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We have studied the impact of incoming preparation and demographic variables on student performance
on the final exam in the standard introductory calculus-based mechanics course at three different
institutions. Multivariable regression analysis was used to examine the extent to which exam scores can be
predicted by a variety of variables that are available to most faculty and departments. The results are
surprisingly consistent across the institutions, with only math SAT or ACT scores and concept inventory
prescores having predictive power. They explain 20%–30% of the variation in student exam performance in
all three cases. In all cases, although there appear to be gaps in exam performance if one considers only
demographic variables (gender, underrepresented minority, first generation), once these two proxies of
incoming preparation are controlled for, there is no longer a demographic gap. There is only a preparation
gap that applies equally across the entire student population. This work shows that to properly understand
differences in student performance, it is important to do statistical analyses that take multiple variables into
account, covering both subject-specific and general preparation. Course designs and teaching better
matched to the incoming student preparation will likely eliminate performance gaps across demographic
groups, while also improving the success of all students.
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I. INTRODUCTION

Physics education researchers have made great progress
in finding teaching methods that result in improvements in
student learning when looking at class averages [1–4]. A
recent and growing focus has been to go beyond averages
and overall normalized gains to look at how teaching
methods impact different students in different ways [5–9].
This is an important step in finding how to best serve the
different student subpopulations in our classes, including
providing inclusive learning environments for historically
underrepresented demographic populations in science,
technology, engineering, and math (STEM) fields. That
is an essential step for improving the diversity in physics
in particular, and STEM fields in general. The first step in
such research is to identify which factors are important in
determining student outcomes for different populations,
and hence, where it would be most effective to focus
teaching improvements and research.

We use data from three different institutions to explore
the effect of a variety of student characteristics on their
score on the final exam in the large introductory calculus-
based physics course (“physics 1”). Nearly all prospective
engineering students as well as many science students take
this course, and students’ academic performance in this
course is consequential in pursuing STEM majors in their
undergraduate studies. This work does not consider all
factors that might be important, but rather a set that most
physics instructors or departments will have access to, e.g.,
incoming SAT or ACT scores, demographic information
[gender, first generation (FG) status, and underrepresented
minority (URM) status], and precourse physics concept
inventory (CI) scores.
Of particular concern to many institutions today are the

average gaps in performance often seen between different
demographic groups, such as course grades, exam scores,
and passing rates [10–17]. Underperformance of demo-
graphically underrepresented students in physics 1 can
have considerable negative influence on their prospect of
pursuing STEM fields, thereby preventing the increase of
their representation in those fields. The factors that give rise
to such gaps and how we can best design learning
environments to address them are important unanswered
questions. It is important to identify and remove factors that
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might produce such gaps, but there is also a danger associated
with focusing on such gaps. There are negative consequences
to labeling gaps as demographic gaps when the gaps are not
arising from demographic status per se, but from the factors
correlated with it. This mislabeling can result in bias and
negative expectations for the labeled demographic group by
both instructors and students [18–20].
The most important result of our analysis was that it

revealed that differences in math SATor ACT scores and CI
prescores, which we use as admittedly crude proxies of
incoming preparation, were sufficient to explain the perfor-
mance gaps between demographic groups in our data. Thus,
it would be misleading and potentially harmful to discuss
gaps in performance between females and males, URM
and majority students, and first-generation and continuing
generation students, as is customarily done, when the
differences in performance are not directly arising from
causes associated with those distinctions, but rather appear
to be due to differences in incoming preparation. The
distinctions in performance are between students with good
preparation in physics and poor preparation in physics, or
more specifically, good math SAT or ACT scores and CI
prescores and poor scores on those two measures. This
distinction is the same across all demographic groups.
Addressing a range of incoming preparation is a chal-

lenge faced by every physics instructor. How can an
instructor best address the range of students in their class
in their instruction? Since no institution could (or should)
base its admissions entirely on physics preparation, there is
an inherent range of physics preparation in every class.
Also, when a student does poorly, how much of that is due
to weaknesses in their preparation relative to other students,
how much is the result of instruction, and how much is due
to other possible factors, such as student demographics and
the relationship to social-psychological issues that an
instructor may or may not be able to affect?
This paper is following the increasing, but still relatively

new, trend to explore questions about factors correlated
with student performance using more extensive statistical
analyses such as multiple regressions and structural equa-
tion modeling (SEM) [21–28]. In an introductory physics
course many factors can contribute to student performance,
and some of these factors may not act independently—they
may interact in complex ways. This can only be explored
using multivariable regression analysis. Furthermore, SEM
can provide additional information by testing for potential
structural relations, such as mediation pathways, between
multiple different factors.
The research questions to be explored in this paper are

largely empirical.
1. How much of the variation in performance in the

standard introductory calculus-based college physics
course (physics 1) at three institutions can be
explained by readily obtained measures of incoming
student characteristics?

2. What are some underlying mechanisms for gender,
FG, and URM academic performance gaps in
physics 1 and do those justify the singling out of
these particular gaps?

3. How similar are the answers to (1) and (2) across
different institutions? (The limited sample available
for this work allows only a start at answering this
question.)

We are not providing answers to these questions that
apply to all populations of college students, but rather
preliminary observations that we hope will stimulate others
to carry out similar analyses so that a larger body of data
spanning more institutions and student populations can be
accumulated to provide more generalizable answers. Such
data are necessary to address the more fundamental ques-
tion that we and many others find particularly important,
namely, what forms of instruction are the most effective at
achieving success for the maximum number of students in
our courses, given the inherent differences present in any
student population?

II. METHODS

We looked at the large physics 1 course at three large,
research-intensive institutions: a highly selective east coast
university (HSEC), a highly selective west coast university
(HSWC), and a large public research university in the
middle of the country (PM). Physics 1 is the standard
introductory course that is offered by most physics depart-
ments and is taken primarily by students intending to major
in engineering, as well as some chemistry and physics
majors and some premedical students. In Table I we list
some characteristics of the institutions and the students in
physics 1 at the three institutions.
The data we have for all three institutions are gender,

URM, and FG status, proxies for students’ incoming
preparation (their pre- and postcourse concept inventory
test scores, a mix of math SAT or ACT scores), and their
course performance (physics 1 final exam scores). Both
HSWC and PM used the Force and Motion Conceptual
Evaluation (FMCE), while HSEC used the Force Concept
Inventory (FCI) as a physics concept inventory [29,30].
Students were considered URM if they were nonwhite,
non-Asians, and were considered first-generation college
attending if neither of their parents had a four-year college
degree. As we had a mixture of ACT and SAT scores, we
converted all of them to percentile scores using available
conversion tables, and used the resulting percentile scores
in our regression models [31].
In addition, we have particular pieces of data for only

one or two institutions. We included these in our model
analyses for those institutions to test for the importance.
These data include taking a supplementary help session
targeting students with weaker preparation (HSWC, 2018),
the number that had taken Advanced Placement (AP)
physics (HSWC and HSEC), and midterm exam scores
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(HSWC, 2017). Although we have the physics 1 course
grades for all the institutions, we only used final exam
scores in our analysis because the grading standards and the
course components that go into the calculation of these
course grades varied greatly across the three institutions.
The structure, administration, and grading of the final
exams were similar.
We carried out multivariable linear regression analyses

for each of the three institutions in the dataset, using
gender, FG, and URM status, as well as various measures
of incoming preparation to predict the final exam score. We
normalized all the continuous variables in these analyses in
terms of the sample standard deviation (“z scores”), so the
coefficients in the models can be directly interpreted as the
fraction of a standard deviation in the outcome variable for
a 1 standard deviation change in the continuous predictive
variable. For the categorical variables, such as gender, the
coefficient refers to the effect of changing from 0 to 1. In
these analyses, we examined which combination of the
aforementioned variables would provide the simplest, best-
fitting model to predict students’ final exam scores.
In Appendix A, we provide more details as to how

the models are evaluated and the criteria used to include
terms to find the simplest, best-fitting model. In the
model evaluation, we focused on the value of R-squared
[(explained variation of the outcome variable)/(total varia-
tion of the outcome variable)] (the larger the R-squared, the
better the model fit), and the value of the Akaike informa-
tion criterion (AIC) [32]. The AIC is a standard criterion for
evaluating the quality of a predictive model that takes into
account the parsimony of the model, so it considers the
number of variables in the model as well as its predictive
power (the smaller the AIC score, the better the model).
With regression analysis, one can explore which and to

what extent predictors correlate with the dependent variable
of interest, but cannot directly explore the relationship
between the predictors themselves. To determine these
relationships, and the corresponding effects on the depen-
dent variable, student exam performance, we employed
structural equation modeling (SEM; see Appendix B) using

the LAVAAN package in R [33,34]. In the structural equation
modeling, we tested whether incoming preparation is a
mediator for the effect of demographic status on student
performance. Note that SEM does not test for causality—
only randomized, controlled experiments can be used to
test causality—rather it tests for structural relationships in
the data. In other words, we tested whether students from
different demographic status have different levels of
incoming preparation, and how these differences lead to
differences in exam scores. For a primer on SEM, we refer
the interested reader to Ref. [35].

III. RESULTS

A. Predictors of exam performance:

If one looks only at average exam scores for the various
demographic groups, there are significant differences as
shown in Table II. This analysis gives an estimate of
demographic gaps without controlling for incoming prepa-
ration of students from different demographic groups.
However, when using multivariable regression to control
for students’ incoming preparation as measured by CI
prescores and math SATor ACT scores, the direct effects of
demographic variables on student outcomes become insig-
nificant. The coefficients of demographic status in this
regression analysis give an estimate of demographic gaps
when controlling for incoming preparation as measured by
math SAT or ACT and CI prescore. We illustrate this
explicitly in Fig. 1, as well as Table II—the data presented
in Fig. 1 and Table II are identical, and the numbers in
Table II are provided for the reader interested in the details
of effect sizes and R-squared values. The blue (leftmost)
columns in Fig. 1 show the coefficient of the demographic
status for a model that predicts final exam scores including
only the single demographic variable (equivalent to a
simple t-test); these correspond to the top row of parts
(a), (b), and (c) of Table II. The teal (center) columns then
show the size of this coefficient in the model when math
SAT or ACT scores are added to the model [second row of
parts (a), (b), and (c) in Table II], and finally, the yellow

TABLE I. Institutional characteristics and characteristics of students in physics 1.

Institutional characteristics HSEC HSWC PM

No. students per year taking
physics 1

194 (2012), 185 (2013) 466 (2017), 518 (2018) 4 offerings 2015–2017, ∼1100 per class

Math SAT top 25th and
75th percentile

790, 700 800, 730 690, 570

% in top 10% of HS class 86 96 29

Physics 1 class characteristics

Average percentile math
SAT or ACT score

97 97 89

Average prescore on concept
inventory (%)

63, 61 58, 53 38–49

Normalized pre-post gain on CI 0.40, 0.36 0.44, 0.47 0.49–0.54
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(rightmost) columns show the size of the demographic
coefficient after the CI prescores (indicating subject-
specific preparation) are also added to the model as well
as math SAT or ACT [third row of parts (a), (b), and (c) of
Table II].
As the gender (leftmost) panel of Fig. 1 shows, the

gender gap, i.e., the gender coefficient, changes little when
math SAT is added to the regression model (the change
from the blue to teal bar in the gender panel), reflecting the
fact that there is very little difference between average male

and female math SAT or ACT scores. However, there is a
large change in the gender coefficient when the CI prescore
is added to the regression model (the change from the teal
to yellow bar in the gender panel). This change implies a
significant average difference in the CI prescores between
males and females. For the URM gap, a different pattern is
apparent. The size of the URM coefficient in the regression
model shows more initial variation across institutions, but
for all three institutions, when math SAT or ACT score is
added to the model, the URM gap is drastically reduced and

TABLE II. Various regression models comparing the effects of incoming preparation and (a) gender, (b) URM status, or (c) FG status
on final exam across the different institutions. The regression coefficients are normalized such that they may be interpreted as an effect
size. ***p < 0.001, ** p < 0.01, * p < 0.05with no correction to p values for multiple comparisons. As this represents nine regression
analyses performed on each of the three datasets, correcting the p values for multiple comparisons makes the coefficient associated with
PM FG status statistically consistent with zero. The p values for bMath and bCI are so small that the significance of these coefficients is
not affected by correction for multiple comparisons. All values of R2 shown are adjusted R2 values.

(a) Predictor of final exam score HSEC HSWC PM

Gender bgender ¼ −0.24 (0.10)** bgender ¼ −0.26 (0.07)*** bgender ¼ −0.28 (0.04)***

R2 ¼ 0.01 R2 ¼ 0.02 R2 ¼ 0.02

Math SAT=ACT þ Gender bMath ¼ 0.28 (0.05)*** bMath ¼ 0.37 (0.03)*** bMath ¼ 0.37 (0.02)***

bgender ¼ −0.26 (0.10)*** bgender ¼ −0.22 (0.07)*** bgender ¼ −0.23 (0.04)***

R2 ¼ 0.09 R2 ¼ 0.15 R2 ¼ 0.16

Math SAT=ACT þ CIþ Gender bCI ¼ 0.34 (0.05)*** bCI ¼ 0.39 (0.03)*** bCI ¼ 0.38 (0.02)***

bMath ¼ 0.2 (0.07)*** bMath ¼ 0.22 (0.03)*** bMath ¼ 0.26 (0.02)***

bgender ¼ −0.04 (0.10) bgender ¼ −0.04 (0.06) bgender ¼ −0.02 (0.04)

R2 ¼ 0.18 R2 ¼ 0.27 R2 ¼ 0.28

(b) Predictor of final exam score HSEC 11–13 HSWC 17–18 PM 14–17
URM bURM ¼ −0.51 (0.13)*** bURM ¼ −0.38 (0.11)*** bURM ¼ −0.16 (0.05)***

R2 ¼ 0.03 R2 ¼ 0.03 R2 ¼ 0.004

Math SAT or ACTþ URM bMath ¼ 0.24 (0.06)*** bMath ¼ 0.46 (0.05)*** bMath ¼ 0.38 (0.02)***

bURM ¼ −0.18 (0.16) bURM ¼ −0.05 (0.10) bURM ¼ −0.002 (0.04)

R2 ¼ 0.07 R2 ¼ 0.22 R2 ¼ 0.15

Math SAT or ACTþ CIþ URM bCI ¼ 0.34 (0.05)*** bCI ¼ 0.37 (0.05)*** bCI ¼ 0.38 (0.02)***

bMath ¼ 0.16 (0.06)** bMath ¼ 0.31 (0.05)*** bMath ¼ 0.26 (0.02)***

bURM ¼ −0.16 (0.15) bURM ¼ −0.02 (0.10) bURM ¼ −0.02 (0.04)

R2 ¼ 0.18 R2 ¼ 0.33 R2 ¼ 0.28

(c) Predictor of final exam score HSEC HSWC PM

FG bFG ¼ −0.24 (0.22) bFG ¼ −0.53 (0.13)*** bFG ¼ −0.38 (0.05)***

R2 ¼ 0.0005 R2 ¼ 0.04 R2 ¼ 0.02

Math SAT or ACTþ FG bMath ¼ 0.27 (0.05)*** bMath ¼ 0.45 (0.05)*** bMath ¼ 0.37 (0.02)***

bFG ¼ −0.15 (0.22) bFG ¼ −0.16 (0.12) bFG ¼ −0.17 (0.05)

R2 ¼ 0.07 R2 ¼ 0.22 R2 ¼ 0.15

Math SAT or ACTþ CIþ FG bCI ¼ 0.34 (0.05)*** bCI ¼ 0.37 (0.05)*** bCI ¼ 0.38 (0.02)***

bMath ¼ 0.19 (0.05)*** bMath ¼ 0.30 (0.05)*** bMath ¼ 0.25 (0.02)***

bFG ¼ −0.12 (0.21) bFG ¼ −0.12 (0.11) bFG ¼ −0.11 (0.04)*

R2 ¼ 0.18 R2 ¼ 0.33 R2 ¼ 0.28
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becomes insignificant. For the FG gap, there is less obvious
consistency across institutions, except that adding math
SAT or ACT score to the model changes the FG gap
significantly. Overall, the majority of URM and FG gaps
could be explained by math SAT or ACT score, while math
SAT or ACT was negligible in explaining the gender gap.
However, all of the gender gap could be explained by the CI
prescore. This observation that these two incoming prepa-
ration measures had different explanatory power for differ-
ent demographic gaps demonstrates the importance of
having multiple measures to adequately characterize stu-
dents’ incoming preparation, particularly including subject-
specific measures. Table III shows the regression models
with only incoming preparation variables. As shown, the CI
and math SAT or ACT can predict almost one-third of the
overall variance in the final exam scores. Furthermore,
adding demographic variables makes a negligible improve-
ment to the adjusted R-squared of the model.
In summary, while demographic performance gaps on

the physics 1 final exam exist at these institutions, the gaps
can be explained by differences in students’ incoming
preparation as estimated by the two measures of math SAT
or ACT and CI prescore. These two measures are actually
rather crude measures for incoming preparation in physics;

therefore, it is striking that they are sufficient to eliminate
the significance of the demographic variables.
In Appendix B, we use SEM to examine in more detail

how CI prescores and math SAT or ACT scores mediate
the effect of demographic characteristics on final exam
scores. This quantifies how the different demographic gaps
are mediated by math SAT or ACT score and CI prescore.
The SEM confirms that demographic gaps in final exam
scores are mediated by incoming preparation. This is the
same qualitative information presented in Table II and
Fig. 1 but provides additional quantitative statistical
tests [35].
We have also looked at the possible contributions of

several other variables, many of which we had for only a
subset of institutions. For HSWC (2017), composite SATor
ACT score had less predictive power than math SAT or
ACT score: the AIC of the model with only math SAT or
ACT as predictor was lower than the model with only
composite SAT or ACT as a predictor (820 as opposed to
837). Also, addition of the composite SAT or ACT to the
model with math SATor ACTand CI prescore as predictors
did not change the R2 of the model (0.30 for both models).
For HSWC (2018), we were able to examine the effect of
cumulative student university GPA at the start of the course.

TABLE III. Models predicting the final exam scores only by the two measures of incoming preparation across the three different
institutions and multiple years at each institution. The regression coefficients are normalized such that they may be interpreted as an
effect size.

Predictor of final exam score HSEC HSWC PM

Math SAT or ACT percentile plus pre CI bCI ¼ 0.34 (0.05)*** bCI ¼ 0.34 (0.05)*** bCI ¼ 0.38 (0.02)***
bMath ¼ 0.20 (0.05)*** bMath ¼ 0.35 (0.05)*** bMath ¼ 0.26 (0.02)***
R2 ¼ 0.18 R2 ¼ 0.34 R2 ¼ 0.28

FIG. 1. Size of coefficient for the demographic status as predicted by regression models for each institution. First model (blue) shows
the coefficient where only the respective demographic status (gender, URM, FG) is included in the model; second model (teal) shows the
demographic coefficient when math SAT or ACT score is added as a predictor; and the third model (yellow) is the coefficient when the
CI prescore is added as a predictor as well as math SAT or ACT score. The error bars represent the standard error of the coefficients.
As shown in Table II, the regression models with only demographic status have R-squared values of 0.03 or less, but these increase to
0.2–0.3 when measures of incoming preparation are added to the model.
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This effect is significant when adding GPA to the model in
Table III—R2 goes from 0.34 to 0.47—an expected result
as this captures other factors of students’ adjustment to the
college academic environment. We also examined the effect
of a supplementary weekly help session (HSWC 2018) and
found no significant impact on final exam score. The
HSWC (2017) student scores on a set of Colorado
Learning Attitudes about Science Survey (CLASS) [36]
questions reporting on their self-efficacy, both pre- and
postcourse, were also found to be negligible predictors. In
previous work [20], we had already seen that these were the
only items on the CLASS survey that showed significant
variation across these populations, but here we see that
variation is not correlated with exam performance. We also
considered the interaction between demographic variables
and the factors that we expected might be significant—for
example, if the supplementary weekly help session dispro-
portionately helped URM students. No such two-way
interactionswere found to be significant, and it was assumed
therefore that no higher-order interactions would contribute
significantly. For HSEC and PM, we had several years of
equivalent data, and we found that the inclusion of a random
effect of “year” in the model was not significant—these
findings are consistent over time. The consistency at PMwas
probably because they had a standard body of exam
questions from which questions were chosen. Multiple
instructors, including some who had taught the course in
previous years, reviewed the exam before administering it to
ensure equivalence between the different years. At HSEC,
the instructor was the same across years, which likely
contributes to this consistency. HSWC exams have both
open-ended and multiple-choice questions. PM exams have
only multiple-choice questions, with more emphasis on
conceptual understanding. HSEC exams were a combina-
tion of short answer and multiple-choice questions, which
were largely conceptual, and longer free-response questions
involving calculations. A previous study has shown that
student responses to multiple-choice and free-response
exam questions in introductory physics are essentially
equivalent, so we do not expect the precise structure of
the exam to have a significant impact on the results [37].
We also used regression models to predict the CI post-

course scores, as performance gaps on such tests has been a
topic of interest [13]. For all three institutions, the distribu-
tion of CI postscores is highly distorted, showing a strong
ceiling effect. With such distorted distributions, it is ques-
tionable as to how valid regression models will be. Similar to
what was reported by Day et al., we found that different
types of statistical analyses suggest different conclusions
[38,39]. A linear regressionmodel indicates that some demo-
graphic variables are statistically significant while others are
not, but if we model the natural log transform of CI postscore
to address the ceiling effect, the model indicates that none of
the demographic variables are significant. We interpret this
to mean that the CI post distribution is sufficiently distorted

that one cannot obtain statistically reliable results from such
analyses. For that reason, we present no analysis and make
no claims concerning the CI postscores. We do note that
adding the CI postscore as a predictor in our linear regression
model of the final exam improves the value of R-squared by
about 0.1 for all three institutions. This does imply that there
is considerable overlap in what the CI and the final exams
are measuring, even though they appear to have little
resemblance.

B. Failure analysis:

Our regression analysis (Table III) implies that the
variations in students’ incoming preparation account for
20%–30% of the variation in final exam scores. These
R-squared values may seem modest to some, but they have
career-altering implications for students who are poorly
prepared, which we illustrate with a “failure analysis.” This
analysis compares the probability of being in the bottom
quartile of final exam scores (“failure”) for the top and
bottom quartiles of incoming preparation. As we show in
Appendix C, the probability of failure can be calculated
from the value of R-squared found in the regression
analysis reported in Table III.
The striking results of this analysis are shown in

Fig 2. For an R-squared of 0.34 (that of HSWC), this
shows that a student who comes in with preparation in the
bottom quartile has about a factor of 4 higher probability of
being in the bottom quartile of the grade distribution than a
student who starts the course in the upper quartile of
preparation. If one considers bottom quartile exam scores
as failing, this means that poorly prepared students are 4
times more likely to fail their physics 1 final exams than
peers with good incoming preparation.
As discussed in Appendix C, the calculation of the

failure ratio purely in terms of R-squared assumes that
the incoming preparation variables have a normal

FIG. 2. Probability of a student scoring in the bottom 25% of
the class as a function of their preparation as measured by the
weighted sum of their math SATor ACT scores and CI prescores.
Error bars indicate the standard error of the measurement.

SHIMA SALEHI et al. PHYS. REV. PHYS. EDUC. RES. 15, 020114 (2019)

020114-6



distribution. However, we have also calculated the failure
ratio using a full logistic regression which is not sensitive to
these distributions, and we get essentially the same value,
indicating that the calculation using just R-squared is quite
accurate. Figure 5 in Appendix C allows one to estimate the
corresponding failure ratio for any value of R-squared,
including the other two institutions discussed here.

IV. DISCUSSION

The first notable result of this analysis is the degree of
similarity across three different institutions in spite of
having different admissions criteria and selectivity and
locally defined physics courses and final exams.
Comparing HSWC and PM, we see substantial differences
in both average math SAT or ACT and CI prescores, but
they have very nearly identical predictive power. The
variation in final exam scores predicted by these two
factors is about 30% in both cases. Although HSEC is
using a different CI, the FCI rather than the FMCE, the final
model looks fairly similar to the others, with the same
coefficient for the CI term and a 30% smaller coefficient
for math SAT or ACT, and a somewhat smaller value of
R-squared (0.2 rather than 0.3).
It is natural to wonder, particularly given the similarity of

the best predictive models across institutions, how similar
the exams and the teaching methods in use at these different
institutions are. A detailed analysis is beyond the scope of
this paper, but we can provide some general observations.
Looking at the final exams, they appear rather similar, with
the PM exam being slightly easier in terms of complex
quantitative calculations and having somewhat more empha-
sis on basic concepts. In terms of teaching methods, the
HSEC course was largely traditional in all aspects (teaching
methods have since been modified), while PM was quite
interactive. Peer instruction was used extensively in lectures,
and recitation sections used Tutorials
in Introductory Physics [40] or similar active learning
approaches. HSWC is in between, with similar activities in
section to PM, and limited use of peer instruction in lectures.
The second notable, and arguably most important, result

in this paper is what it says about the gaps in performance
associated with demographic characteristics. It shows that it
is misleading to do simple t-test comparisons of different
demographic groups such as male-female or URM and
majority students. To properly understand the variations in
student performance across different demographic groups,
it is necessary to do regression analyses taking into account
incoming preparation, and those measures of incoming
preparation need to include both general levels of prepa-
ration and subject-specific measures. Such a regression
analysis provides an entirely different picture from the
t-test. For example, across all three institutions, the initial
size of the gender gap as predicted by a single-variable
model was very similar, about 0.2 standard deviations.
When we controlled for students’ general incoming

preparation as measured by math SAT or ACT score, there
was little change in the gap. However, when we also
controlled for a subject-specific measure of incoming
measure, CI prescore, the gender gap became insignificant
for all three institutions. This implies that for these three
institutions, once one takes into account differences in
students’ physics-specific incoming preparation, there is no
statistically significant gender gap. For URM gaps, the size
of the gap as predicted by a single-variable model varied
substantially across institutions. However, when we con-
trolled for students’ math SAT or ACT score, the gap
became insignificant for all three universities. For FG gaps,
the respective sizes of the gaps were quite different at each
institution, but controlling for math SAT or ACT scores
nearly eliminated the gaps and the differences between
institutions.
To emphasize, there are small—if any—gaps in perfor-

mance associated with demographic differences. There are
only performance differences associated with differences in
incoming preparation as measured by two proxies: math
SATor ACT and CI prescore. It is notable that math SATor
ACT and CI scores are two rather crude proxies for
incoming preparation. The math SAT covers a variety of
math knowledge, but little if any of that seems to be an
important component to students’ success in physics 1 for
many of these students. We have explored students’ use of
math in physics 1 at HSWC in particular, and there was no
indication that their performance was limited by math
skills. They have mastered all the math they need in
physics 1, although their application of math to physical
situations is often weak. That is not tested in the math SAT,
however, so we attribute the significance of the math SATor
ACT score not to math per se, but rather how this score
represents some broader level of math-science preparation.
The FCI and FMCE probe a very limited aspect of physics

mastery that is needed in physics 1. They test mastery of a
limited set of the physics concepts covered, and they are
entirely nonmathematical, so they probe nothing about
quantitative reasoning and calculational skills which are
used extensively on the final exams. Nevertheless, this work
shows that it is important to have both general and physics-
specific measures of incoming preparation, and that rather
crude proxies for each of these is sufficient to explain the
apparent demographic differences in performance. We
cannot identify what factors are important in determining
the level of incoming preparation. We initially expected that
it would be differences in what high school physics courses
were taken, but we analyzed that for HSWC, and we found
that all demographic groups at this institution had the same
distribution of taking AP physics, regular high school
physics, and no physics, even though the groups had
different average CI prescores and math SATor ACT scores.
Other analyses that looked at gender differences in

physics courses without considering incoming prepara-
tion have been used to argue for the importance of
social-psychological effects, such as stereotype threat, on
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the performance of women students [13]. Our analysis,
however, shows one can explain all the gender gaps by just
performance on a low-stake concept inventory without
including any social-psychological factors, at least for the
student populations we have considered. This is consistent
with the findings of Kost et al. [25,26]. This conclusion is
also supported by the lack of a correlation between final
exam scores and our attitudinal measures of self-efficacy,
and the fact that gender did not moderate the correlation
between low-stake concept inventory and high-stake final
exam performances. However, we cannot rule out some
contribution from social-psychological factors, such as test
anxiety or stereotype threat. These factors may have
affected performance for both the SAT and final exam
(they are both high-stakes assessments). Further investiga-
tions of this are needed.

V. CONCLUSION

We have examined the variations in the final exam scores
in physics 1 across three institutions. This course is a
prerequisite for many engineering and science fields, and
therefore demographic performance gaps in the course could
be consequential in perpetuating the underrepresentation of
some demographic groups in STEM fields. We observed
significant demographic gaps in final exam scores for all
three institutions. However, when we controlled for students’
incoming preparation, in all cases the gaps became insig-
nificant or drastically reduced in size. We find that only
incoming math SAT or ACT scores and concept inventory
prescores together predict 20%–30% of the variation in final
exam scores. This is surprisingly consistent across three
rather different institutions. Similar analysis from a broader
range of institutions is needed to determine the generality of
these observations. This will allow further studies on the
extent to which different teaching methods might reduce the
effects of differences in preparation.
The fraction of the variance explained by the two

measures of preparation we have used is substantial, but
much less than 1, indicating that there are other important
variables in student success. Some students with apparently
weak preparation still do quite well. We are carrying out
further studies to find out what are these important “hidden
variables” that determine the rest of the variance. It should
also be noted that the analysis in this paper is correlational.
While it is plausible that weak preparation causes low exam
performance, this does not demonstrate that. It is possible
that there is some unmeasured factor (e.g., test anxiety) that
causes both lower scores on our measures of incoming
preparation and lower final exam performance.
We hope that the analysis presented here will stimulate

others to collect and publish similar results to provide a
baseline to better understand the factors contributing to
student performance. Understanding these factors can
further help us design instructional practices that will
benefit more students, including underrepresented

minorities. This work shows that incoming preparation is
a major predictor for student performance in physics 1, and
when controlling for incoming preparation, there remain no
demographic performance gaps. Therefore, if we want to
improve the outcomes of students from different demo-
graphic groups, we have to better address the variation in
incoming preparation for all students. This work shows that
creating instruction that enhances the success of every
student across the full range of incoming preparations is
also the solution to eliminating gaps in the performance
across demographic groups.
Future work will determine how to best do this, but we

can offer some potential suggestions. Better matching the
introductory course to the range of background prepara-
tions of the student population would likely ensure that
many more students, particularly those who had the
misfortune to attend K–12 schools that provided weaker
education in STEM in general and physics in particular,
would achieve better outcomes.
In our brief examination of the physics 1 course at the

three institutions, it appears that the level and pace of the
course is primarily targeted towards the better-prepared
students in the distribution, making the course particularly
challenging for students with less preparation, and hence,
their results are more sensitive to their preparation level. It is
plausible that adjusting the course level to better match the
preparation of the less prepared students would improve their
performance and reduce the sensitivity to preparation, while
having a very small impact on the learning of the best
prepared. Another option would be to provide greater
resources in the teaching of the course, such as classes with
more instructor time, or adding courses to the sequence to
provide a greater range of students the opportunity to start
with a course matched to their preparation. Of course, that
would require additional resources, but in these institutions
and a number of others we have examined, the amount of
resources expended per credit hour in the science disciplines
is far greater for the upper level students than for lower level
students such as considered here. If it is an institutional
priority to maximize the diversity of a student body that is
successfully pursuing STEM careers, reversing that inequal-
ity in the expenditure of educational resources between
upper and lower level courses would very likely help.
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APPENDIX A: MULTIPLE REGRESSION
ANALYSIS & MODEL EVALUATION

For model evaluation, one should look for the simplest
best-fitting model: the model that has the best fit with the
least number of variables (parsimony). One should add
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more variables to a regression model only if that addition
would improve the model fit significantly, i.e., if that
addition would significantly increase the percentage of
variance of dependent variable that can be explained by the
model (R-squared of the model). One uses ANOVA to
statistically compare the fit of multiple nested models.
Models are nested if variables included in a simpler model
are a subset of variables included in the more complex
model(s). If the models are not nested, then one can
compare the values of the AIC index of the models. The
smaller the AIC of a model, the better the model fit.
Variables can also produce a statistically significant
improvement of the model fit without having practical
educational significance. For example, an additional var-
iable that changes the R-squared of the model from 0.29 to
0.30 has little practical significance.
Tables IV–VI capture this model evaluation process. They

show different regression models for predicting final exam
score using gender, math SAT or ACT score, pretest CI, and

different interaction terms between these main factors. Each
column represents a model. Each filled cell in a column
represents a coefficient of an included variable in the model,
with standard deviation of the coefficient presented in
parenthesis. Below each column, AIC and the adjusted R-
squared of the model along with other model statistics are
reported. First, we started with single-variable regression
models to predict the final exam score, e.g., predicting final
exam only by gender. Then we used two-variable regression
models to predict the final exam score. In the next step, we
used all the three basic factors of gender, math SAT or ACT
score, and pretest CI to predict final exam. Finally, to this
basic additive model, we added two-way interactions as well
as the three-way interactions between all the factors, and
tested whether any of these additions improved the model fit.
The only interaction term found to improve the model
significantly was an interaction between CI prescore and
math SAT or ACT score at PM, but there is no educational
significance to this finding.

TABLE VII. Different regression models fitted to HSEC data using additional demographic data. * p < 0.05, ** p < 0.01,
*** p < 0.001.

Model 1 Model 2 Model 3

(1) (2) (3)

Gender (female ¼ 1, male ¼ 0) −0.218 (0.072)*** −0.042 (0.072)
URM −0.398 (0.095)*** −0.121 (0.105)
FG −0.142 (0.155) −0.078 (0.148)
Math SAT or ACT 0.196 (0.048)*** 0.162 (0.057)***
Pretest CI 0.342 (0.048)*** 0.330 (0.051)***
Constant −0.288 (0.116)** −0.002 (0.047) −0.110 (0.114)

AIC 1056.4 999.9 1004.1
Observations 378 377 377
R2 0.062 0.185 0.189
Adjusted R2 0.055 0.180 0.178
Residual standard error 0.971 (d:o:f: ¼ 374) 0.905 (d:o:f: ¼ 374) 0.907 (d:o:f: ¼ 371)
F statistic 8.287 (d:o:f: ¼ 3; 374)*** 42.360 (d:o:f: ¼ 2; 374)*** 17.243 (d:o:f: ¼ 5; 371)***

TABLE VIII. Different regression models fitted to HSWC 2018 data using additional demographic data. * p < 0.05, ** p < 0.01,
*** p < 0.001.

Model 1 Model 2 Model 3

(1) (2) (3)

Gender (female ¼ 1, male ¼ 0) −0.298 (0.098)*** −0.060 (0.086)
URM −0.251 (0.111)** 0.024 (0.097)
FG −0.453 (0.132)*** −0.111 (0.116)
Math SAT or ACT 0.340 (0.047)*** 0.331 (0.050)***
Pretest CI 0.345 (0.047)*** 0.336 (0.048)***
Constant 0.309 (0.077)*** −0.000 (0.041) 0.042 (0.068)

AIC 1095.2 957.3 962
Observations 394 394 394
R2 0.078 0.347 0.349
Adjusted R2 0.071 0.344 0.341
Residual standard error 0.964 (d:o:f: ¼ 390) 0.810 (d:o:f: ¼ 391) 0.812 (d:o:f: ¼ 388)
F statistic 10.960 (d:o:f: ¼ 3; 390)*** 103.835 (d:o:f: ¼ 2; 391)*** 41.607 (d:o:f: ¼ 5; 388)***
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For the HSWC 2018, HSEC, and PM data, we had URM
and FG status in addition to gender. Therefore, we con-
ducted regression analysis including these additional fac-
tors as well as gender, math SAT or ACT score, and CI
prescore. In this analysis, if a factor did not have a
significant main-effect contribution, we did not consider
it for an interaction term. Tables VII–IX show a selection of
models fitted to the data. It is clear from the regression
models in Tables IV–IX that predicting final exam scores
using math SATor ACT score and CI prescores is far better
than using demographics variables alone—the former
explains 3–7 times more of the exam variance across the
three institutions than the latter model.

APPENDIX B: STRUCTURAL EQUATION
MODELING

We used structural equation modeling to test a mediation
model for each institution. These models show how math
SAT or ACT and CI prescore mediate the observed
differences in final exam scores across demographic
groups, as well as the size of the respective mediating
effects for each demographic group. In the following
models (Fig. 3), we first show how gender predicts both
math SAT or ACT and CI prescore. We also show how
those two measures of incoming preparation are correlated.
Finally, we show how student final exam score is predicted
by both math SAT or ACT and CI prescore. Therefore, the
gender effect on the final exam score is mediated through
both math SAT or ACT score and CI prescore. This model
fits the data well for all institutions, as all the fit indices are
within the acceptable range [root mean square error
(RMSEA), acceptable range 0–0.07; comparative fit index
(CFI), acceptable range above 0.95; standardized root mean
square residual (SRMR), acceptable range 0–0.1], and the
estimated covariances by the models were not significantly
different from the actual covariances in the data, as
suggested by insignificant χ2 statistics of the models (the
null hypothesis in this case is that the model is a good fit). It
is notable that this model does not include any direct effect
of gender on exam score, which suggests that after
controlling for the effect of math SAT or ACT and CI
prescore on the final exam there is no significant gender
difference in final exam performance.
We added URM and FG status to the SEM model to test

how measures of incoming preparation mediated the effect
of these students’ demographics on final exam score.
Figure 4 illustrates the SEM analysis including URM
and FG status as well as students’ gender. For all the three
institutions, the SEM model was a good fit for data, as all
the fit indices were within an acceptable range, and χ2

values of the models were insignificant.
Based on the results of these mediation models, for all

three institutions, the differences in incoming preparation
of underrepresented demographic groups (URM, FG, and
female students) mediated the difference in their final

exam scores. After controlling for the effects of math SAT
or ACT and CI prescore on final exam score, there was no
significant difference between the final exam score of
underrepresented students and their majority peers. One
exception was that after controlling for the effects of math
SAT or ACT and CI prescore on exam, there remained a
significant but smaller difference between final exam
score of FG students and continuing generation students
at PM.
For HSEC [Fig. 4(a)], math SATor ACTand CI prescore

fully mediated the effect of URM on final exam score.
URM students had lower math SAT or ACT scores on
average, and these scores mediated final exam scores both
directly and indirectly via their effect on the CI prescore in
the model. The effect of gender on final exam score was
also fully mediated by CI prescores. Female students on
average had lower CI prescore. CI prescore was positively

FIG. 3. The SEM models for (a) HSEC, (b) HSWC, and (c) PM
data, considering gender as the only demographic variable. The
arrows represent predictive relationships—e.g., gender is a
predictor of math SAT or ACT score—and the numbers asso-
ciated with the arrows are the effect size for the relationship.
Various goodness-of-fit measures are given at the bottom of each
panel. � � �p < 0.001.
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correlated with final exam score. For FG students there
was no significant gap in performance, and therefore, no
mediation effect through measures of incoming
preparation.
For HSWC [Fig. 4(b)], math SATor ACTand CI prescore

fully mediated the effect of URM on final exam score. URM
and FG students had on average lower math SAT or ACT
scores, and these scores mediated final exam scores both
directly and indirectly via their effect on the CI prescores in
the model. The effect of gender on final exam score was also

fully mediated by incoming preparation, both directly
through lower math SAT or ACT scores and CI prescores,
as well as indirectly by math SAT score via CI prescore.
Female students on average had both lower math SAT or
ACT and lower CI prescore. Both of these scores were
positively correlated with final exam score. Furthermore,
math SAT or ACT score was positively correlated with CI
prescore. Therefore, lower math SAT or ACT scores of
female students not only directly mediated the effect of
gender on final exam performance, but also indirectly
mediated through correlation with CI prescore and the CI
prescore being correlated with final exam scores.
For PM [Fig. 4(c)], math SAT or ACT and CI prescore

fully mediated the effect of URM and gender on final exam
score. URM had on average lower math SAT or ACT
scores, and these scores mediated final exam scores both
directly and indirectly via their effect on the CI prescore in
the model. Both of these scores were positively correlated
with final exam scores. Furthermore, math SAT or ACT
score was positively correlated with CI prescore. Therefore,
lower math SAT or ACT scores of female students not only
directly mediated the effect of gender on final exam
performance, but also indirectly mediated through corre-
lation with CI prescores and these CI scores being
correlated with final exam scores. The effect of gender
on final exam score was also fully mediated by incoming
preparation, both directly through lower math SAT or ACT
score and CI prescore as well as the indirect effect of math
SAT score via CI prescore. Female students on average had
both lower math SAT or ACT and lower CI prescores. Both
of these scores were positively correlated with final exam
scores. Furthermore, math SAT or ACT score was pos-
itively correlated with CI prescore. Therefore, lower math
SAT or ACT scores of female students not only directly
mediated the effect of gender on final exam performance,
but also indirectly mediated through correlation with CI
prescores and these CI scores being correlated with final
exam scores. The effect of FG on final exam was also
partially mediated by incoming preparation, both directly
through lower math SAT or ACT scores and CI prescores,
as well as the indirect effect of math SAT scores via CI
prescores. This was partial mediation, as after controlling
for the effect of math SAT or ACT and CI prescore on final
exam, there existed a significant but smaller FG perfor-
mance gap in final exam.

APPENDIX C: FAILURE ANALYSIS AND
MULTIPLE REGRESSION ANALYSIS

The connection between the failure analysis and multiple
regression analysis is subtle, but general. For the case of
input variables that are reasonably close to normal dis-
tributions, this analysis can be reduced to a dependence
purely on the value of R-squared in the regression model.
Our multiple linear regression estimates the linear

relationship between final exam score and a linear

FIG. 4. The SEM models for (a) HSEC, (b) HSWC, and (c) PM
data, including all demographic variables. The arrows represent
predictive relationships—e.g., gender is a predictor of math SAT
or ACT score—and the numbers associated with the arrows are
the effect size for the relationship. Various goodness-of-fit
measures are given at the bottom of each panel. *** p < 0.001.
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combination of math SAT or ACT and CI prescore:

zf ¼ bMathzMath þ bCIzCI þ ϵ; ðC1Þ

where bi are the regression coefficients in Table III, and ϵ is
the residual error. All variables have been converted to z
scores. Assuming these z scores are all normally distrib-
uted, we can define a single composite z score for
preparation,

zp ¼ bCIzCI þ bMathzMath
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2CI þ b2Math

p ; ðC2Þ

that is also normally distributed, and carries a fraction
R2 of the variance in zf: zf ¼

ffiffiffiffiffiffi

R2
p

zp þ ϵ. Therefore,
ϵ ¼ zf −

ffiffiffiffiffiffi

R2
p

zp is normally distributed with variance
1 − R2, and the joint probability distribution of zp and
zf is

Pðzp; zfÞ ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − R2
p exp

�

− z2p
2
− ðzf −

ffiffiffiffiffiffi

R2
p

zpÞ2
2ð1 − R2Þ

�

:

ðC3Þ
The bottom quartile in a normal distribution consists of all
values that are more than Qσ below the mean, where
Q ¼ 0.674. Thus, the failure rate (bottom quartile of
quartile of zf) for students in the bottom quartile of the
preparation scores zp is

FL ¼ CL

Z

−Q

−∞
dzp

Z

−Q

−∞
dzfPðzp; zfÞ; ðC4Þ

where the normalization coefficient CL is

C−1
L ¼

Z

−Q

−∞
dzp

Z

∞

−∞
dzfPðzp; zfÞ ¼

1

4
:

Since the total “failure” rate (below the 25th percentile on
the final exam) for the whole class is 0.25 by definition, the
failure rate for students in the top 75% of incoming
preparation is FU ¼ ð1 − FLÞ=3. This result is plotted
in Fig. 5.
The above analysis assumes normally distributed mea-

sures of incoming preparation, which is not true of most such
data, including our example data for HSWC 2018. However,
the logistic regression analysis, which does not have that
limitation on the distribution of the incoming preparation
data, gives nearly identical results, indicating that this
relationship between R-squared and the probability of failure
is quite robust to violations of this assumption.
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