for identifying
and understanding students’ online learning behavior.
Another reason is that not enough data was collected at
the time the analysis was conducted.
Second, we chose the total final course score as the

dependent variable because it is the most straightforward
and generic way to classify high, middle, and low perform-
ing students in a class, and is most suitable for answering
our research question. Student scores on a single assess-
ment, or on part of an assessment related to the topic of the
module would be more suitable for a predictive model.
Third, we chose to not include several types of available

data such as the time of each submission relative to the
due date, the number of practice problems solved during
learning, or the demographics of the student population. All
of which could have improved the predictive power of the
model, but would not answer our research question.
Although not a predictive model itself, the current study

is an essential first step towards creating better future
predictive models. Existing predictive models are success-
ful at identifying at-risk students with high accuracy, but
often have only limited ability to provide specific and
useful recommendations for both students and instructors.
For example, students identified to be at-risk by the Course
Signal program receive little more than email and text
messages alerting them of their status [9]. The current study
demonstrated the possibility of overcoming such shortages
by collecting and integrating contextual information with
individual learning events.
Another important question that the current study lays

the groundwork for answering is how the design of online
learning resources may shape students’ learning behavior
and learning outcomes. An actionable next step along this
direction is to examine whether improvements recom-
mended by the level III model could lead to detectable
changes in students’ enagagement pattern.
Futhermore, the OLMs’ unique design allows for de

facto pretests and post-tests to be conducted on each
module [40], providing researchers with a new tool to
measure students’ learning gains at much higher frequency
than existing methods. This could lead to new insight into
the relation between students’ learning behavior and
learning outcomes in an online environment. Much future
work is needed to either develop new analysis tools, or
adopt similar existing methods [50] to properly measure
learning gain from OLM data.
Finally, a more general question is whether including

contextual information could benefit the analysis of other
types of data commonly studied in the field of physics
education research. For example, we may be able to gain
new insight into students’ response data from standard
assessment instruments, such as the Force Concept
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Inventory, by studying students’ response time on each
question, or considering the level to which classroom
instruction is aligned with the test questions, using analysis
methods similar to those developed in the current study.
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APPENDIX: DETAILS ON DETERMINING THE
BRIEF-NORMAL ATTEMPT DURATION CUTOFF

1. Skewed normal mixture model fitting

Mixture model data fitting is conducted using the four
different distribution models available in the R package
mixsmsn: the normal distribution; the skew-normal distri-
bution; the skew-Student-t distribution; and the skew-
contaminated normal distribution (Skew-cn). The fitting
algorithm searches for the optimum number of components
and fitting parameters for each distribution model accord-
ing to model selection criteria EDC, which is shown to be
more reliable under certain conditions [51]. The four best
fit models are then compared based on four model selection
criteria: AIC, BIC, EDC, and ICL. The model favored by
the most criteria is adopted. If more than one model is
favored, then the one favored by EDC is selected.
One challenge for data fitting is that problem solving

durations can be as long as several thousand seconds,
whereas Brief attempts are usually under 60 sec. Therefore,
the best-fit model may be selected because of a good fit for
the long duration distribution but a less accurate fit for the
shorter duration, or even not able to fit the short duration at
all. To prevent this, we will only use the duration distri-
bution below a maximum duration, and increase the
maximum duration from 150 to 550 sec at 50 sec intervals

to examine how the maximum duration affects the estima-
tion of the brief-normal cutoff distribution.
The best fit model for each maximum duration, as well as

the estimated cutoff between the first and second compo-
nent, is listed in Table VII. For maximum durations
between 200 and 300 sec, the multi-component skew-cn
distribution is selected to be the best fit model, with the
1st cutoff estimated at around 45 sec. When maximum
durations are more than 350 sec, the multi-component
normal distribution is selected as the best fit model, with 1st
cutoff at around 30 sec. However, the normal distributions
run a higher risk of over fitting, since students’ problem-
solving duration distribution should be skewed by nature,
as there is always a minimum amount of time required to
solve any problem but no a clear upper limit. Therefore, we
will take 35 sec as our brief-norma cutoff, which is close to
the average of all the cutoffs obtained for different cutoffs.
As shown in Fig. 6, the 35 sec cutoff sits right at the center
of the first minimum of the distribution.

2. Mean log-duration of attempts before and after study

In Table VIII, we list the mean log-duration (in unit of
seconds) of AC attempts both before and after studying the
IC. Duration data is truncated at a maximum of 7200 sec.
As shown in the table, modules m2 and m6 are the only two
modules on which the mean log-duration reduced by more
than a half from before study to after study. Therefore, the
brief-normal cutoff on those two modules for poststudy
attempts are set at 17 and 24 sec, respectively, for after
study attempts. All other attempts used 35 sec as the brief-
normal cutoff.

FIG. 6. Example of multicomponent mixture model fit of the
duration distribution, with maximum duration of 350 sec. The red
line indicates the cutoff generated by the algorithm at 30 sec, and
the blue line indicates the average cutoff for all durations
at 35 sec.

TABLE VIII. Mean log duration of before and after study
attempts for each module, in units of seconds.

Attempt type m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

Before study 292 105 131 178 113 112 218 93 89 78
After study 276 35 143 111 118 53 300 211 108 82

TABLE VII. Best fit model and the cutoff between the shortest
and the next shortest distribution, for each maximum duration
cutoff analyzed.

Max duration Model N components Cutoff (sec)

150 Skew.normal 3 33.5
200 Skew.cn 3 46.5
250 Skew.cn 4 43.5
300 Skew.cn 4 48.5
350 Normal 4 30.5
400 Normal 4 30.5
450 Normal 5 30.5
500 Normal 5 31.5
550 Normal 5 30.5
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