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[This paper is part of the Focused Collection on Quantitative Methods in PER: A Critical Examination.]
Physics education researchers (PER) commonly use complete-case analysis to address missing data. For
complete-case analysis, researchers discard all data from any student who is missing any data. Despite its
frequent use, no PER article we reviewed that used complete-case analysis provided evidence that the data
met the assumption of missing completely at random necessary to ensure accurate results. Not meeting this
assumption raises the possibility that prior studies have reported biased results with inflated gains that may
obscure differences across courses. To test this possibility, we compared the accuracy of complete-case
analysis and multiple imputation (MI) using simulated data. We simulated the data based on prior studies
such that students who earned higher grades participated at higher rates, which made the data missing at
random. PER studies seldom use MI, but MI uses all available data, has less stringent assumptions, and is
more accurate and more statistically powerful than complete-case analysis. Results indicated that complete-
case analysis introduced more bias than MI and this bias was large enough to obscure differences between
student populations or between courses. We recommend that the PER community adopt the use of MI for
handling missing data to improve the accuracy in research studies.
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I. INTRODUCTION

Physics education research (PER) commonly handles
missing data by using complete-case analysis (also known
as listwise deletion, casewise deletion, and matched data)
[1,2]. Complete-case analysis removes any individuals who
are missing any data from the analysis. This method is
common because it is easy to implement. However,
discarding data lowers the statistical power of the analysis
and may bias the results [3–6].
Complete-case analysis produces reliable results so long

as the missing data is missing completely at random
(MCAR) [3]. For MCAR, the missingness is completely
independent of any observed or missing data [7]. We are
not aware of any studies in PER that have explicitly tested
the MCAR assumption. Van Ness et al. [8] and Fielding
et al. [9] provide examples of these tests in epidemiology
and health research. The few studies that have explicitly
compared participants and non-participants using course
grades [2,10–12] all indicate that students with higher
course grades are more likely to provide complete data.

Students with higher course grades also tend to do better on
concept inventories and attitudes surveys [2]. PER studies
that use these instruments likely do not meet the MCAR
assumption because the missing data disproportionately
comes from students with lower grades who tend to have
lower scores. Therefore, as illustrated by the simulated data
in Fig. 1, the distribution of the collected data and the
missing data likely differ. This difference may create biased
results. For example, on concept inventories the mean
scores will be higher if the data mostly come from students
that earned A’s and B’s than if it comes from all of the
students.
As participation rates drop, the skew in representation

toward students who receive higher grades typically
increases [2]. This increased skew in participation tends
to raise the size of the difference between the collected and
missing data, leading to a greater likelihood of bias in any
subsequent analyses. We are not aware of any studies in
PER that have investigated this potential bias, how large
this bias may be, nor what impact it could have on
understanding student learning in college physics courses.
Multiple imputation (MI) [13] handles missing data

without discarding any values by imputing the missing
values using statistical models based on the available data.
MI completes this process m times to create m complete
data sets, analyzing each of those complete data sets with
traditional methods to produce m results, and combining
the m results into a single mean, variance, and standard
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error for each of the statistics being calculated. MI [14]
provides a consistently superior alternative to complete-
case analysis. Research shows that MI has greater statistical
power and less biased results than complete-case analysis
[3,5,15,16]. This superior performance results from MI not
relying on the assumption that the data is MCAR and from
MI using all of the available data to build accurate and
reliable models. A search of the Sage journals for the term
“multiple imputation” during the preparation of this manu-
script indicated that education researchers use of MI as the
search identified 2876 research articles on education that
referenced MI. A similar search of the Physical Review
database for the term multiple imputation identified only
four studies in PER that referenced the term. Of these four
studies, only two used MI [1,17], and we only know of one
other PER article outside of Physical Review that used
MI [2].

II. RESEARCH QUESTION

In this article, we compare and contrast the bias
introduced by using either complete-case analysis or MI
to analyze concept inventory data with participation skewed
toward higher performing students. We designed the study
to cover a broad range of variables we identified as
pertinent to concept inventory data. The results inform
us how likely complete-case analysis biases results in the
PER literature and the possible size of those biases. By
comparing complete-case analysis and MI we hope to raise
awareness in PER and discipline based education research
communities about methods for handling missing data in
quantitative studies.
To compare the accuracy for complete-case analysis and

MI we examined the following research question:

• When controlling for the relationships between grade,
concept inventory scores, grade distributions in a
course, and participation rates, to what extent do
complete-case analysis and MI produce biased results
for post-test scores?

If the results indicate that complete-case analysis pro-
vides inaccurate results compared to MI, these results could
motivate researchers to use MI in their studies. The results
could also provide reviewers and editors with a resource to
push against the use of complete-case analysis and to push
for improved reporting and transparency about data col-
lection and analysis in future studies.

III. LITERATURE REVIEW

A. Missing data in PER studies

To inform the common research practices around report-
ing and handling missing data, we reviewed the published
literature in the American Journal of Physics and in
Physical Review Physics Education Research. We identi-
fied 28 studies that reported pretest and post-test scores for
concept inventories in introductory physics courses. We did
not include studies that used either pretest or post-test
scores but did not report descriptive statistics for student
performance. Of these 28 studies, six provided adequate
descriptive statistics to calculate the participation rates and
one [18] stated the range of participation rates across the
courses sampled in the study, as shown in Table I. The
participation rates ranged from a low of 30% to a high
of 80%.
Twenty-three of the studies we reviewed used

complete-case analysis. For studies that did not report
how they handled missing data, we inferred from the
matched number of pretests and post-tests that the
researchers used complete-case analysis. Five studies
calculated descriptive statistics using all available data.
These 28 studies do not include the three studies in PER
that used MI, which we discussed earlier. We excluded
these three articles from the 28 studies that we reviewed
because two of them did not report pretest and post-test
scores on concept inventories [1,17] and we discuss the
third article [2] below.
Only three of the seven studies that reported partici-

pation rates, shown in Table I, provided average grade
data for the participants and nonparticipants. All three
studies disaggregated the data by gender. The partic-
ipants in these three studies had much higher grades than
the students who did not participate in the study, with a
B- on average for participants and a C on average for
nonparticipants. These differences in grades indicate that
the missing data in these studies do not meet the
assumption of MCAR required for complete-case analy-
sis. The underrepresentation of low-performing students
raises the possibility that the results reported in these
studies were positively biased.

FIG. 1. Simulated distributions of missing and collected data
with means indicated to illustrate data that are not MCAR.
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B. An investigation of participation on
low-stakes assessments

Nissen et al. [2] used an experimental design to inves-
tigate the differences in performance and participation on
paper-and-pencil tests (PPT) administered in class and
computer-based tests (CBT) administered online outside
of class. In this article, we focus on their participation
models. Data for the study came from 1310 students in
25 sections of 3 different introductory physics courses at
one institution. Instructors asked every student to complete
four assessments: paper- and computer-based pretests and
post-tests. Instructors reported using four different practices
to motivate students to participate: participation credit on
the pretest, participation credit on the post-test, in-class
reminders, and email reminders. They modeled the par-
ticipation rates of the students using hierarchical general-
ized linear models to produce estimates of the likelihood
that students would provide data on the low-stakes assess-
ments. The hierarchical models nested the data in three
levels: tests nested in students who nested in course
sections. Variables in the final model included paper
pretest, computer pretest, paper post-test, and computer
post-test at the test level; final course grade and gender at
the student level, and participation practices treated as a
continuous variable from 0 to 4 based on the total number
of practices instructors used at the course section level. The
coefficients in generalized linear models are the log of the
odds ratio, e.g., logits. Because logits are uncommon,
nonintuitive, and beyond the scope of this article, we will
focus on the predicted participation rates reported by
Nissen and colleagues, which are shown in Fig. 2.
Nissen and colleagues found participation tended to be

higher on pretests than on post-tests, participation tended to

be higher on paper-and-pencil tests than on computer-based
tests, and students that earned higher grades participated at
higher rates than those that earned lower grades. The final
model predicted that participation on computer-based tests
matched that on paper-and-pencil tests when instructors
used all four practices to motivate student participation.
The differences in participation across student grades
existed no matter what practices instructors used to
motivate their students to participate.
Their final model predicted female students participated

at slightly higher rates than male students, but this differ-
ence was not statistically significant. To generate the
participation rates represented in Fig. 2, Nissen and
colleagues input the mean value for gender into their
participation model.

C. Summary of missing data in PER studies

Higher participation rates for higher achieving students
occurred in all of the studies that we reviewed that
reported information on participation. We cannot rule out
the possibility that only studies with a skew in partici-
pation reported on differences in grades between partic-
ipants and nonparticipants. However, Kost-Smith et al.
[11] reported one of the highest participation rates and
reported this skew while Nissen et al. [2] found that the
skew became smaller as the participation rate increased.
Furthermore, Nissen et al. [2] tested for the relationship
between grade and participation because it was reported
in earlier studies [10–12]. Until studies show no relation-
ship between course grades and participation, the liter-
ature consistently and reliably indicates that students who
earn higher grades are more likely to participate than
those that do not.

TABLE I. Participation rates and descriptive statistics for students’ grades from prior studies published in Physical Review Physics
Education Research. Descriptive statistics include mean (μ), sample size (N), and standard deviation (σ). Grades are in GPA units on
a 0–4 scale.

Participant grades Nonparticipant grades

Study Instruction Gender μ N σ μ N σ Participation rate

Nissen, 2016 [12] Active
Male 2.69 90 1.28 2.1 92 1.28 0.49
Female 2.78 27 1.26 2.05 13 1.16 0.68

Kost-Smith, 2010 [11] Active
Male 2.85 1257 0.8 1.93 500 1.1 0.72
Female 2.80 447 0.8 1.96 114 1.2 0.80

Kost, 2009 [10] Active
Male 2.82 1563 0.8 2.14 1152 1.2 0.58
Female 2.74 533 0.8 1.89 315 1.1 0.63

Henderson, 2017 [19] Lecture
Male � � � 1084 � � � � � � 342 � � � 0.76
Female � � � 323 � � � � � � 102 � � � 0.76

Brewe, 2010 [20]
Modeling All � � � 258 � � � � � � 64 � � � 0.8
Lecture All � � � 758 � � � � � � 1743 � � � 0.3

Cahill, 2014 [21]
Lecture All � � � 366 � � � � � � 314 � � � 0.54
Active All � � � 773 � � � � � � 448 � � � 0.63

Cahill, 2014 [21]
Lecture All � � � 360 � � � � � � 219 � � � 0.62
Active All � � � 738 � � � � � � 384 � � � 0.66

Cahill, 2018 [18] Both All � � � � � � � � � � � � � � � � � � 0.34–0.59
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The positive relationship between grade and participa-
tion indicates that concept inventory data is not MCAR.
This consistent failure to meet the assumptions necessary
for complete-case analysis to produce accurate results
combined with the almost exclusive use of complete-case
analysis raises the possibility that results in PER studies
that use pre-post concept inventories are positively biased
to varying extents.

D. Types of missing data

The statistical methods underlying complete-case analy-
sis assumes the data is MCAR. MI makes no explicit
assumption about the missingness of the data, however,
many software packages implementation of MI assumes
missing at random (MAR) data. Rubin [7] coined three
terms to classify the relationships between the mechanisms
of the missingness and the missing and observed values
themselves.

• Missing completely at random (MCAR): all of the
cases have the same probability of being missing. No
relationship exists between the probability of a case
being missing and any values in the data set. This
assumption can be partially tested [22].

• Missing at random (MAR): The missingness is inde-
pendent of the value of the missing data but is
conditionally dependent on other observed variables
that can explain all of the missingness. For example, a

researcher has blood pressure, age, and cardiovascular
disease data. They are concerned that the blood
pressure data is not missing at random because older
people with cardiovascular disease are more likely to
report their blood pressure than young healthy people.
Provided the age and cardiovascular disease data can
explain the missingness in the data, the data is MAR.

• Missing not at random (MNAR): The missingness
depends on both the observed and unobserved data.
For example, wealthy and poor people who chose not
to report their income for fear of being stigmatized due
to their income. Since the reported variable is related
to the likelihood of reporting and no other variable can
explain the missingness, the data is MNAR.

In real world data, the boundary between MAR and
MNAR cannot be firmly established because doing so
requires observing the unobserved data. Instead, research-
ers must make reasonable arguments to evaluate the
mechanism of missingness. Simulation studies like the
one we present in this manuscript allow researchers to build
models with data that is known to be missing based on one
of the three missingness classifications.
Bhaskaran and Smeeth [23] provide a brief article

explaining MAR. They argue [23] (p. 1337), “… the
terminology describing missingness mechanisms is undeni-
ably confusing. In particular, “missing at random” is often
conflated with “missing completely at random,” leading
researchers to mistakenly conclude that any systematic

FIG. 2. Participation rates for computer-based tests and paper-and-pencil tests from Nissen et al. [2]. Participation on the PPT pretest is
not shown because it closely clustered around 100% for all grades. Recommended practices measured the total number of up to four
actions instructors could take to motivate students to participate in the CBTs: participation credit on the pretest, participation credit on
the post-test, in class reminders, and email reminders.
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patterns or mechanisms underlying the missing data contra-
indicate the use of multiple imputation.” We adapted the
following scenario from Bhaskaran and Smeeth’s article to
present MAR in a common context for PER. Their article
provides a more thorough discussion of MAR.
We present the following scenario as an example of

MAR. A research team collected concept inventory data,
but they are concerned that the data is MNAR because the
students who participated had much higher grades than the
students who did not participate. Figure 1 illustrates this
scenario. The researcher can use the grade data to argue that
the data is MAR because the missingness in the concept
inventory data can largely be explained by the students’
grades, as illustrated by Fig. 3. In the case of MAR data,
splitting the data in Fig. 1 by grade results in Fig. 3 shows
similar distributions between collected and missing data for
each grade. The distribution of missing data for the A
students looks similar to the complete data for the A
students and so on for each group of students. The
researcher can argue that within each group of students
(A, B, C, D, and F) the primary factors related to their
participation were not related to their performance (i.e.,
traffic, illness, a death in the family, etc.) and the groups
with lower participation had more of these unrelated events
overall. The difference in the aggregated data, Fig. 1
resulted from the difference in the proportion of students
that participated for each grade, which is illustrated by the
height of the histograms in Fig. 3.

E. The persistence of complete-case analysis

Despite the known and proven bias caused by ignoring
missing data when it is not MCAR, many research fields

continue to use complete-case analysis. Cheema [5] points
out that complete-case analysis and other error prone
methods for handling missing data are common in educa-
tion research. King et al. [24] found that 94% of political
scientists used complete-case analysis, resulting in losing
one-third of their data on average. In biomedical research,
few studies accurately report the amount of missing data or
how they handled it, and those that do most commonly
report using complete-case analysis [25–28]. These four
critiques of complete cases analysis in biomedical research
span from 2004 to 2015, indicating that researchers can
consistently critique the use of complete-case analysis with
little improvement in a field’s practices.

F. Imputation of missing data

Imputation is a principled technique for handling miss-
ing data [4]. Imputation fills in the missing data with
plausible values, such that a researcher can analyze the now
complete data set without concern for missing data.
Imputation methods fall into two broad categories: deter-
ministic and probabilistic. We focus on probabilistic
imputation methods in this article, but provide a brief
review of deterministic methods for contrast.
Deterministic options for imputation include mean

imputation and last observation carried forward. Mean
imputation replaces the missing values with the mean value
for that variable. Researchers use the last observation
carried forward with longitudinal data to replace the
missing data with the last observed value for all subsequent
measurements. Both are problematic because they (i) do
not preserve the relationships between variables and (ii) as
with any single imputation approach, do not account for the

FIG. 3. The simulated concept inventory data shown in Fig. 1 disaggregated by student’s course grades. The similar distribution for
each grade indicates that the data is MAR because course grade accounts for the missingness. We made the course grades follow a flat
distribution (NA ¼ NB ¼ NC ¼ ND ¼ NF) to focus the differences between the collected and missing data on the similar distribution by
grade that indicates the data is MAR and to illustrate how combining the data results in Fig. 1, where the collected and missing
distributions differ.
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error incurred by the imputation process itself. These
deterministic methods treat the missing values as if they
were known, which can lead to inappropriately small
variances and an erroneously increased chance of sta-
tistically significant findings [29].
Probabilistic options for imputation include multiple

imputation (MI) and maximum likelihood estimation. In
this article, we demonstrate the use of MI [4] because it is a
probabilistic approach for addressing missing data across a
wide range of applications [3] and because research finds
that MI is more statistically powerful and more accurate
than other methods for handling missing data [5,16]. The
idea behind MI is graphically presented in Fig. 4. The first
step applies an imputation procedure containing a random
component (such as predictive mean matching, which is
described below) to a data set with missing dataM times to
generate different imputed values for each piece of missing
data and generateM complete data sets. Step two calculates
the desired estimate from the analysis, such as a mean or
regression coefficient, on each data set separately using
standard analytical methods. The final step pools the
estimates using simple combining rules, also known as
Rubin’s rules [13], which are described later in Eqs. (1)–
(5). These pooled results then properly reflect the variation
in the original estimates and the variation introduced by the
imputation process itself.
The plausibility of the imputed values generated in the

first step relies entirely on the model used for the impu-
tation. Simplistic imputation models that do not use
information contained in related variables will impute
values that are not an accurate reflection of what the
missing data could have been. For example, imputation
models need to account for whether the data is longitudinal
or if there is reason to suspect the data is MNAR, and the
models need to include known correlations and relation-
ships between variables or measures. In short, MI is only as
good as the imputation model being used to create the
imputed values.

Many software programs have built-in or add-on
methods to perform MI, both the imputation and
pooling steps. In this paper we used the MICE [30] package
in RStudio v1.1.456 [31]. The MICE package uses predictive
mean matching, an imputation method developed by
Little [22] in 1988, as the default model to impute missing
data for continuous variables. Predictive mean matching
uses the following process [32] to multiply impute the
missing data based on the data the researcher collected.
We use -hat (̂ ) to differentiate observed y and predicted ŷ
values.
(1) Using the portion of the data with no missing values,

build a linear model (b) by calculating the least
squares estimates of the regression coefficients β̂, the
model residuals ϵ̂, and variance of the residuals σ̂.

(2) Create a new linear model (bðmÞ) by randomly
drawing values for the regression coefficient from
a probability distribution centered on β̂ with variance
derived from σ̂ and ϵ̂.

(3) Use b to generate predictions ŷi for all cases with
fully observed data, and bðmÞ to generate predicted
values ŷ�j for all cases with missing data (i ≠ j).

(4) For each case with a missing value, identify a set of k
predictions on observed data (ŷi) that are close to the
predicted value ŷ�j . The k observed values yi from
these matched records form a donor pool of values,
where k should vary between 3 and 10 depending on
the size of the complete data set. The MICE package
uses k ¼ 5.

(5) Randomly choose one observed value yi from the
donor pool to impute the missing value.

(6) Repeat steps 2–5 for each of the M imputations.
Following analysis of each complete data set research-

ers, with the aid of statistical software, pool the individual
results from across the M imputations using Rubin’s
rules to generate valid estimates and intervals of the
quantities of interest. To explain Rubin’s rules, let δ be
the parameter whose estimate we desire to obtain from
an analysis (i.e., a mean, correlation, or regression
slope). Given M imputed data sets, M estimates of δ:
ðδ̂1; δ̂2;…; δ̂MÞ are generated and used to calculate the
following quantities.

• The overall estimate of the parameter is the average of
the individual point estimates:

Q̂ ¼ 1

M

XM
m¼1

δ̂m: ð1Þ

• The within-imputation variance is the average of the
individual variances;

U ¼ 1

M

XM
m¼1

Varðδ̂mÞ: ð2Þ

FIG. 4. The multiple imputation (MI) process. In the first step
missing data (shown in white) are imputed (shown in dark blue)
to create M complete data sets, with M ¼ 3 shown here. Then
each complete imputed data set is analyzed using standard
methods such as linear regression. Finally the results are pooled
using Rubin’s rules.
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• The between-imputation variance is the variance of the
estimates;

B ¼ Varðδ̂1; δ̂2;…; δ̂MÞ: ð3Þ

• The total variance is a weighted average of the within
and between imputation variances;

T ¼ U þ
�
1þ 1

M

�
B; ð4Þ

• And, 95% intervals are calculated using the total
variance;

Q̂� 1.96
ffiffiffiffi
T

p
: ð5Þ

The resulting variance of the combined estimate then
accounts for both the within and between data set variances.
The predictive mean matching process incorporates ran-
domness in steps 2 and 5. The amount of variance
introduced in these steps depends on the variability and
size of the data set being modeled. If the linear regression in
step 1 provides an excellent fit with small standard errors
for the coefficients, then little variability will be added by
step 2 because each of the M linear models will be very
similar and thus will generate similar predictions across the
M imputations. Step 5 adds little variability if the data set is
large because a large data set will likely have several similar
values that will populate the donor pool. By pooling the
within and between imputation variances, Rubin’s rules
provide standard errors for the estimates based on all of the
available information that account for the uncertainty
introduced by the missing data.

G. Comparisons of methods for handling missing
data in education research

Pampaka et al. [15] compared complete-case analysis to
MI for handling missing data using a data set that originally
had large portions of missing data that they were able to fill
in with subsequent data collection. This design allowed
them to compare the results for MI and complete-case
analysis of the missing data to the true values for the data
set with no missing data. The total data set included 1374
students, but complete-case analysis reduced the data to
495 students. Pampaka and colleagues used a logistic
regression to model the probability that students dropped
out of the current mathematics course they were enrolled in.
The model included predictor variables for the mathematics
course students took before this course, student’s disposi-
tion towards math, student’s math self-efficacy, and stu-
dent’s grade on the General Certificate of Secondary
Education (GCSE) for mathematics. Students who received
an A on the GCSE were 3 times more likely to provide data
than students who received a C, indicating that the data was

not MCAR. Both the complete case and MI models
provided similar relationships between the variables to
those in the true models. However, MI produced smaller
standard errors than complete-case analysis. They con-
cluded that MI provided a much closer approximation of
the true values than complete-case analysis. Pampaka and
colleagues do not discuss why the complete-case analysis
and MI provided similar results or the implications of those
similarities, nor does their study provide sufficient details
for us to make meaningful inferences about the lack of
differences.
Cheema [5] used a simulation study and two real data

sets to provide guidance for researchers in designing
studies to account for sample size, proportion of missing
data, method of analysis, and method for handling missing
data. The analysis compared four methods for handling
missing data: multiple imputation, complete-case analysis,
mean imputation, and maximum likelihood estimation. To
characterize the quality of the four methods, Cheema used
the root mean square error (RMSE). RMSE is the standard
deviation of the results from the multiple simulations about
the mean of the results, and is a measure of the random
error introduced by the four methods. As such, RMSE does
not account for any bias (i.e., systematic error) between the
mean of the simulations with missing data and the true
values where no data is missing. Cheema compared the four
analytical methods across three sample sizes and two levels
of missingness. The two levels of missing data were 1% to
10% and 11% to 20%; very few studies in the PER
literature report such low levels of missing data. This
design created a decision tree with 24 possibilities. Multiple
imputation was the most effective method in 15 cases and
maximum likelihood estimation in 7 cases. Similar to
Pampaka et al. [15], Cheema found that imputation
methods increased the statistical power of the studies with
samples less than 200 by large enough amounts to warrant
the use of imputation methods. Cheema warned that
missing data can bias data sets and inferences drawn from
studies using these biased data sets. In these cases, he urged
researchers to use statistical methods that accounted for that
bias. However, Cheema did not measure bias introduced by
missing data in his study.
These two studies illustrate howMI tends to have greater

statistical power than complete-case analysis. The trend
toward greater statistical power for MI follows from MI
using all of the available data and not discarding any data.
These studies did not identify bias in the results from either
complete-case analysis or MI.

IV. METHODS

We compared the accuracy of estimates from MI and
complete-case analysis using simulated course data for
grades, pretest and post-test concept inventory scores, and
missing values for post-test concept inventory scores. Our
analysis focused on course level mean post-test scores as
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the estimate of interest (μpost). While we focused on post-
test means, we also analyzed mean pretest scores (μpre)
because many effect sizes and analytical methods use both
pretest and post-test scores. Data simulation included a
random component that allowed us to generate complete
data, create missing values, and calculate μmany (20) times
to generate a distribution of μ’s. Running the analyses 20
times informed us how consistently the measures and
methods for handling missing data performed.
Figure 5 illustrates our process for generating the

complete and missing data. In the first stage, we simulated
complete courses by using five performance models of the
relationships between course grades and mean concept
inventory scores; one model of the relationship between the
mean concept inventory score for a group and the standard
deviation of the scores for that group; and three models of
grade distributions. This first stage produced the true values
(μ) for our analysis. In the second stage, we introduced
missing post-test data into the simulated courses using five
models of the relationship between participation and course
grade based on prior research [2]. Because we removed
post-test scores based on course grade, the data was MAR.
In the third stage we calculated estimates (μ̂) using

complete-case analysis and MI. This design allowed us
to assess the effect of the simulation model parameters and
the method of handling missing data on the accuracy of the
estimates.
Because earlier studies did not find large differences in

participation rates between male and female students we
did not include gender as a variable in our simulated data.

A. Simulating the complete data to generate true results

We simulated the course data by simulating data for each
of the five course grade subsets (A, B, C, D, and F) and
then combining the five subsets into a single data set. To
generate the concept inventory scores, we used a truncated
normal distribution, which limited the scores to between
0% and 100%. The normal distribution required inputs for
mean (μ), standard deviation (σ), and sample size (N). The
mean for each grade came from five performance models
based on three physics courses investigated by Nissen et al.
[2]. The standard deviation came from a model of the
relationship between the mean and standard deviation for
197 pretest or post-test administrations of concept inven-
tories. The sample size for each grade subset came from the
total course size and three grade distributions we developed

FIG. 5. Overview of data simulation and analysis methods. In the first stage, we used models of performance, standard deviation, and
grade distributions to simulate courses. These simulated courses provided the true values for our analyses. In the second stage, we used
participation models to create missing data by deleting post-test scores from the simulated course data. In the third stage, we analyzed
the data sets with missing data using both multiple imputation (MI) and complete-case analysis (CC). This stage provided the MI and CC
estimates. We used the three outputs (true values, MI estimates, and CC estimates) to investigate the bias introduced by MI and
complete-case analysis.
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based on the grade distributions from 192 STEM courses.
We used the five performance models and three grade
distributions to cover a range of relationships that could
occur in PER studies.

1. Determining means using the relationships between
concept inventory scores and course grades

To generate realistic concept inventory scores, we
examined the relationship between course grade and
concept inventory scores using data from Nissen et al.
[2]. We disaggregated the students in each course by
their course grade and calculated the mean concept
inventory score for each group of students in each
course. We transformed the grades to the numeric values,
A ¼ 4, B ¼ 3, C ¼ 2, D ¼ 1, and F ¼ 0, that the
institution used to calculate student grade point
average (GPA). Figure 6 presents the means for each
course grade and linear regression fit lines for the
pretests and posttests for the three courses. Table II
includes the intercept, slope, and r2 for each linear
regression. Based on the scatter plots in Fig. 6 and
the r2 value exceeding 0.5 for 5 of the 6 models, we
concluded that a linear model adequately described the
relationship between mean concept inventory scores and
course grades.
The mean concept inventory scores represented the

average value for each grade about which the models
simulated the individual scores. To cover a broad range of
performance levels, we built models for five different
performance levels that were informed by the linear models
from the three courses studied by Nissen et al. [2]. The
models differ from the results in Table II because our goal
was to cover a broad range of possible relationships rather
than to replicate the relationships that we found. Table III
contains the model parameters for the one pretest model
and the five post-test models. Equation (6) shows the
generalized equation that we used to calculate the mean

score for each grade based on the models in Table III.
We started with an average model and modified it to
create two high-performance models and two low-
performance models by varying either the slope or the
intercept in the model. The intercept established the mean
concept inventory score for the subgroup that earned an F.
The slope established the size of the difference between
each grade. These five models covered a range of relation-
ships to inform how varying the slope and intercept related
to the bias introduced by using MI or complete-case
analysis and to provide more robust and generalizable
results.

μGrade ¼ Interceptþ Slope × Grade: ð6Þ

2. Determining standard deviation using distribution
of concept inventory scores

We used 197 means and standard deviations from either
pretests or post-tests to build a quadratic model for the
relationship between mean and standard deviation. This
data came from both the literature and concept inventories
collected with the LASSO platform [33]. A quadratic
model fit the data because the standard deviation should
approach 0 at both of the boundaries of the test scores
(0% and 100%). Equation (7) describes the fit line. We
determined that the quadratic fit line was adequate because
the adjusted r2 for the fit line was 0.34, all coefficients were
statistically significant with p < 0.001, and visualizations
indicated that the quadratic fit line was appropriate.

σ ¼ 16.6þ 14.6μ − 32.2μ2: ð7Þ

FIG. 6. Raw data and linear regression fit lines for average
pretest and post-test scores for each grade for the three courses
described by Nissen et al. [2].

TABLE II. Linear models of the relationship between concept
inventory score and course grade for pretest and post-tests.

Test Course Intercept Slope r2

Pre One 24.5 0.99 0.52
Pre Two 25.7 1.43 0.69
Pre Three 34.2 0.91 0.13
Post One 26.0 3.08 0.75
Post Two 24.9 7.02 0.98
Post Three 44.8 3.77 0.73

TABLE III. Model parameters used to simulate pretest and
post-test score data.

Model Intercept Slope

Pretest 25 2
Average 43 6
Low intercept 25 6
High intercept 58 6
Low slope 43 3
High slope 43 10
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3. Determining sample size based on grade
distributions in STEM courses

To determine the number of students that earned
each grade in our simulated courses, we analyzed grade
distributions from 192 science, technology, engineering,
and mathematics (STEM) courses at California State
University, Chico to build three different grade distribu-
tions: low, average, and high. We combined the drop,
withdraw, and fail grades into a single F group. To build the
low grade distribution, we averaged the grade distributions
from 13 courses with less than 10% A’s and greater than
30% F’s. We built the average grade distribution by
averaging all 192 grade distributions. To build the high-
grade distribution, we averaged the grade distributions from
6 courses with greater than 20% A’s and greater than 20%
B’s. Figure 7 shows the three grade distributions. We
reasoned that these three distributions covered the range
of grade distributions found in most STEM courses.
We simulated courses based on a course size of 1000

students. While this size is larger than typical courses, it
allowed us to use fewer replications (twenty) of the course
level simulations to quantify any bias introduced by MI or
complete-case analysis. The actual size of each simulated
course was 990 for the low grade distribution and 970 for
the medium and high grade distributions. These sizes
differed from each other and from 1000 due to rounding
in the course grade data we used to calculate the three grade
distributions.

4. Simulated course data

The 5 performance models and three grade distributions
created a total of 15 different simulated courses. For each of
these 15 courses, we simulated 20 data sets (replications)
with approximately 1000 students each. This process
resulted in 300 different data sets.
Figure 8 provides an example of data generated for one

course using the high slope model with an intercept of

43 and a slope of 10 for the post-test scores and an
average grade distribution. For the high slope model, each
grade higher increased the average post-test concept
inventory score by 10 percentage points. Students with
F grades had a 43% post-test score on the concept
inventory on average and this raised to 53% for D’s,
63% for C’s, 73% for B’s, and 83% for A’s. The
diamonds in Fig. 8 represent the mean test scores for
the subgroups and illustrate the linear relationship
between grade and both pretest and post-test means.
The density plots for the pretests (top of Fig. 8) and
post-test (right of Fig. 8) illustrate the variance of the
generated scores about the means. The density plots for
post-test scores covered a larger range of means and
illustrate how the quadratic equation for standard
deviation concentrated the scores into a narrower range
as the mean score neared 100%.
Table IV provides the true average values for the

complete data for pretest and post-test means and the
absolute gain across the simulated courses.

B. Models for missing data

We used the participation models for computer-based
post-tests from Nissen et al. [2] to create five levels of
MAR data based on course grades in the simulated post-test
data for each of the 15 simulated courses described in
Table IV. Table V and Fig. 2 show the five models for
missing data with the value for “recommended practices”
distinguishing between the five models. We used the model
predictions provided by Nissen et al. [2] that used the

FIG. 7. Three grade distributions based on grades from 192
STEM courses.

FIG. 8. Example data for an average grade distribution and high
slope performance model. The diamonds are located at the means
for each grade and illustrate the linear relationship between grade
and mean test score. The density plots display the marginal
distributions of the simulated pretest and post-test data for this
simulated course.
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average value for gender because we did not include gender
as a variable in our simulated data.
To insert missing data into the post-test scores, first we

disaggregated the simulated complete data by course grade.
Then, we used the participation models to determine the
number of post-test scores that should be missing for that
grade according to that model. Finally, we randomly
deleted the appropriate number of post-test scores. As an
example, for participation model 2, Table V, (i.e., recom-
mended practices ¼ 2) we deleted 96% of post-test scores
for F’s, 83% for D’s, 51% for C’s, 18% for a B’s, and 4%
for A’s. The randomization for deleting the post-test scores
was done independently across all simulated data sets.
Removing post-test scores represents a typical situation in
which a student withdraws from the course or decreases
their participation in the course at the end of the semester.
Removing only post-test scores had a limited impact on the
complete-case analysis because complete-case analysis

removes both pretest and post-test scores when either is
missing. These methods for generating missing data pro-
vided participation rates, the percentage of students who
took both the pretest and post-test, that covered the range of
30% to 80% reported in the literature and presented in
Table I.

C. Measuring accuracy using bias

To inform the extent to which complete-case analysis
and MI provided biased estimates for posttest scores, we
measured the accuracy of the results using bias. We
calculated bias as the average difference between the true
post-test mean (μ) and the mean from either the complete-
case or MI analysis (μ̂). This formula is shown in Eq. (8)
where n represents the number of replications, which we set
at 20 for each of the simulated courses. A bias greater than
zero indicated that the estimates were larger than the true
values.

bias ¼ 1

n

Xn
i¼1

μ̂i − μi: ð8Þ

V. RESULTS

We first present the bias on the pretest model across the
three grade distributions. Second, we present the bias in the
post-test scores for the 15 simulated courses. Last, we
present a comparison of two simulated courses to illustrate
the potential impact of the bias introduced by complete-
case analysis and MI on research results.

TABLE IV. Descriptive statistics for the 15 simulated courses average true pretest and post-test scores and gains.

Performance Intercept Slope Grade distributions μpre (%) μpost (%) Gain (%)

Average model
Average 43 6 Low 30.2 51.7 21.5
Average 43 6 Average 31.4 55.9 24.5
Average 43 6 High 32.1 58.5 26.4

Changing intercept models
Low intercept 25 6 Low 30.2 47.5 17.3
Low intercept 25 6 Average 31.4 49.4 18.0
Low intercept 25 6 High 32.1 50.8 18.7
High intercept 58 6 Low 30.2 57.5 27.2
High intercept 58 6 Average 31.4 64.3 32.8
High intercept 58 6 High 32.1 68.9 36.8

Changing slope models
Low slope 43 3 Low 30.2 35.3 5.1
Low slope 43 3 Average 31.4 38.8 7.4
Low slope 43 3 High 32.1 41.2 9.1
High slope 43 10 Low 30.2 66.6 36.3
High slope 43 10 Average 31.4 70.7 39.2
High slope 43 10 High 32.1 73.5 41.4

TABLE V. Participation rates for each final course grade based
on models from Nissen et al. [2]. The model number represents
the number of recommended practices to maximize student
participation input into the final model.

Grade Model 0 Model 1 Model 2 Model 3 Model 4

A 0.30 0.75 0.96 0.99 1.00
B 0.13 0.45 0.82 0.96 0.99
C 0.05 0.18 0.49 0.81 0.95
D 0.02 0.05 0.17 0.41 0.71
F 0.01 0.02 0.04 0.10 0.24
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We used the same model of the relationship between
grade and test scores to simulate the pretest data for all
five of the performance models because we expected the
bias for the estimates of pretest scores to be smaller than
that for the post-test scores. Figure 9 presents the pretest
bias introduced by complete-case analysis. The partici-
pation models only inserted missing data in the post-tests.
The complete-case analysis created missing pretest data
by discarding the pretest scores from students that do not
participate in the post-test. MI discards no data and there

were no missing pretest scores so it introduced no bias
into the analysis for the pretest scores. Complete-case
analysis introduced small amounts of bias (<2.2 percent-
age points) into the course means for all simulated data
sets. The bias introduced by complete-case analysis for
the pretest tended to increase as the participation rate
decreased and tended to be higher for lower grade
distributions.
The post-test bias, shown in Fig. 10, resulting after

conducting complete-case analysis and MI tended to be
positive and to overestimate the true values. Conducting
complete-case analysis resulted in more bias than con-
ducting MI. Conducting complete-case analysis always
produced positive biases with a minimum value of 0.7 per-
centage points and a maximum value of 12.8 percentage
points. The bias of 12.8 percentage points meant that
complete-case analysis estimated the post-test mean to be
70.2% on average for the high slope low-grade distributions
simulated course while the true average value was 57.4%.
In contrast to complete-case analysis, conducting MI
produced negative biases for 19 of the 75 measurements
with a minimum value of −0.3 percentage points and a
maximum value of 1.9 percentage points. These results
indicate that both methods tend to overestimate the true
post-test scores, but that the overestimation was much
larger for complete-case analysis. This overall trend of
larger bias resulting from complete-case analysis than from
MI was true for all 75 combinations of performance, grade
distribution, and participation rates. Even at the lowest level
of participation, the MI analysis tended to produce less bias
than the highest level of participation for the complete-case

FIG. 9. Bias in the pretest model for the three grade distribu-
tions. Only the bias for the complete-case analysis is presented
because no data were missing for the pretest and therefore the MI
estimates could not be biased.

FIG. 10. Bias in the post-test data introduced by complete-case analysis or MI.
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analysis, as is illustrated by the boundary between the two
graphs in Fig. 10.
The bias introduced by conducting bothMI and complete-

case analysis tended to decrease as the participation rate
increased. This trend occurred for complete-case analysis of
all 15 of the simulated courses but was less consistent forMI
analysis of the simulated courses. These results illustrate the
value of maximizing participation rates for achieving
accurate estimates of concept inventory means.
Differences in bias across the five performance models

for complete-case analysis indicated that varying slope had
a stronger impact on bias than varying intercept. As shown
in Fig. 10, the largest bias occurred for the high slope
simulated courses (long-dashed line with empty squares)
and the lowest bias occurred for the low slope simulated
courses (dotted line with filled squares). The maximum bias
for the high-slope simulated courses was 12.8 percentage
points whereas the maximum bias for the high-intercept
simulated courses (dashed lines with empty triangles) was
7.4 percentage points. This difference in bias was not
caused by a difference in posttest scores as the bias was
larger in the high-slope simulated courses but the mean
posttest score was lower (57.4% for the 12.8 percentage
point bias versus 66.6% for the 7.4 percentage point bias).
Similarly, comparing the low slope and low intercept high
grade distribution simulated courses shows that the bias for
the low slope course was lower (0.7 versus 1.2 percentage
points maximum bias for each). Whereas, the posttest mean
was higher for the low-slope simulated courses (50.7% for
0.7 percentage point bias versus 41.9% for 1.2 percentage
point bias). These relations indicated that the absolute value
of the posttest mean was not the primary factor in the
amount of bias introduced by complete-case analysis.
Rather, the relationships within the data sets and the total
amount of missing data best explained the bias.
Unlike complete-case analysis, the bias for MI did not

reveal consistent differences between the performance
models or grade distributions and bias. The much lower
overall bias for MI may obscure differences in bias across
the simulated courses. However, Fig. 10 shows that the
clear differences in bias for complete-case analysis across
the simulated courses did not exist for MI.
To compare how the bias introduced by complete-case

analysis and MI could skew comparisons, in Fig. 11 we
compared two simulated courses with similar performance
within each grade but different grade distributions and
participation rates. Using the average performance model
for both courses simplified comparing the results because
the performance for students who earned the same grade
were the same across the two courses. We varied the
participation and grade distributions between the two
courses to align with comparisons between traditional
and transformed courses that occur in the PER literature
(e.g., Brewe et al. [20]). The two comparison courses are
listed below.

(1) Traditional course
(a) Average performance within each grade
(b) Low grade distribution
(c) Low participation (37%)

(2) Transformed course
(a) Average performance within each grade
(b) High grade distribution
(c) High participation (81%)

The true values indicated that students in the transformed
course learned more conceptual knowledge on average than
the students in the traditional course. This difference
follows from the higher grade distribution in the trans-
formed course and the same performance model in both
courses. The larger gains in the transformed course
remained when we analyzed the data with MI. However,
complete-case analysis nearly eliminated the difference in
gains on the concept inventory. This decrease in the
difference between the courses occurred because little data
were collected in the traditional courses from students with
low grades and thus the analysis positively biased the gain.
In contrast to the true results and the results after analysis
with MI, the results from the complete-case analysis do not
support the claim that students learned substantially more
in the transformed course than in the traditional course.

VI. DISCUSSION

Complete-case analysis can introduce large amounts of
bias into the estimates for concept inventory scores when
researchers apply it to data that are not MCAR. The bias
introduced by complete-case analysis in the simulated data
ranged from 0.7% to 12.8% for the post-test means and fell
below2%for the pretestmeans. The 28 articleswe reviewed,
which included 158 courses, reported gains from 5% to 56%

FIG. 11. Bar graph illustrating the effect of bias from complete-
case analysis or MI on a comparison of two courses. Performance
in both courses was average. The traditional course had a low
grade distribution and low participation rates. The transformed
course had a high grade distribution and a high participation rate.
We did not include error bars to focus on the effects of bias and
because they are very small due to the large sample sizes for the
simulated data.
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with an average of 23%. Twenty-three of these studies used
complete-case analysis, none reported using a principled
method for handling missing data (e.g., MI), and none
indicated that the missing data in the study were MCAR.
Subsequently, our results indicate that part of the gains
reported in those studies likely resulted from the improper
use of complete-case analysis. In some of those studies,
complete-case analysis may have exaggerated the gains by
increasing them from anywhere between one-third to dou-
bling them. The introduced bias may have also skewed any
comparisons made in those studies, particularly compar-
isons across courses with different participation rates.
We cannot say exactly how much of these reported gains

resulted from bias introduced by complete-case analysis.
Our results indicate that the amount of bias complete-case
analysis introduces depends on both the participation rate
and the relationships within the data. To determine the bias
in prior studies that used complete-case analysis without
meeting the assumptions for its reliable use, researchers
will need to analyze the data directly. However, physics
education researchers seldom publish the data or analytical
code used in their studies. The PER community can
improve transparency and accountability by supporting
researchers in publishing or publicly sharing the data sets
from their research. Going forward, sharing data would
allow the research community to double check the impact
that the methods for handling missing data have on the
conclusions that researchers draw from their data.
The bias introduced by complete-case analysis could

obscure differences across courses and undermine both
research and evaluation work. For example, we compared
a simulated traditional course with a simulated transformed
course. The simulated transformed course had lower DWF
rates, higher grades, and greater conceptual learning. Bias
introduced by using complete-case analysis obscured the
differences in conceptual learning between the two simulated
courses. In a comparison of real courses, a critic of the
transformed course with lower DWF rates could use the
similar results from the complete-case analysis of the concept
inventory scores to claim the transformed course had lower
grading standards. Otherwise, the transformed course would
have outperformed the other course on the concept inventory.
Using MI to account for the missingness in the data
introduced less bias into the results and preserved the true
result that, overall, students learned more in the transformed

course. Researchers and educators need accurate results to
inform the design and implementation of research-based
teaching materials. If researchers continue to use complete-
case analysis without accounting for the impact of missing
data, they risk wasting time and resources either discarding
useful interventions or pursuing false leads.

VII. CONCLUSION

Researchers, reviewers, and editors can take several steps
to improve the handling of missing data in quantitative
studies. During the data collection process, researchers
should take reasonable actions to minimize the amount of
missing data. However, education researchers often cannot
avoid somemissing data in their studies. Researchers should
use MI or another principled method for handling missing
data. Researchers using complete-case analysis should
present evidence that their data are MCAR. However,
principled methods for handling missing data, such as
MI, are not a panacea. Rather, principled methods are only
one component of the diligence necessary to addressmissing
data. Before analyzing the data and deciding on an appro-
priate method for handling the missing data, researchers
should examine the amount of missing data, patterns in the
missing and complete data, and the mechanisms behind
those patterns. When implementing MI to address missing
data, researchers should check that their data meets the
assumptions of the MI algorithm. Many MI software pack-
ages include tools to check these assumptions. Studies
should state the participation rates in their data collection,
describe the methods they used to address missing data,
discuss patterns in the missing data, and discuss how the
missing data may influence analytical results. These steps
will improve the quality, reliability, and replicability of
quantitative studies on student outcomes in physics.
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