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The evaluation of hypotheses, and the ability to learn from critical reflection on experimental and
theoretical tests of those hypotheses, is central to an authentic practice of physics. A large part of physics
education therefore seeks to help students understand the significance of this kind of reflective practice and
to develop the strategies required to accurately update their belief in the utility of various hypotheses and
models. Prior work has introduced Bayesian updating activities as one potential means for cultivating such
reflective practice within the context of introductory physics courses. These activities are not fixed pieces of
curricular matter, but are better thought of as codified practices that are incorporated within lectures, labs,
homework, and exams, and which are adaptable to a broad range of course formats. The Bayesian updating
activities engage students in the use of hypothetico-deductive reasoning to test a hypothesis or model,
followed by Bayesian updating at the conclusion of this test to update their subjective confidence in the
hypothesis or model that was tested. Prior work has identified significant gains in pre- and post comparison
of student scores on the Epistemological Beliefs Assessment for Physical Science (EBAPS) in introductory
algebra-based courses. Here, we conduct a quasi-experimental study of the impact of Bayesian updating
activities on student EBAPS scores in introductory calculus-based courses. Our analysis examines the
impact to the overall EBAPS score, the subscores for each of the five original axes identified by the authors
of the EBAPS, and the subscores for five alternative axes that were recently identified in other work via
factor analysis of student responses [Johnson and Willoughby, Phys. Rev. Phys. Educ. Res. 14, 010135
(2018)]. The results of our analysis show meaningful and credible gains on the overall EBAPS scores as
well as for a multitude of the subscores. These gains are noteworthy due to their strength and their ability to
be achieved with activities that were implemented as relatively minor alterations to a traditional course
structure.

DOI: 10.1103/PhysRevPhysEducRes.16.010101

I. INTRODUCTION

A. Student epistemologies

Epistemological beliefs are the collective body of asser-
tions that students ascribe to which influence subjective
norms and attitudes regarding the doing and learning of
physics. These beliefs may not be consciously articulated by
students, and insteadmay be implicit and therefore crafted ad
novo in response to questions or situations that are unlike
anything the student has considered before. These beliefs,
despite their perhaps initially tenuous nature, have been
shown to significantly impact student performance in multi-
ple ways, such as student achievements [1], conceptual
comprehension [2], motivation [3], learning strategy [4],
self-evaluation [5], and subject matter comprehension [6,7].

In order to prepare for the contemporary and future
workplace, physics students (including nonmajors) are
generally expected to exit a class with greater proficiency
in a wide range of scientific practices [8–12]. A significant
portion of these practices necessarily involves epistemic
reflection on data, hypotheses, and models in physics.
Unfortunately, most students, even those in many non-
traditional course formats, appear to complete their intro-
ductory physics courses having generally regressed in their
understanding of the standards and practices of physics
[13–16]. The design of a course can have some impact
though, as gains on attitudinal assessments have been
demonstrated in courses employing Physics by Inquiry
[17], Physics of Everyday Thinking [18], Modeling
Instruction [19–21], Investigative Science Learning
Environment (ISLE) [22,23], and other designs [24,25].
One consistent feature shared by these approaches is the

recurring elicitation of student evaluations of hypotheses
and models. Evaluation strategies can generally be framed
within the hypothetico-deductive (HD) process [26–28].
The HD process serves the important function of eliciting
and structuring a coherent body of reasoning that allows the
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learner’s confidence in the hypothesis to be modified in
proportion to the epistemic power of the evaluative
judgment that is rendered. The HD process is outlined in
Table I, and stems from considerations of the reasoning
patterns that generate changes in the epistemic status of
scientific hypotheses and models [29].
Consistency may be important here in terms of affording

the students a single cognitive structure that is gradually
made more robust and productive by repeated use across a
range of subject matter topics. The repetition of use may
afford a greater degree of cognitive chunking, so that
students retain greater cognitive capacity to attend to more
details simultaneously and craft a more robust and expert-
like belief. For example, ISLE presents students with a
model of scientific activity called the ISLE cycle and makes
repeated and consistent use of this cycle to structure student
activities in lecture, recitation, and labs.
While these curricula demonstrate strong student gains

on student epistemological beliefs as well as a variety of
other positive outcomes, they often appear to have a
relatively high perceived barrier to entry among physics
instructors. A primary factor is reported to be instructor
concerns about the requisite time to adopt and employ such
curricula [30,31]. Thus, there is strong motivation to
develop and test materials that are easier to deploy by
instructors who prefer to utilize a traditional pedagogical
approach, and yet which can positively and significantly
impact student epistemological beliefs.
The Bayesian updating activities are intended as a step in

that direction. They are distinct in that they also engage
students in the evaluation of hypotheses and models, but
intend to do so in a low-profile “plug-and-play” fashion to
facilitate their easy adoption in nearly any course format an
instructor may favor, whether traditional or otherwise.
Ideally, these activities would enable significant gains to
be made in student epistemological beliefs at a minimal
cost of class time and instructor preparation. Bayesian
updating activities are designed to engage students in
evaluations of hypotheses and models that are consistently
structured by the HD process, and then engage students in
epistemic reflections that are consistently structured by the
use of Bayes’s theorem.

B. Bayesian updating activities

Depending on the nature of the hypothesis being tested,
there are two broad types of Bayesian updating activities. If
the hypothesis being evaluated makes assertions about data,

such as the presence or absence of patterns in the data, then
we call it a direct evaluation. If the tested hypothesis makes
assertions about the relationships between physical models
(such as limit cases) or between a physical model and a
general theoretical principle (such as energy conservation),
we call it an indirect evaluation. The term “indirect” is used
for the latter category because prior data have already been
used in the establishment of some models or principles, and
those data are therefore being indirectly leveraged to test a
hypothesis concerning relations between those models or
principles. This type of evaluation is generally less familiar
to students, as physics is typically the first course where
they have exposure to the idea that one can test hypotheses
and models using thought experiments that leverage prior
data instead of having to do a physical experiment to collect
new data.
After completing the HD process and deciding whether

one’s confidence in the hypothesis should increase or
decrease (or remain unchanged), the actual updating of
the learner’s confidence level is done using Bayes’s
theorem. For our purposes, this is formulated as

PðHjEÞ ¼ PðHÞ � R
PðHÞ � Rþ 1 − PðHÞ ; ð1Þ

where PðHjEÞ is the probability of hypothesisH being true
given the newly acquired evidence E, PðHÞ is the initial
probability of hypothesisH being true before consideration
of the new evidence, and

R ¼ PðEjHÞ
PðEj¬HÞ ð2Þ

is a Bayes factor, with PðEjHÞ the probability of the
evidence E being produced if the hypothesis H was true,
and PðEj¬HÞ the probability of the evidence E being
produced if the hypothesis H was false. Thus, this Bayes
factor is the ratio by which a particular piece of evidence is
relatively more likely to be produced by hypothesis H than
by its converse, ¬H, and thus encodes the inferential power
of the evidence with regards to H.
For example, a strong confirmatory result means that the

evidence can be much better explained by the hypothesis
than otherwise, and the student who wishes to update their
confidence in the hypothesis should choose a largeR in such
cases (i.e., R ≫ 1). A strong disconfirmatory result means
that the evidence is much better explained by assuming the

TABLE I. A schematic outline of the hypothetico-deductive process.

IF [the hypothesis to be tested is assumed true]
AND [a test is planned under certain assumed conditions]
THEN [a prediction is deduced]
AND/BUT [results of the test, including associated uncertainties, were obtained]
THEREFORE [estimated likelihood of hypothesis should/should not be changed]
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hypothesis is false than otherwise, and therefore the students
should choose a small R (0 < R < 1). A null result is when
the evidence offers no discrimination betweenH and ¬H, in
which case the student should select R ¼ 1.
In general, the choice of R is subjective to the extent that

there is no single value that “should” be chosen because of
the unavoidable presence of experimental errors that make
it impossible to definitively say, for example, whether an
experiment result is truly null, or very weakly confirmatory,
or very weakly disconfirmatory. However, the choice a
student makes for R is constrained to the degree that it must
be defensible based on reasoned consideration of the
quantitative results and of any possible sources of error
that were not quantified during the experiment. Guidelines
for the estimation of R are provided in Table II.
This approach can be used for both direct evaluations

(such as in laboratory reports) and indirect evaluations
(such as in lecture and homework questions). Activities for
each case were first introduced in Ref. [33]. Direct
evaluation activities are completed during the laboratories,
being embedded as part of the lab report writing process.
The intent of these activities is to evoke and to structure
student reflection on the epistemic significance of testing
experiments conducted during the labs. In particular, the
goal of a testing experiment is framed as the acquisition and
application of evidence to modify subjective confidence in
a model or hypothesis. The importance of error analysis is
consequently enhanced by having students consider
whether and how specific errors may have produced false
positives or negatives, and ultimately whether the results
are confirmatory, null, or disconfirmatory. A summary
section at the end of the report asks students to briefly
encapsulate the logical flow and results of the experiment
using the hypothetico-deductive structure, and to update
their confidence in the model or hypothesis being tested by
selecting and justifying a particular value for the updating
coefficient R, then using Bayes’s theorem to calculate their
updated confidence. An example lab report guideline given

to students is shown in Fig. 1. The direct evaluation activity
is the summary section at the end.
Indirect evaluation activities are completed during each

class period as group work, then turned in to the instructor,
and written feedback is provided by the instructor at the
following class period. These activities typically ask
students to first solve a standard end-of-chapter exercise.
After creating their proposed solution, students state their
confidence that their solution is correct and follow the
hypothetico-deductive reasoning template to conduct a
thought experiment (such as a special-case analysis) in
order to test their solution. They then choose and justify a
value for the updating coefficient R and use Bayes’s
theorem to update their confidence in their solution. The
pedagogical motivation for these activities is to provide
students with a consistent structure and clear motivation for
reflecting and assessing their own work, and to guide them
towards independent learning. An example in-class activity

TABLE II. Guidelines for estimation of R (adapted from
Ref. [32]).

R Interpretation

<
1

150

¬H very strongly favored

1

150
to

1

20

¬H strongly favored

1

20
to

1

3

¬H substantially favored

1

3
to 1

¬H barely favored

1 to 3 H barely favored
3 to 20 H substantially favored
20 to 150 H strongly favored
>150 H very strongly favored

FIG. 1. An example lab report guideline for the E condition,
taken from the final lab, which asks students to test a hypothesis
regarding the frequency of an oscillator by measuring the tension
required to achieve different standing wave modes. The direct
evaluation activity is embedded as the summary section, part (i).
A total of 10 lab reports, each including embedded direct
evaluation activities in the form of summary sections to be
written by students, were assigned in the E sections during the
semester.
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is shown in Fig. 2, where the indirect evaluation activity
is No. 3.
Students are also given resource materials including

guideline documents for thought experiments (which con-
stitute the indirect evaluation activities) and for writing lab
reports (which constitute the direct evaluation activity).
Copies of these documents, as well as an introductory lab
activity to familiarize students with the direct and indirect
Bayesian updating activities, the answer key to this activity,
an example lab manual, and a sample lab report given to
students after turning in their first lab at the beginning of the
third week of the semester) are all available in the
Supplemental Material [34].
Compared to ISLE, Modeling, PBI, or other research-

based curricula, the Bayesian updating activities have a
lower implementation profile, potentially servingmore as an
add on to a traditional physics course than as a deeply
integrated reform. That is not to say that Bayesian updating
activities are in any way at odds with research-based
curricular approaches, and in fact an initial study presented
in Ref. [33] found early evidence of some significant
positive gains on the Epistemological Beliefs Assessment
for Physical Science (EBAPS) [35] due to the use of
Bayesian updating activities in an introductory algebra-
based course which was already ISLE-like.

It may be, however, that the relative gains produced by
use of the Bayesian updating activities in that study relied
on the fact that the course curriculum already included
ISLE-like pedagogical practices which valued and engaged
students in epistemological reflection and growth. Without
that alignment, it is possible that the Bayesian updating
activities would appear to be spurious or purposeless to
students who are otherwise engaged in a traditional
curriculum, undercutting their efficacy. This is a major
concern, and one which motivates a study to address it by
determining the relative epistemological gains produced by
the addition of Bayesian updating activities to a traditional
course. For reasons of logistics (primarily sample size) we
have chosen in this study to examine their impact in a
traditional calculus-based physics course, as opposed to
algebra based.
According to the literature as summarized at the begin-

ning of Sec. I, epistemological gains are generally expected
to differ for students in a traditional course versus an ISLE-
like course. Students in a traditional course would likely
show losses on EBAPS while the ISLE-like course would
likely produce gains. Thus, while the study in Ref. [33]
indicated that Bayesian updating activities produced rela-
tive significant gains only on the overall EBAPS score and
one subscale axis (Axis 2: Nature of Knowing and
Learning), if the Bayesian activities are able to be effective
on their own, we would expect much broader and more
significant gains to be made relative to a traditional
curriculum, because the ISLE-like curriculum was already
addressing some of the same epistemological issues as the
Bayesian updating activities. For example, ISLE already
includes an array of evaluation activities as well as
laboratory designs that engage students in epistemic
reflection. While the precise nature of those activities in
ISLE differs from the Bayesian updating activities, they are
similar enough so that the added value of the Bayesian
updating activities may be marginalized.
Considering the characteristics of each of the five axes

of the EBAPS, one may expect gains on all of them to be
produced by the use of Bayesian updating activities when
employed in an otherwise traditional course. The indirect
evaluations engage students in special-case and limit-
case analyses that emphasize the coherent structure
of physics knowledge (Axis 1: Structure of Scientific
Knowledge). They are also explicitly constructionist as
students craft arguments to critically evaluate their own
work and modify their own beliefs (Axis 2: Nature of
Knowing and Learning, Axis 5: Source of Ability to
Learn). Both the direct and indirect evaluation activities
aim to engage students in authentic expertlike revision of
beliefs about hypotheses and models (Axis 4: Evolving
Knowledge). The direct evaluation activities emphasize
that hypotheses and models in physics are general con-
structs, applicable to a range of situations and phenomena,
and intend to strengthen the connection between abstract

FIG. 2. An example in-class activity from the E sections.
Students must show all work, and work is graded only for
completion, not correctness. The indirect evaluation activity item
is No. 3 on this assignment. Student work was given formative
written feedback at the beginning of the following class period for
every in-class activity. During the semester, a total of 18 indirect
evaluation activities were given to students in the E sections.
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models and concrete physical situations (Axis 3: Real-life
applicability).

II. RESEARCH QUESTION

This study aims to determine whether the Bayesian
updating activities are able to produce significant episte-
mological gains in an otherwise traditional course. If so,
this would indicate that the activities are indeed a low-cost,
low-profile approach that can be used by instructors
who wish to positively impact student epistemological
beliefs, but who hesitate to adopt more extensive curricular
reforms. Conversely, if the activities are found not to
produce significant gains on all (or nearly all) of the
EBAPS axes, it would indicate that their effectiveness is
limited and perhaps reliant on integration with sufficiently
aligned and more extensive curricular approaches such
as ISLE.

III. METHODS

A. Design

We use a quasiexperimental design at a medium-sized
regional campus of a land-grant institution. Students from
one calculus-based introductory physics course on mechan-
ics serve as the control group, and students from two other
sections of the same course taught in different semesters
by another instructor serve as the experimental group.
Throughout this paper, the control section is labeled C
while the two experimental sections are labeled E1 and E2
(or simply E when referring to the combination of the two).
The total number of registered students in each section is
NC ¼ 55, NE1 ¼ 34, and NE2 ¼ 25, with nearly all stu-
dents in each section (≈90%) being male engineering
majors in their first year of study. Roughly 60% of students
in each section are first-generation college students. All
sections of the course use the same textbook [36], similar
laboratory experiments, similar in-class group-work activ-
ities, and similar online homework assignments composed
of end-of-chapter items from the textbook. The principle
difference between the two conditions was the use of
Bayesian updating activities in the experimental sections.
Both instructors are young Caucasian males who received
strong student evaluation scores at the end of the course
(scores of 4.5 to 4.9 out of 5.0) indicating comparable
levels of student affect toward the courses and instructors.
The utilization of Bayesian updating activities was

consistent across the E1 and E2 sections, utilizing activities
such as those presented in Ref. [33]. There were a total of
11 lab periods, each 110 minutes long. One hour of the first
lab period was used to introduce students to the HD process
and Bayesian updating, and to model their use in both
laboratory experiments (i.e., direct evaluation) and thought
experiments relating to homework or exam questions (i.e.,
indirect evaluation). For pedagogical reasons, Bayes’s
theorem is presented to the students as

Cf ¼ Ci � R
Ci � Rþ 1 − Ci

; ð3Þ

where Ci ¼ PðHÞ and Cf ¼ PðHjEÞ are interpreted as a
student’s initial and final (updated) confidence in the
hypothesis H. Students then spent the remainder of that
lab period completing an activity that involved Bayesian
updating for both direct and indirect evaluations. This
activity also walks students through an example of repeated
testing of a hypothesis, showing that regardless of the
specific value for R that is chosen, the confidence any
person has in a hypothesis will ultimately converge toward 0
or 1 so long as all parties qualitatively agree on whether the
tests produce confirmatory or disconfirmatory results. The
effect of different choices for R is only to change the rate at
which a person’s confidence in the hypothesis will asymp-
totically approach 0 or 1. The remaining 10 labs required
students to work in groups of 2–3 to conduct experiments
designed to directly evaluate particular hypotheses, and to
write lab reports. The format of the labs is traditional in that
students are given instructions on how to use the materials.
Lab reports in the E condition were structured as direct
evaluation activities, such as shown in Fig. 1. Lab report
guidelines in the C condition were generally isomorphic
except for the Bayesian updating component.
Therewere a total of 26 lecture periods during the semester

for each section, with each period being 110 minutes long.
Lectures throughout the semester included instructor mod-
eling and student engagement in the HD process and
Bayesian updating for indirect evaluations, with a total of
roughly 2–3 hours (out of 48 total) spent this way. Student
engagement was done via 18 in-class indirect evaluation
activities that asked them to solve a standard end-of-chapter
problem, and then to do an indirect evaluation of their
solution in order to update their confidence in their solution’s
accuracy, as shown above in Fig. 2. The end-of-chapter
problems were always quantitative exercises, and were
typically of intermediate difficulty according to the text-
book’s ranking. Students worked in groups of 2–3 on the
activities, which were turned in to the instructor at the end of
each class period for attendance credit, and returned the
following class period with comments. Comments empha-
sized the purpose and structure of the general HD reasoning
pattern and Bayesian updating process as needed. For
example, some students initially thought the purpose of
these activities was to describe their reasoning for their
solution instead of testing their solution and determining
whether they should be more or less confident in the
accuracy of their solution. Grades for these activities were
not based on how well students did, credit was uniformly
given to students who turned in any work and all instructor
feedback was entirely formative. During the first half of the
semester students gradually acclimate to these activities,
and occasional whole-group discussions were held (lasting
5–15minutes) discussing the purpose and execution of these
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indirect evaluation activities. Weekly homework assign-
ments included 1–2 such items that were graded based on
the quality of student work. The homework was done online
using the Pearson Mastering Physics platform, and these
indirect evaluation itemswere created and added to the online
assignments. Exams included one open-response question
that required students to similarly evaluate their proposed
solution to a particular exam question by conducting a
thought experiment.

B. Instrument

Data were collected via administration of the EBAPS
during the first week of classes and again during the final
week. This instrument is a 30-item forced-choice assess-
ment of students’ personal epistemologies. Each item is
scored on a scale from 0 to 4, with 0 representing a
novicelike perspective and 4 representing an expertlike
perspective. An overall score is then calculated by averag-
ing the individual item scores and multiplying by 25 to
produce a scale from 0 to 100. In addition, five subscores
are calculated to place each student along five nonorthog-
onal axes of epistemic belief, each with values ranging
from 0–100. The names of these axes are listed in Table III.
The design of the EBAPS is rooted in a theoretical

framework of finely grained cognitive resources (compa-
rable to diSessa’s p prims [38]) which are thought to be
contextually triggered. The attitudes expressed by students
item-by-item may therefore vary due to contextual
differences that influence the application of these resources.
Students may not have given much thought to scenarios or
questions at all like those posed by EBAPS, and thus their
responses may not represent stable, fundamental beliefs.
The intent of the EBAPS is to probe the epistemological
stances students take, even though students may not
knowingly have a stance on abstract epistemological issues
such as coherent knowledge versus knowledge in pieces.
The items grouped on a single axis are intended to pertain
to a specific abstract epistemological issue that experts see
as being implicit within each of those items.

Recently, an exploratory factor analysis of student data
has identified an alternative set of five dimensions within
the EBAPS [37], which are also listed in Table III. These
appear similar in some ways to the original five axes, with
the major difference that the real-life applicability axis
(axis 3) was insignificant in the recorded student response
patterns. It should be noted that the data used in their factor
analysis was drawn from introductory astronomy courses,
and thus it is not known whether these same factors would
be identified in a factor analysis of responses from
introductory physics courses. For completeness, though,
we think it wise to also examine student performance along
this alternative set of axes, which we distinguish from the
original five axes with an asterisk (*).

C. Procedure

All student responses were scored and included in our
analysis, with pre- and post-test response rates of 93% and
78% for section C, 94% and 91% for section E1, and 96%
and 88% for section E2. The relatively lower post-test
completion for the C section is due to fewer students
attending the final lab of the semester. This itself may stem
from differences in class sizes, student populations, instruc-
tors, or even the Bayesian updating activities themselves
which may have improved students’ perceptions of the
importance of the labs.
There were no identifiers given on student responses, so

neither listwise deletion nor multiple imputation are pos-
sible. Instead, we conduct Bayesian MCMC estimation of
the score distributions for each section (for both pre- and
post-tests, separately). Our approach is based on the
Bayesian estimation supersedes the t-test (BEST) method
[39]. This generates an explicit distribution of credible
values for parameter estimation of a distribution and uses
those distributions to test for differences between groups.
This approach is much more robust and informative than
traditional distribution characterization and tests for dis-
tributional differences such as t tests. Default broad priors
are used for all parameter estimates. Comparisons of the
MCMC-generated pre- and post-test parameter distribu-
tions produce estimates of the gains made by each section
(C, E1, E2) as well as for the combined E sections.
The parameter estimates for the pre- and post-test

responses for the E and C conditions are then used to
estimate the difference in gains between the two conditions
on the overall EBAPS score, each original axis score, and
each alternative axis score. In particular, the MCMC chains
for the means that were produced during parameter
estimation are differenced and a kernel density function
is calculated to obtain a distribution of the credible
differences of means for each score type (overall, axis 1,
axis 2, etc.). The median and 95% highest density interval
(HDI) of these distributions are then calculated and
reported as the difference in gains made between the E
and C conditions. A similar procedure is used to generate a

TABLE III. EBAPS axis numbers and titles. The first five are
the original axes from Ref. [35], and the second five (denoted
with *) from Ref. [37].

Axis 1 Structure of scientific knowledge
Axis 2 Nature of knowing and learning
Axis 3 Real-life applicability
Axis 4 Evolving knowledge
Axis 5 Source of ability to learn

Axis 1* Structure of science
Axis 2* Innate ability vs hard work
Axis 3* Source of ability to learn
Axis 4* Nature of knowing and learning
Axis 5* Quick learning
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distribution of credible values for effect sizes by using the
MCMC chains for the standard deviations of each distri-
bution produced during parameter estimation. The R
statistical computing language [40] was used for all
analyses and employed the Bayesian MCMC sampling
program JAGS [41], with scripts we have adapted from
Ref. [39]. Our modified analysis scripts and instructions on
their use are available from the author.

IV. RESULTS

A. Individual sections

Best estimates of the mean (and associated 95% HDIs)
for each section’s respective pre- and post-test results,
and estimates of the differences in means, are listed in
Tables IV–VI. If we wish to compare the combined
performance of the E sections with the C section, we must
first compare the pre- and post-test performances of the two
E sections to determine if they are sufficiently similar as to
justify their aggregation. Comparison of the pretest scores
for the two experimental sections (E1 and E2) show no
credible differences at the 95% level, indicating an accept-
able level of homogeneity between the two groups on the
pretest.
Considering the post-test scores and the gains made there

is again general consistency between sections E1 and E2,
although we see an interesting feature on axis 2*. Section
E2 shows negative gains on this axis, of weak effect size
and fairly low credibility, but comparing it with the gains
from section E1 yields a more credible difference (like-
lihood 93.0%). We posit that if this difference is real it may
be due to chance variations between the students in the two
E sections. Overall, however, we feel it is reasonable to
group sections E1 and E2 together as they show credibly

similar pre- and post-test performance on the overall score
and axes except for this one.
Another challenge in our quasiexperimental study is to

determine whether the E and C conditions are initially
similar enough as to allow differences in their post-test
performances (and all derived quantities) to have convinc-
ing inferential power regarding the efficacy of the Bayesian
updating activities. Examining the pretest scores, we note
that there is broad agreement for section C and the two E
sections, with the caveat that the C section shows credible
differences (at the 95% level) on the Overall score as well
as axis 2, axis 3, and axis 4*. For the moment, despite these
differences, we choose to operate under the assumption that
the populations of the three sections are initially uniform
enough to produce reasonably valid conclusions of treat-
ment efficacy based on comparisons of the post-test results.
After examining the overall differences between the E and
C conditions, though, we will return to this issue and

TABLE IV. EBAPS pre- and post-test scores for section C, the
mean gains, and effect sizes. The best estimate for each quantity
obtained via Bayesian MCMC is stated, along with the bounds of
the associated 95% highest density intervals (HDIs).

Section C Pre Post Mean gain Effect size

Overall 64.567.161.7 61.164.657.7 −3.41.0−7.7 −0.3050.101−0.751

Axis 1 58.361.954.8 56.961.452.9 −1.44.1−6.9 −0.1120.308−0.547
Axis 2 59.562.856.2 58.161.554.7 −1.43.2−6.2 −0.1300.319−0.535
Axis 3 69.374.664.2 67.674.160.9 −1.86.7−10.2 −0.0890.345−0.508
Axis 4 64.369.558.6 60.067.053.3 −4.44.5−13.3 −0.2120.205−0.652
Axis 5 76.181.770.8 69.876.563.3 −6.32.2−14.6 −0.3100.122−0.715

Axis 1* 75.380.869.9 67.275.559.7 −8.21.8−17.2 −0.3710.042−0.816
Axis 2* 80.186.274.3 69.476.962.0 −10.7−1.2−20.3 −0.483−0.034−0.899
Axis 3* 72.278.266.8 69.877.063.1 −2.46.5−10.9 −0.1250.328−0.568
Axis 4* 70.377.363.3 68.076.958.9 −2.39.2−13.5 −0.0870.324−0.514
Axis 5* 67.776.950.3 62.972.553.8 −4.86.9−17.1 −0.1700.245−0.595

TABLE V. Best estimates and 95% HDIs for the pre- and post-
test scores for section E1, and the mean gains.

Section E1 Pre Post Mean gain

Overall 67.570.464.3 72.575.769.3 5.09.40.4

Axis 1 60.163.956.5 68.573.064.0 8.414.02.2

Axis 2 63.068.258.0 65.770.561.1 2.69.3−4.5
Axis 3 78.885.173.0 85.490.180.5 6.614.3−1.2
Axis 4 69.475.962.9 70.976.565.4 1.49.8−7.2
Axis 5 78.184.771.5 83.789.377.7 5.614.3−2.9

Axis 1* 76.383.268.9 84.790.278.3 8.417.3−0.6
Axis 2* 80.889.172.3 86.692.480.5 5.815.9−4.2
Axis 3* 75.982.269.7 79.285.872.2 3.311.8−6.3
Axis 4* 77.058.169.1 84.490.878.2 7.417.1−2.9
Axis 5* 71.178.463.7 73.282.363.4 2.013.5−9.8

TABLE VI. Best estimates and 95% HDIs for the pre- and post-
test scores for section E2, and the mean gains.

Section E2 Pre Post Mean gain

Overall 70.273.367.1 74.879.270.2 4.69.9−1.0

Axis 1 62.868.058.1 71.277.665.1 8.416.10.0

Axis 2 67.171.962.6 71.476.566.6 4.311.4−2.2
Axis 3 75.283.067.4 83.592.674.7 8.420.4−3.4
Axis 4 70.679.162.1 71.981.862.2 1.314.4−11.5
Axis 5 80.581.873.3 82.990.575.2 2.513.2−7.7

Axis 1* 86.191.180.5 86.995.277.6 0.89.9−9.7
Axis 2* 87.794.480.4 82.391.173.9 −5.55.6−16.6
Axis 3* 79.485.573.2 85.992.079.8 6.515.2−2.0
Axis 4* 81.790.672.3 81.497.085.5 9.820.1−1.1
Axis 5* 72.179.964.4 77.686.468.6 5.517.4−6.0
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consider the possibility of some bias relating to these
pretest differences.

B. Overall E vs C conditions

We first note from Table IV that the C condition shows
slightly negative epistemic gains, although these are mostly
of weak effect and have low credibility. Exceptions to this
include the more pronounced negative gains shown in the
overall, axis 5, axis 1*, and axis 2* scores. This is generally
consistent with the literature, which shows similarly neg-
ative epistemic impacts in traditional introductory physics
courses. In contrast, the combined results of theE condition,
summarized in Table VII and Figs. 3–5, show uniform
epistemic gains. This includes highly credible epistemic
gains of medium effect size on the overall score as well as
axes 1, 3, 3*, 4*.
Comparing the combined E scores to the C condition,

there is amarked difference in thegainsmadeon theEBAPS,
including on the overall score and nearly all axes, as shown

TABLE VII. Best estimates and 95% HDIs for the pre- and
post-test scores for the combined E sections, the mean gains, and
the effect sizes.

E Condition Pre Post Mean gain Effect size

Overall 68.670.766.6 73.576.171.0 4.98.11.6 0.5860.9950.183

Axis 1 61.264.358.5 69.673.266.0 8.413.23.8 0.7221.150.319

Axis 2 64.868.261.4 68.071.664.8 3.27.8−1.7 0.2640.637−0.137
Axis 3 77.282.072.5 84.789.180.4 7.413.81.4 0.4680.8760.079

Axis 4 69.974.665.1 83.488.078.9 1.48.6−8.3 0.0790.472−0.307
Axis 5 79.284.174.7 83.488.078.9 4.310.5−1.9 0.2700.682−0.113

Axis 1* 81.386.076.5 86.190.881.1 4.811.2−1.6 0.3460.816−0.128
Axis 2* 83.889.078.1 84.789.379.4 0.88.0−6.1 0.0450.436−0.345
Axis 3* 78.082.073.9 83.187.578.9 5.110.8−0.9 0.4070.871−0.084
Axis 4* 78.684.272.8 87.091.582.7 8.415.81.7 0.4730.8690.068

Axis 5* 71.576.966.7 75.181.368.8 3.511.6−4.4 0.1740.564−0.218

FIG. 3. Best estimates of the pre- and post-test scores for the E and C conditions. Top row: Scores for the overall EBAPS and each of
the original axes. Bottom row: Scores for alternative axes identified in Ref. [37]. Error bars indicate 95% HDI for each estimate.
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by Fig. 3 and Table VIII. The difference in gains on the
overall EBAPS score is highly credible (>99.9% likelihood)
and has an effect size of roughly 0.864, which may be
considered large [42]. This is the principal evidence for
pronounced epistemic growth by the E condition relative to
the C condition. Axes 1, 3, 5, 1*, and 2* also show credible
relative gains with medium to large effect sizes, and a few
other axes (2, 3*, and 4*) show suggestive relative gains of
similar strength. Taken together, the differences in gains
between the E and C conditions indicate the E condition
made meaningful, credible, and broad epistemic gains
relative to the C condition. We next turn to a fuller
consideration of these positive effects, their implications
for the efficacy of the Bayesian updating activities, and the
reasons they may have been produced.

V. DISCUSSION

The first consideration must be of the uniformity of the
pretest scores between the E and C conditions, as a bias
there may threaten the inferential power of the results
regarding the efficacy of the Bayesian updating activities.
We previously noted that there are significant differences
between conditions on the overall pretest score as well as
axes 2, 3, and 4*, with the C condition being lower on
each. However, as we argue here, we believe that these
differences in pretest scores probably do not contribute
much, if at all, to the difference in gains observed between
the E and C conditions. For example, looking at the three
individual sections (C, E1, and E2) one may note that the
overall pretest score estimates are 64.5, 67.5, and 70.2,
respectively, which makes for a roughly even spacing of
nearly 3 points of difference from one to the next. Yet the
post-test scores show increases of similar strength for the
two E sections (5.0 and 4.6, respectively), and these gains
stand quite apart from the observed decrease for the C
section (−3.4). If the differences in pretest scores were
significant predictors of the gains made by each section,
one would expect a greater differentiation between the E1
and E2 gains. Instead, we see the two E sections yielding
comparable gains despite their own pre-test differences. A
similar pattern is observed for the gains on individual axes
(both original and alternative). There remains the possibil-
ity of some critical threshold for epistemological develop-
ment, below which students are more likely to demonstrate
losses on EBAPS, and above which they may be more
likely to produce positive gains, regardless of the curricular
materials. There has not been a suggestion of such a
threshold in prior studies though, and it would require
some very novel and unexpected causal mechanism. In
contrast, there is the natural explanation that the sharp two-

FIG. 5. Best estimates of the difference in score gains made by
the E and C conditions, for the alternative axes. Error bars
indicate 95% HDI for each estimate.

FIG. 4. Best estimates of the difference in score gains made by
the E and C conditions. Error bars indicate 95% HDI for each
estimate.

TABLE VIII. Best estimates of the difference in score gains
between theE andC conditions, the likelihood that theE condition
outperformed theC condition, and the effect size. Superscripts and
subscripts denote the associated 95% HDI for each estimate.

Score
Difference
of gains

Likelihood
Egain > Cgain Effect size

Overall 8.213.62.6 >99.9% 0.8641.470.279

Axis 1 9.817.12.6 99.6% 0.7951.380.185

Axis 2 4.711.3−2.2 91.0% 0.3990.986−0.169
Axis 3 9.219.8−1.3 95.7% 0.5111.10−0.070
Axis 4 5.817.0−5.4 84.7% 0.2980.887−0.267
Axis 5 10.521.60.2 97.2% 0.5751.180.002

Axis 1* 12.924.21.4 98.7% 0.6931.330.084

Axis 2* 11.623.4−0.3 97.3% 0.5691.17−0.004
Axis 3* 7.317.1−3.8 91.3% 0.4431.07−0.200
Axis 4* 10.824.8−1.8 94.5% 0.4741.07−0.090
Axis 5* 8.422.9−6.8 87.3% 0.3380.960−0.226
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level difference in outcomes, which is aligned to the two-
level difference in condition and not to the three-level
difference in pretest scores, indicates that the gains are due
to the Bayesian updating activities.
The size and credibility of the relative gains made by the

E condition on the overall EBAPS score are both stronger
than what was observed in Ref. [33]. This is perhaps not
surprising since Ref. [33] featured a control group that used
a nontraditional ISLE-based curriculum, which itself exhib-
ited a slight gain on the EBAPS (of 2.67.8−2.9). In this study,
the control group curriculum was much more traditional
and typical of many introductory engineering physics
courses, producing a slight negative gain. Yet, it is note-
worthy that despite retaining the traditional design for the
majority of the lecture, homework, and laboratory work,
the E sections—modified only with a relative handful of
Bayesian updating activities—are able to generate pro-
nounced epistemic gains. This suggests that the efficacy of
these activities may be robust no matter what style of
physics education environment they are integrated within,
and demonstrates that their benefits can be produced with
relatively little modification.

A. Effects on axes

It is interesting to consider why the Bayesian activities
may have affected specific axes (and alternative axes). Axes
1, 3, 5, 1*, and 2* show credible differences in gains across
the two conditions (at the 95% level). Axis 1 (structure of
scientific knowledge) assesses whether students believe
scientific knowledge consists of disconnected pieces of
knowledge such as facts and formulas, or consists of
coherent and structured bodies of ideas and information
(organized around principles and models). The indirect
evaluation activities engage students in the elicitation of
prior knowledge (either direct experiences of the everyday
world or knowledge of models developed earlier in the
physics course) in order to evaluate newer, more tentative
knowledge (such as their solution to an end-of-chapter
problem). We conjecture that this engagement helps stu-
dents connect pieces of knowledge, both informal and
formal, concrete and abstract, enabling a more holistic and
authentic practice of physics by the students.
For example, when evaluating their solutions to an

frictionless inclined plane problem, a student knows that
when the inclination is 0° the acceleration of any object
should be zero, and when the inclination is 90° the object
should be in freefall. By testing their solutions to see
whether they agree with this knowledge, students are able
to use kinesthetic and qualitative experiences from their
lives and extract the relevant components of those expe-
riences in order to critically reflect on a problem solution.
Moreover, we suggest that these activities help students
value the development and deployment of these connec-
tions via indirect evaluation, as it is emphasized to them
that outside of the classroom one cannot rely on an “oracle”

such as an answer key to change one’s confidence in the
accuracy or utility of a piece of work such as a problem
solution. One can only modify confidence in a hypothesis
by acquiring new data (i.e., direct evaluation) or by
leveraging prior data (i.e., indirect evaluation), and it is
generally quicker, cheaper, and more efficient to use prior
data when possible.
Axis 1* (structure of science) has some aspects of axis 1

woven within it, but is a bit broader in that the items it
includes also consider student beliefs about science as a
collaborative enterprise that seeks consistency. That is,
there are some sociological and psychological aspects
regarding science as a process which are included in this
axis, as opposed to axis 1, which focuses on just the
interconnected structure of scientific products. The relative
boost to gains on this axis may stem from the way the
Bayesian updating activities compel students to reflect on
consistency between different pieces of knowledge, such as
using limit cases to test a proposed solution by reducing it
to a simpler situation that they are already familiar with and
have strong expectations about.
Axis 3 (Real-life applicability) assesses student percep-

tions of the utility of scientific knowledge outside of the
classroom. Again, by eliciting and valuing the deployment
of students’ prior knowledge from their everyday lives, the
indirect evaluation activities may be responsible for the
gains seen on this axis. The direct evaluation activities may
also benefit scores on this axis by compelling deeper
reflection by students on the actual purpose of the physics
labs, and theway theoretical models enable the prediction of
outcomes in concrete scenarios. Without the Bayesian
updating component, the lab experiments and reports may
carry less metacognitive and epistemic value to the students,
Axis 5 (source of ability to learn) assesses students’

beliefs about whether the ability to learn and succeed at
science is innate or can be cultivated by continual effort. By
engaging students in reflective learning, requiring them to
practice learning based on self-reflection that elicits rel-
evant prior knowledge, we believe the Bayesian updating
activities may develop within students an increased belief
in their ability to learn by strategically structured efforts.
The gains seen on axis 2* (innate ability vs hard work) are
likely due to similar reasons.
In addition to the above axes, similarly credible (like-

lihood 94.5%) and moderately strong benefits were seen on
axis 4* (nature of knowing and learning). This axis is
perhaps related to the sophistication of students’ epistemic
cognition as pictured by King and Kitchener [43,44], as the
items included in this axis ask students to evaluate knowl-
edge put forward by the scientific community and also to
evaluate their own knowledge, and evokes consideration of
the limits of knowing and the presence and importance of
uncertainties. These are topics that naturally arise in the
Bayesian updating activities, both direct and indirect evalu-
ation types. It seems likely that the experience the students
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gain at justifying their characterization of an evaluation as
confirmatory, disconfirmatory, or null, and their subsequent
justification for their chosen value of the R updating
coefficient in Bayes’s theorem, aids their understanding
of the limits of knowing.
Axis 4 (evolving knowledge) shows the weakest relative

response between the two conditions. It is not immediately
clear why, as one may expect the Bayesian updating
activities to help students acquire a sense of how subjective
opinions and biases about hypotheses are constrained and
eventually converge toward a consensus by repeated
evaluation. We speculate that perhaps the lack of repeated
testing and Bayesian updating of a single hypothesis (by
considering different thought experiments, or running
different physical experiments) caused the E condition to
shift too far toward relativism, as they may not have
acquired sufficient experience in the intersubjective con-
vergence that is achieved via multiple evaluations. To test
this, we repeat the analysis of items from axis 4 that was
also done in Ref. [33], with responses to the items on this
axis being sorted according to whether they indicate a
relativist, absolutist, or neutral perspective. The sorting of
responses for this analysis is summarized in Table IX.
Comparing the pre- and post-test response rates for each

perspective, the C condition response rates for each per-
spective showed changes of less than 1%, maintaining rates
of roughly 45% absolutist, 22% neutral, 33% relativist. The
E condition showed slight decreases in the absolutist
(−1.5%) and neutral response rates (−2.4%) with a gain
in relativist response rates (4.0%). This is similar towhatwas
observed in Ref. [33], although weaker. This offers some
support for our conjecture. As noted in Ref. [33] though, the
reflective judgment model pictures individuals as progress-
ing through several levels of growth, and it may also be that
the students have progressed from absolutist views (roughly
corresponding to the “prereflective” level in the reflective
judgmentmodel) to relativist views (“quasireflective” level),
and this progress cannot be fully detected by axis 4 as
it is intended to detect growth toward expertlike views
(“reflective” level).

B. Limitations

As alluded to at points in this report, there are a num-
ber of factors that limit the inferential power of this study.

One threat to internal validity is the difference in class
sizes between the E and C sections, with roughly twice as
many students in the C section as in E1 or E2 sections. It is
conceivable that the larger enrollment in the C section
may have depressed epistemological performance, while
the smaller student-to-instructor ratio for the E sections
facilitated epistemological gains. Another threat to inter-
nal validity is posed by uncontrolled differences in
instructors and instructional styles. While broadly similar,
they were certainly not identical. Similarly, student
demographics between the sections were broadly similar
but did differ between the E and C sections and pose an
additional threat.
The external validity of our results also faces several

limitations. For one thing, the subjects in this study were
predominantly white male engineering majors at a regional
university. Changes to any one of those demographic and
environmental attributes may affect the efficacy of the
Bayesian updating activities. Additionally, the E sections in
this study included continual instructor-provided feedback
on both direct and indirect evaluation activities. If one were
to employ the Bayesian updating activities in larger enroll-
ment courses, with teaching assistants or other faculty
responsible for such feedback, there may be a reduction in
their efficacy.
It is also possible that the more quantitative nature of a

calculus-based course enhanced the effectiveness of the
Bayesian updating activities, and that weaker gains would
be seen if they were added to a traditional algebra-based
course. The depth of the quantitative error analysis done in
lab reports for a calculus-based course far exceeds what is
done in an algebra-based course. Similarly, the extent and
power of the limit-case and special-case analyses that can
be performed in a calculus-based course are much greater
than in algebra-based physics. Both of these differences
may cause the epistemological significance of direct and
indirect evaluation activities to be enhanced in a calculus-
based course.
Finally, while overall instructional time was the same for

all sections in this study, it is likely that the gains produced
by Bayesian updating activities can be modulated by
changes in the duration of lectures and labs. In particular,
the course included in this study had two 110-minute
lectures per week, plus a 110-minute lab. Other course
formats may make either more or less time available for the
modeling, discussion, and implementation of Bayesian
updating activities. A related factor that may impact the
efficacy of these activities would be the production of
online videos as resource materials to introduce, explain,
and model their completion.

VI. CONCLUSIONS

The incorporation of Bayesian updating activities,
including direct evaluation activities in lab reports and

TABLE IX. Classification of responses to the items in axis 4
according to whether they are consistent with an absolutist or
relativist perspective, or neither (neutral). The responses scored as
expertlike by the EBAPS are 6A, 28E, and 29C.

Item Absolutist Neutral Relativist

6 A, B C D, E
28 A, B C D, E
29 D, E C A, B
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indirect evaluation activities in lecture, homework, and
exams, appears to have produced epistemic gains that are
credible and of moderate-to-strong effect size. These gains
are broad in the sense that they appear across all component
axes of the EBAPS, including the alternative set of axes
identified by Ref. [37]. They are also of pronounced
magnitude, generally matching the gains on EBAPS made
by any other curricular materials and course designs in the
literature. What makes these materials stand out, though, is
that the gains seen here were made with only a modest
investment of class time in the Bayesian updating activities,
as they were essentially sprinkled into a fairly traditional
course design. This suggests that these activity designs may
be a way for instructors who lack the resources or training
for various nontraditional course designs to nonetheless
positively impact their students’ development in ways that
would otherwise not be possible. Also, when taken together
with the prior results in Ref. [33] where additional gains on
the EBAPS were made by implementing Bayesian updating

activities within a nontraditional course design that had
already produced gains of its own, these results indicate
Bayesian updating activities have the potential to enrich
student epistemological development across a broad range
of introductory physics courses, regardless of their under-
lying design principles.

VII. FUTURE WORK

Future work will explore the incorporation of Bayesian
updating within online courses. Virtual and video-based
labs are becoming increasingly popular, particularly with
the rise of distance learning programs and online course
offerings, but the impacts these labs may have on student
epistemological growth is unknown, as well as the potential
impact Bayesian updating activities may have in that
environment. Similarly, the adaptation and use of
Bayesian updating activities as components of lecture
and homework assignments will be explored.
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