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Computation is a central aspect of 21st century physics practice; it is used to model complicated systems,
to simulate impossible experiments, and to analyze mountains of data. Physics departments and their
faculty are increasingly recognizing the importance of teaching computation to their students. We recently
completed a national survey of faculty in physics departments to understand the state of computational
instruction and the factors that underlie that instruction. The data collected from the faculty responding
to the survey included a variety of scales, binary questions, and numerical responses. We then used
random forest, a supervised learning technique, to explore the factors that are most predictive of whether a
faculty member decides to include computation in their physics courses. We find that experience using
computation with students in their research, or lack thereof and various personal beliefs to be most
predictive of a faculty member having experience teaching computation. Interestingly, we find
demographic and departmental factors to be less useful factors in our model. The results of this study
inform future efforts to promote greater integration of computation into the physics curriculum as well as
comment on the current state of computational instruction across the United States.
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I. INTRODUCTION

Computation is a central practice of modern scientific
research that has enabled numerous experimental and
theoretical discoveries in physics. While this practice is part
and parcel to the work of modern physicists, it is not often
represented in physics curriculum [1–3]. This is despite the
current push from various professional and governmental
organizations for the integration of computation into a
variety of fields and contexts, including physics [4–6].
Integrating computation into physics courses represents a
shift in the curriculum and thus requires faculty to develop,
adopt, or adapt materials appropriate for their courses and
students. To support faculty and further integration efforts,
we need to understand why faculty choose to integrate
computation into their courses or why they choose not to do
so. In this paper, we address this issue by determining which
factors are predictive of a physics faculty member having
experience teaching computation to undergraduate students.

As computation is up and coming as an instructional tool
and strategy in physics, there is little literature on the
experiences that faculty have when integrating computation
into their courses. While we expect there to be challenges
unique to integrating computation into the physics class-
room, we also expect faculty to encounter similar difficulties
as they would for implementing other instructional efforts
including research-based instructional strategies (RBIS)
[7,8]. For example, faculty may be concerned about having
to make time to teach students basic programming principles
in addition to the physics content they are already required to
cover or having to create instructional materials that utilize
computation. Work on faculty change has found that these
concerns may be alleviated by supporting and encouraging
faculty as they implement RBIS [8,9]. The Partnership for
Integration of Computation into Undergraduate Physics
(PICUP) is one such group currently working to support
faculty as they integrate computation into their courses [10].
However, to alleviate such concerns, we first must under-
stand the nature of those concerns and how they might
impact whether a faculty member uses computation in their
classroom and why some faculty have decided to include
computation in their classrooms. In this paper, we use a
machine learning technique called random forest to address
the latter, that is to determine the factors that are predictive of
whether a faculty member has experience teaching compu-
tation or not.
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This paper is organized as follows: Sec. II provides an
overview of the findings from institutional change literature
in physics. We then provide an overview of the random
forest methodology and its implementation in Sec. III with
details appearing in the Supplemental Material [11]. In
Sec. IV, we describe our findings followed by the work
done to validate those findings (Sec. IV) and the resulting
limitations of those findings (Sec. VI). We conclude with a
discussion of our findings (Sec. VII) and their broader
implications (Sec. VIII).

II. BACKGROUND

To understand those concerns or factors that might affect
a faculty member’s decision to teach computation to their
students, we can look at which factors are predictive of a
faculty member trying RBIS, continuing to use RBIS, and
using multiple RBIS. Because we are interested in whether
faculty have experience teaching computation, we are
interested in whether faculty have reached the implemen-
tation stage of Rogers’ five stages for adopting an inno-
vation, which include knowing of the innovation, becoming
persuaded to adopt the innovation, deciding to adopt the
innovation, implementing the innovation, and continuing to
use the innovation [12]. We leave questions about why
faculty continue or do not continue to use computation to
future work. Prior work into adopting new instructional
strategies suggests that faculty choose to implement RBIS
based on their own decisions [13–17]. Henderson, Dancy,
and Niewiadomska-Bugaj extended this line of work by
looking at specific factors predictive of adopting a new
instructional strategy and found that regularly reading
teaching journals, attending talks and workshops related
to teaching, attending the New Faculty Workshop, having
an interest in using more RBIS, and the type of institution
(two-year college, four-year bachelor granting institution,
and four-year doctoral granting institution) are predictive
of a faculty member trying a RBIS [9]. Alternatively, they
found that factors such as class size, research productivity,
job type (lecturer, full professor, etc.), departmental encour-
agement, years of teaching experience, course type (alge-
bra-based or calculus-based), and demographic factors such
as gender and highest degree obtained were not predictive
of a faculty member trying a RBIS. In addition, perceived
implementation challenges such as situational character-
istics, including resistance from students, large class sizes,
pressure to cover a large amount of content in the course,
and student expectations about how class should be
structured, and personal reasons, such as the perceived
amount of time it would take to implement the change and
having a bad experience with trying to implement the
change, could prevent a faculty member from trying to
implement a RBIS [7,8].
Even though computation is a technique to do physics

rather than an instructional strategy like RBIS, its use is
informed by physics education research and it is not

typically found in traditional lecture-based courses. Just
as adopting a RBIS requires adopting new ways, tools,
and methods of teaching, integrating computation into a
course or curriculum also requires adopting these. Further,
many of the implementation challenges for RBIS, such as
not enough time to fit in new content, the amount of time
needed to implement the change, and student resistance,
have been also documented for computation when a
department tries to transform their courses to include
computation [18–20]. Therefore, we believe that we can
treat computation like a research-based instructional
strategy at least with respect to adoption and implemen-
tation. We can apply an institutional change lens to
interpret our results and, thus, we expect the features
we find to be predictive of whether faculty have experi-
ence teaching computation to also be important predictors
of whether faculty have implemented RBIS as found in the
literature.

III. METHODOLOGY

The factors found in the literature and the data we use in
this study consist of binary, Likert-scale, and open response
questions. While these data are not uncommon in physics
education research (PER), they are often themselves the
only source of the data (i.e., only one form of response) or
they are part of some larger data set where some number of
the same type of response formats (e.g., multiple choice
responses with a single correct answer) are the main source
of data. In both cases, PER has accepted methods for
analyzing this kind of data to determine key factors that
predict the outcomes most strongly. For example, when
these data are part of a larger data set, a regression analysis
can be performed where the categorical data are treated
using binary codes (i.e., “dummy” variables) and are then
included in the regression analysis. This is a common
technique used in a number of studies in physics education
research (PER) [9,21,22]. However, performing such a
regression analysis on our data is problematic. As most of
our data take some categorical form, our data violate key
assumptions in any linear regression model such as normal-
ity and equal spreads. [23,24]. As such, the questions posed
in our work are rooted in a classification task: what features
predict which faculty have experience teaching computa-
tion and those that do not? Characterizing our study as a
classification task led us to employ a supervised learning
method appropriate for the data—the random forest algo-
rithm. Below, we provide a brief overview of the algorithm
and our implementation specific to this study (Sec. III B).
In the Supplemental Material [11], we provide more
thorough background on the random forest algorithm
including how the model is validated (Supplemental
Material [11], Sec. II), how a subset of important features
can be identified (Supplemental Material [11], Sec. III),
and how to handle bias in the model (Supplemental
Material [11], Sec. IV).

NICHOLAS T. YOUNG et al. PHYS. REV. PHYS. EDUC. RES. 15, 010114 (2019)

010114-2



A. The random forest algorithm

A random forest is a supervised machine learning
approach that can be used to classify data into categories
or model outcomes over some range using regression.
The algorithm can also be used to develop a quantitative,
relative measure of how important certain factors are in
predicting those categories or outcomes [25–27]. As with
all supervised machine learning techniques, a random
forest is trained on a data set with known classifications.
The model is grown using binary decision trees and the
results of each decision tree is aggregated into a single
result [27,28]. The randomness comes from the fact that
only a fraction of the factors are used to construct the
decision trees and only a fraction of the data, controlled by
the training fraction is used to test the model (see
Supplemental Material [11]). Through this training, the
algorithm develops a model for the data set. Then, the
model is applied to a set of sequestered data, known as
the test set, that was not used in the original training. The
model is used to predict the classifications for this testing
data, which are also known.
In order to assess the model, a few measures are

employed. First, the accuracy of the model is computed,
which is the fraction of the data in the test set that was
correctly classified. Second, a receiver operating character-
istic curve (ROC curve) of the model is generated [29]. An
example is shown in Fig. 2 of the Supplemental Material
[11]. The ROC curve plots the true positive rate (proportion
of people who have a specific trait such as teaching
computation that are correctly classified as having that
trait) as a function of the false positive rate (the proportion
of people who do not have that specific trait but are
incorrectly classified as having the trait). The ROC curve
allows one to visualize the trade-off between creating a
model that has a high true positive rate but has many false
positives and models have few false positives but also fewer
true positives. The ROC curve can be represented as a
single number called the area under the curve (AUC),
where a perfect classifier will have an AUC of 1 while a
binary classifier that is randomly classifying data will have
an AUC of 0.5. While there is not general agreement on
what constitutes different levels of the significance for the
AUC measure, the literature suggests that an AUC > 0.7 is
a reasonable lower bound for a random forest model [30].
In addition to classifying data, the random forest

algorithm is able to empirically determine the relative
importance of each factor to the model. While there are
many ways to calculate this importance, we chose to use an
importance measure based on the AUC because it has been
shown to be unbiased when the predicted variable is
unbalanced and the data types of the factors are different
[31] as is the case with our data. Using this importance
measure, the relative importance of a factor to the model is
determined how much the AUC changes when the infor-
mation from that factor is removed from the model. If the

factor removed from the model was useful for prediction,
the AUC will decrease to a greater extent than if the factor
was less useful for making predictions. By removing each
factor one at a time, the change in AUC can be determined
for each factor and the relative importance of each factor
can be determined.
However, computing the relative importance for each

factor does not provide any information about whether the
factor is actually important to the model. To determine this,
some type of selection technique must be used. While many
techniques exist, we used recursive backward elimination,
which means the less important features were recursively
removed from the model until the “best” model is found as
measured by the accuracy [32]. Here, best model refers to
the model that uses the fewest number of factors to produce
a model that is within 1 standard error of the highest
possible accuracy.
Random forests are one of a number of different possible

machine learning classifiers that can be used on any given
data set. Naïve-Bayes methods, support vector classifiers,
k-nearest neighbors, and gradient tree boosting are all
possible classification schemes that could have been used
for this study. Olson and collaborators modeled a number
of open-source data sets with these and other classifiers in
order to offer best practices for using machine learning
classification algorithms [33]. In their work, Olson et al.
found the random forest algorithm to be one of the best
algorithms overall—second only to gradient tree boosting.
In head-to-head comparisons where parameter tuning
was allowed, random forest predictions were as accurate,
within error, of gradient tree boosting and support vector
machines. In principle, several algorithms could be applied
to the same data set and the resulting classifications
compared, but that is not the purpose of our work. We
selected the random forest algorithm for its documented
robustness and its intuitive nature.

B. Implementation

1. Survey

To determine which factors are most important in
predicting whether a faculty member has experience
teaching computation, we analyzed survey responses from
1246 faculty at 357 unique institutions [3]. The survey
focused around five broad topics: attitudes toward compu-
tation, experience with computation, computational resour-
ces provided by their department, motivations for teaching
or not teaching computation, and departmental views of
computation. As prior work on adopting research-based
instructional strategies has found that learning about new
strategies as well as interest in using new RBIS to be
significant explanatory variables in determining whether a
faculty member will try a new RBIS [9], we expect that
faculty’s attitudes toward computation will be predictive of
them choosing to incorporate it into their classroom. For
example, we would expect a faculty member who sees clear
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benefits of using computation in the classroom such as
allowing for new problems and concepts to be covered in
the course or being able to visualize or simulate phenomena
to incorporate computation into the classroom. Likewise,
we would expect that a faculty member who has experience
with computation, either having learned it during their
schooling or using computation in research or other non-
teaching duties, would be more likely to integrate compu-
tation into their classroom than an instructor who has never
used computation before and hence would have to teach
themselves before including computation in their class-
rooms. While Henderson, Dancy, and Niewiadomska-
Bugaj did not find departmental encouragement or research
productivity measures to be useful explanatory variables for
determining whether a faculty member tried a RBIS [9],
faculty might be motivated to incorporate computation if
their department encourages them with incentives for inte-
grating computation into their courses (such as increased
resources for the course or as criteria for tenure or
promotion) or if they believe using computation in their
courses would open new funding opportunities or other
research benefits. Finally, demographic or institutional
factors may influence a faculty member’s willingness to
incorporate computation into their course and, therefore,
questions regarding these factors were also included on the
survey.
The constructed survey items varied in scale of meas-

urement from yes or no binary questions, to Likert scales,
and open-ended responses. Given the broad range of
questions and the fact that not all questions would be
relevant to all survey takers, the survey used binary logic;
some survey participants saw different questions based on
their response to the first question, “do you have experience
teaching computation.” Of the 1246 respondents, 751
faculty said they did have experience teaching computation
while 495 faculty said they did not have experience
teaching computation.

2. Sample

In order to determine important factors for integrating
computation into physics courses, we could only use
questions that were seen by both faculty who have and
do not have experience teaching computation. This left us
with 44 questions which were binary, Likert-scale, and
open response. Because the 44 questions we selected were
of different data types (from binary to near continuous) and
our data set was unbalanced, we utilized conditional
inference forests via the cforest function in the Party
package for R [34–37]. As Kim and Loh have found that
different proportions of missing values can introduce bias
into classification trees, we excluded any faculty member
from the sample who did not answer all 44 questions [38].
We address our choice to remove faculty who did not
answer all questions from the sample instead of using
multiple imputations or other methods to address missing

data in Sec. VI. After doing this procedure, we were left
with 693 faculty (56% of our sample). In the original
sample, 60% of the faculty had indicated that they had
experience teaching computation while in our reduced
set with only faculty who answered all questions, 62%
indicated they had experience teaching computation, sug-
gesting that the data we are using is still representative of
the overall sample.

3. Growing the random forest

To run the cforest algorithm, we first randomly split
the data into a training set and a testing set, where 70% of
the data were used in the training set (corresponding to a
training fraction of .70), a common value in the literature
[39–41]. Next, we set mtry ¼ ffiffiffiffi

N
p

using cforest_
control, where ntree is the default value in the
cforest algorithm and mtry is equivalent to nin in
Ref. [42]. All other cforest function parameters were
set to their default values from cforest_unbiased,
which includes subsampling without replacement and
ntree ¼ 500. We then ran the cforest algorithm on our
data set to grow the forest. To calculate the accuracy and
AUC of the model, we used the caret and ROCR
packages [43,44]. To calculate the variable importances
we used the varimpAUC function from the party package.
We then ran the cforest algorithm an additional 29
times, for a total of 30 trials, allowing us to use the central
limit theorem [45] to define the mean and standard error of
the importances. Thirty trials is typically the minimum
number of trials to apply the central limit theorem [46] and
Shapiro-Wilk tests, a test of normality where the null
hypothesis is that the data are normally distributed, show
that with 30 trials, the data are normally distributed;
therefore, additional trials were deemed not necessary
and would have only consumed additional computational
resources. Further, QQ plots [47], which are scatter plots
that compare the theoretical normal distribution with the
actual data and will appear as lines if the data are in fact
linear, do not show any nonlinear behavior, suggesting that
30 trials was sufficient. In addition, the data were resplit
into training and testing data sets before each trial to
minimize the inherent randomness of the cforest algo-
rithm and any bias that could result from the training data
not being representative of the overall data.
In order to find the meaningful factors, we used the

recursive backward elimination technique described in
Ref. [32] as we did not want to presuppose a set number
of meaningful variables, only had a few negative values
such that the resulting distribution would not be useful, and
generating null importances for our 44 variables would not
be practical (see Supplemental Material [11] for details
of these alternative approaches). The recursive backward
elimination technique was implemented through a modi-
fication of varSelRF function in the varSelRF package
such that the forests grown during the process would be
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conditional inference forests rather than random forests and
the initial importances would come from the results of the
30 trials rather than being generated within the algorithm
(and thus would allow the results to be replicated) [32,48].
We used the default value of 20% of the variables being
dropped after each trial. We use the term “meaningful”
instead of “significant” to signify that selected factors are
the factors found to provide the most information to the
model and not found from a test of statistical significance.

IV. RESULTS

A. Model validation

Across the 30 trials, our model successfully predicted
whether a faculty member had experience teaching com-
putation 77.4% � 0.5% of the time and had an AUC of
0.838� 0.002 (see representative ROC curve in Fig. 1). As
62.2% of the sample had experience with teaching com-
putation, our accuracy is significantly (both in the practical
and statistical sense) higher than the noninformation rate,
which is the accuracy if the model were to predict every
data point as belonging to the majority class, in our case,
the faculty with experience teaching computation. From the
confusion matrix shown in Table I, we see that the model is
better at predicting faculty with experience teaching com-
putation compared to faculty without experience teaching
computation. This difference in prediction ability may be
caused by the fact that there are approximately 50% more
faculty with experience teaching computation than faculty
without experience teaching computation; we address this

further in Sec. VI. Since our accuracy is significantly higher
than the noninformation rate and the AUC is above 0.8, our
model can satisfactorily predict whether a faculty member
has experience teaching computation.

B. Feature importance

1. Features that are more important

In addition to generating predictions, our model is able to
determine the importance of each variable that was used
in predicting whether a faculty has experience teaching
computation; these importances are shown in Fig. 2. The
variable importances here are computed using AUC-based
permutations methods, meaning the importance shown in
the plot is the average decrease in the AUC if the variable
were permuted and its association with the response
variable were broken. For example, if the responses in
the variable “Use computation in research with students”
were randomly shuffled, the AUC in Fig. 1 would drop
from 0.825 to approximately 0.760, a 0.065 decrease,
which is that variables’ importance as shown in Fig. 2.
We find that the most important features are “I use

computation in research with students,” “I do not person-
ally use computation,” “computation allows me to bring
new physics into my classroom,” “computation allows me
to bring new problems into my classroom,” and the highest
physics degree offered by the institution. Actionable plans
to increase computational instruction, “I use computation in
my research,” institution type, and tenure status are slightly
less important features for predicting whether faculty have
experience teaching computation. When we perform the
recursive backward elimination technique, we find that the
meaningful features are “I use computation in research with
students,” “I do not personally use computation,” “compu-
tation allows me to bring new physics into my classroom,”
“computation allows me to bring new problems into my
classroom,” and the highest physics degree offered by the
institution.
As a check that these five meaningful variables are in fact

meaningful, we then reran the cforest algorithm 30
times with just these five variables. We obtained an average
accuracy of 76.4% � 0.4% and an AUC of 0.818� 0.002.
Recall that the values obtained when using all 44 variables
were 77.4% � 0.5% and 0.838� 0.002, respectively. As
the accuracies are nearly the same and the AUC of the
five meaningful variables model is still above 0.8, we can

FIG. 1. Representative ROC curve for one of the 30 trials of
predicting whether faculty do or do not have experience teaching
computation from 44 predictor variables. The AUC for this trial is
0.8250, suggesting a good model, as the AUC is greater than 0.7.

TABLE I. Confusion matrix for a representative trial of the
30 trials. Numbers in bold are correct predictions and add to
the accuracy.

Data says

Do you have experience teaching computation? Yes No

Model Yes 56.7% 16.8%
Predicts No 5.8% 20.7%
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further support the claim that these five variables are
meaningful.
While the importances are useful for determining which

variables are good discriminators between faculty who
have experience teaching computation and faculty who
do not, the importances by themselves cannot say which
group is more likely to have a specific trait. To determine
which group is more likely to possess a specific trait, the

distributions of responses must be investigated. The dis-
tributions of the five meaningful variables are shown in
Fig. 3. For example, faculty who have experience teaching
computation tend to use computation to provide under-
graduate students with research experience while faculty
who do not have experience teaching computation tend
not to personally use computation. Similarly, faculty who
have experience teaching computation tend to agree that

FIG. 2. Variable importances for each of the 44 factors used to predict whether a faculty member has experience teaching computation.
The importance is based on the average change in the AUC if the factor is permuted. Thus, factors that change the AUC the most have
the largest importances. The first five factors in color are the ones selected from the recursive backward elimination approach. The error
bars represent a standard error of the mean AUC importance. Full questions can be found in Table 2 of the Appendix.
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FIG. 3. Distribution of responses based on whether faculty do or do not have experience teaching computation. Here, within group
percentage means the percentage of faculty within the group who use computation or the group who does not use computation. Since
these five factors are the meaningful factors, we expect that the distribution of responses should be different between faculty with
experience teaching computation and those who do not. Plot A shows the distribution of the most important feature while plot E shows
the fifth most important feature. All five plots have χ2 with corrected p < 0.05.

FIG. 4. Distribution of responses based on whether faculty do or do not have experience teaching computation. Here, within group
percentage means the percentage of faculty within the group who use computation or the group who does not use computation. Since
these two variables are less useful for predictions, we expect that the distribution of responses should not be different between faculty
with experience teaching computation and those who do not.
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computation allows them to bring new physics and new
problems into the classroom that would not be possible
without using computation to a greater degree than those
who do not have experience teaching computation.

2. Features that are less important

In addition to looking at which features are good
discriminators between faculty who do and do not have
experience teaching computation, investigating which fea-
tures are not as good discriminators can be informative. For
example, we find that demographic factors such as race or
ethnicity, gender, time of degree (a proxy for age), field of
degree, and highest degree obtained are among the less
important factors. In addition, we find that departmental
and institutional factors (statements in Fig. 2 that begin
with “computation instruction considered…”) are also
among the less important factors. The distributions of
some of these factors are shown in Fig. 4. Compared to
the distributions of features that are more important, the
features that are less important seem to appear equally
among the faculty who do and do not have experience
teaching computation. These differences in distributions
provide further support that the five meaningful factors are
indeed meaningful.

V. VALIDATING OUR CHOICE OF
HYPERPARAMETERS

Random forest and conditional inference forest models
have multiple parameters that can be adjusted to control how
the forest grows. As these parameters need to be picked
before the model is created, they are called hyperparameters
and choices for these hyperparameters can affect the quality
of the forest grown. For example, if the amount of the data
from which the forest is grown (training fraction) is
increased, the predictions should improve up to some
threshold. Likewise, if the number of trees in the forest is
increased, the quality of the predictions should increase up to
some threshold. In this section, we assess the stability of our
model by varying the training fraction and the number of
trees in each forest. If our findings do not vary significantly
as the training fraction and number of trees vary, we can be
more confident that our results actually are representative of
the data and are not artifacts of the model. As we are more
concerned with identifying the important factors than the
predictive power of the model, we do not perform a grid
search to identify the set of hyperparameters that would
result in the highest accuracy or area under the curve. Prior
work has found that randomly choosing hyperparameters is
more efficient and provides comparable results to a typical
grid search [49].

A. Effects on accuracy and area under the curve

To check for variation, we selected five training frac-
tions, 0.5 (split the data in half), 0.6 (used when creating

a training, validation, and testing set), 0.7 (our original
choice), 0.8 (amount used for a 5-fold validation), and 0.9
(amount used for a 10-fold validation) and six forest sizes
(50, 100, 250, 500, 750, 1000), where 500 trees was our
original choice, informed by practical considerations and
Svetnik et al.’s finding that error rates stabilize on the order
of 102 [42]. For each pair of training fraction and forest
size, we ran our cforest algorithm 30 times, creating
870 new forests (29 new models with 30 trials each). We
then averaged our results across forests with the same
training fraction and number of trees. The accuracy and
AUC for each pair of training fraction and number of trees
are shown in Figs. 5 and 6, respectively. Avisual inspection
suggests that neither the accuracy nor area under the curve
vary significantly when the training fraction and the
number of trees in the forest are changed. Indeed, the
ranges of the accuracy and AUC are 0.03 and 0.02,
respectively, which are insignificant from a practical
perspective. Thus, while this range represents multiple
standard deviations, it is of little practical significance so
we can be confident that our model would not significantly
improve or become worse by selecting a different set of
hyperparameters.

B. Effects on variable importance

Because there were small variations in the area under the
curve for varying training fractions and number of trees, we
may expect there to be variation in the variable importances
as the variable importances are based on changes in the
area under the curve. We expect there to be natural variation

FIG. 5. Average accuracy of the model for various training
fractions and number of trees in the forest. Error bars correspond
to a standard error.
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in the importances just from using different training sets,
so we chose to only focus on the selected meaningful
variables. We used the same choices of hyperparameter
combinations as in the previous section. Figure 7 shows the

fraction of the 29 new models where each variable was
found to be meaningful. Variables that are not shown were
not found to meaningful in any of the models. We see that
“using computation in research with students” and “I do not
personally use computation” were selected as meaningful
in all the models while “computation allows me to bring
new physics into my course” and “computation allows me
to bring new problems into my course” were selected as
meaningful in over two-thirds of the models. Highest
physics degree offered was selected as meaningful in only
about a third of the other models, suggesting that the
selection of this factor may be influenced by how the model
is constructed or should be more accurately described as
marginally meaningful. None of the other factors appeared
in more than 15% of the models. These results suggest that
at least four of the selected meaningful factors are in fact
meaningful and not just artifacts of how we constructed our
model while highest physics degree offered may be margin-
ally meaningful and influenced by the hyperparameters
chosen.

VI. LIMITATIONS

In this section, we comment on how our model may be
limited based on the nature of the data and the amount of
missing data.

A. Unbalanced classes

Because 60% of our data are from faculty who have
experience teaching computation, the training data set
used to grow the random forest model will contain more
instances of faculty who have experience teaching
computation than faculty who do not have experience
teaching computation. As there are more instances of
faculty with experience teaching computation to learn
from, we expect that the model will be better at
correctly classifying faculty with experience teaching
computation than faculty without experience teaching
computation, which we observed in our data. However,
our model appears to be classifying faculty without
experience teaching computation almost at random,
suggesting that our results are biased. While many
methods have been proposed to correct the imbalance,
these methods can introduce additional biases of their
own. For example, the data can be artificially balanced
by bootstrapping the minority class (up-sampling), until
the classes are equal. However, the cforest algorithm
is not unbiased when bootstrapping is used [36].
Alternatively, the data could be down-sampled, where
only a random sample of the majority class equal in size
to the minority class is used to grow the forest. While
this does not introduce bias in the cforest algorithm,
it would require excluding nearly 20% of the usable
data from the model and in our trials, did not improve
the accuracy or AUC of the models. Finally, there have

FIG. 7. Fraction of the other 29 models in which the variables
are selected as meaningful. Variables above the line were selected
as meaningful in the original model.

FIG. 6. Average area under the curve of the model for various
training fractions and number of trees in the forest. Error bars
correspond to a standard error.
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been alternative variations of the random forest algo-
rithm, including balanced random forests, which is
based on up-sampling, and weighted random forests,
which are based on cost sensitive learning, to handle
unbalanced classes. However, these algorithms are based
on CART algorithms meaning the original biases condi-
tional inference forests were designed to combat would
be reintroduced. Thus, adequately handling imbalanced
data without introducing or reintroducing bias appears to
be an open problem.
Alternatively, if we are using our model as a truly

predictive model, we would not know the true values until
after the prediction. In the case that the model does predict
that a faculty member does not have experience teaching
computation, it would be correct about 80% of the time
[20.7%=ð20.7%þ 5.8%Þ]. Thus, whether the algorithm
should be viewed as biased depends on what we view as
the given information—the model’s prediction or the actual
response.
While our predictions may contain some bias, the

predictive model was not the focus of this study.
Instead, we are concerned with determining which
factors are discriminators between faculty with or with-
out experience teaching computation. The factors were
determined from values of the AUC importance, which
is not affected by class imbalance because the area
under the curve weighs the majority and minority class
equally [31]. The AUC importance is not involved in
the growing of the forest, however, meaning that the
predictions can still be biased from unbalanced classes.
Thus, we believe that our results are minimally impacted
by having more faculty with experience teaching com-
putation in our sample.

B. Missing data

For this paper, we decided to employ complete case
analysis, which means we only included faculty who
responded to all 44 questions used in the study. This left
us with just over half of the original participants, meaning
we excluded nearly half of the participants, which could
affect our results. As described by Hapfelmeier et al., there
do exist methods for random forests with missing data and
generating variable importance measures [50]. When we
implemented this approach, our accuracy decreased to
72.2%� 0.4% but the AUC increased to 0.889� 0.001.
In terms of the selected meaningful variables, we found that
the five variables selected in our initial model and one
additional variable (“I used computation in my research”)
to be meaningful. However, this set of meaningful variables
could also be observed by varying the training fraction and
the number of trees in our original model. Therefore, it does
not appear that excluding faculty with missing data changes
our results and hence we decided to use the complete case
analysis because complete case analysis resulted in a better
predictive model.

VII. DISCUSSION

To interpret our results, we can compare the mean-
ingful factors to those found in the literature. Of the
twenty factors Henderson, Dancy, and Niewiadomska
investigated using logistic regression [9], four appear
in our study directly: highest degree obtained, gender,
type of institution, and type of position, which we called
employment status. Additionally, we can relate three of
their variables to three of our computation specific
variables: we treat their “department encouragement”
variable as our “department values teaching students
computation” factor, their “interest in using more
RBIS” variable as our “actionable plans to increase
computation” factor and their “years of teaching expe-
rience” variable as our “time of degree” factor as both of
these can be viewed as proxies for age. As our survey
was designed to cover five broad areas and to limit
survey fatigue, not all of the factors from Ref. [9] could
be included in the survey. Of these seven factors, we then
expect that the factors Henderson et al. found to be
correlated with trying or not trying RBIS (institution type
and interest in using more RBIS) to be among the factors
we found to be more predictive of a faculty member
having experience teaching computation while their other
five variables should be among the factors we found less
important. Indeed, we found that type of institution and
actionable plans to increase computation were among the
more important of our factors while the other five were
among the less important factors. We note however that
type of institution and actionable plans to increase
computation were only meaningful factors in less than
15% of the models we created when varying the number
of trees and the training fraction and were not meaningful
in our original model.
As teaching and research expectations vary based on

the institution type, we may expect some types of
institutions to allow their faculty more time to focus
on their courses. For example, faculty at institutions that
only offered bachelors degrees in physics were more
likely than faculty at any other type of institution to have
experience teaching computation. This may be due to
lower research demands and, hence, more time to devote
to developing and preparing their courses. Therefore,
faculty at these types of institution may have already
overcome one of the implementation challenges, having
time to do so. Likewise, those who have already made
plans to integrate computation into their courses have
overcome the challenge of fitting more material into their
courses.
On the other hand, factors such as a faculty members’

gender, highest degree obtained, and years of teaching
experience do not address any of the implementation
challenges so we do not expect these to be important
factors. Departmental encouragement and type of position
may indirectly relate to an implemental challenge such as
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approving changing curriculum to accommodate compu-
tation or by creating time to work on implementing
computation. However, type of position only refers to
full-time, part-time, or course-by-course, not the actual
duties of the position, so it is unlikely that this factor
provides much information about time for implementing
computation beyond the number of hours worked each
week. As these two factors are at most indirectly related to
challenges with implementing computation or a RBIS, it
seems reasonable that they are not important factors for
discriminating between faculty who do and do not have
experience during computation.
One reason that we may not be finding the same

important factors as found in the literature for adopting
RBIS is that the faculty who are using computation are
likely what Rogers calls the early adopters [12]. The
literature on adopting RBIS focuses around more estab-
lished instructional strategies and hence the early and late
majorities. We would expect that the early adopters of a
new instructional strategy would be those familiar with the
strategy and see a clear benefit to using the strategy instead
of continuing to the use the strategies they had previously
been using. This is the pattern we observe in our mean-
ingful factors: those who use computation in their research
with students tend to use computation while those who do
not personally use computation tend not to have experience
teaching computation. Likewise, those who believe com-
putation allows new physics and new problems to be
incorporated into the curriculum, a clear benefit of using
computation, are more likely to have experience teaching
computation.
As 60% of the respondents to our survey indicated

they have experience teaching computation, our claim that
these faculty are early adopters may seem contentious as
60% is a majority of faculty. However, Caballero and
Merner note that those who use computation are more
likely to respond to the survey than those who do not use
computation [3]. Thus, 60% should be thought of as an
upper limit on the percentage of faculty using computation
in their courses.
Regardless of how we classify these faculty, it is

important to note that these results are just a snapshot of
the state of computation now. As computation in the
classroom becomes adopted by more physics faculty, we
expect that these meaningful factors will change and will
likely more closely align with factors correlated with trying
a RBIS. Currently though, the important factors were
focused on what the individual does—using computation
in research with students or not using computation person-
ally, or believes—computation adds new physics and
problems to the course, and not on institutional or depart-
mental factors, suggesting that integrating computation
into a course is a personal choice, which does align with

previous findings that faculty adopt new instructional
strategies based on their own decisions.

VIII. CONCLUSION AND IMPLICATIONS

In this paper, we created a random forest model to predict
whether physics faculty have experience teaching compu-
tation. From our model, we find four meaningful factors
and one marginally meaningful factor that discriminate
between faculty who do and do not have experience
teaching computation: using computation in their research
with students, not personally using computation, believing
computation allows them to bring new physics into their
course, believing computation allows them to bring new
problems into their course, and the highest physics degree
offered at their institution. Since most of the meaningful
factors are related to faculty choice and there is lack of
institutional or department factors, we conclude that
deciding to teach computation is viewed as a choice by
physics faculty members.
As the meaningful factors were at the individual level

instead of the departmental or institutional level, the
implications of our study are then that at this moment,
efforts to increase computation use should be at the level
of individuals rather than at a departmental level. If we do
characterize those who use computation as early adopters,
then future work should focus on the faculty who will
make up the early majority, which need to see evidence
that computation adds value to their course before they
will adopt it [12]. Broadly, the meaningful factors suggest
that faculty who have experience using computation and
see value in teaching computation will do so while those
who do not use computation in their professional work
or do not see how computation can complement their
course’s current content will not teach computation. These
findings are perhaps not surprising as a study outlining a
vision for integrating computation into undergraduate
physics courses concludes that integrating computation
will require “many faculty minds to change” and many
“faculty skills to train” [2]. The fact that these factors are
still relevant a decade later suggest there is still a long way
to go to widespread implementation of computation in
undergraduate physics courses.
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APPENDIX: QUESTIONS FROM COMPUTATIONAL SURVEY USED IN OUR MODEL

In Table II, we provide the wording of the questions we used in the survey and the shortened versions of those questions
that are used throughout the paper.

TABLE II. Full list of survey questions.

Short name Question statement

Teaching computation Given this broad definition of computation, do you have any experience
teaching computation to undergraduate physics students?

Q1: Computing is important for undergrad research Rate the degree to which you agree or disagree with the following
statements. For the following questions we would like to understand
your personal perspective of the role of computation in physics.—I think
that computation is important for undergraduate physics research.

Q2: Computing is important for undergrads Rate the degree to which you agree or disagree with the following
statements. For the following questions we would like to understand
your personal perspective of the role of computation in physics.—
I think that learning computation is important for undergraduate
physics majors.

Q3: Department values teaching students computation Rate the degree to which you agree or disagree with the following
statements. For the following questions we would like to understand
your personal perspective of the role of computation in physics.—
The undergraduate program in my department values instructing
undergraduate physics majors in computation.

Q4: Computation can solve unsolved problems
(research)

With regard to your personal research, rate the degree to which you agree
or disagree with the following statements:—Computation can solve
unsolvable (analytical) problems.

Q5: Computation is generalizable (research) With regard to your personal research, rate the degree to which you agree
or disagree with the following statements:—Computation is
generalizable to many different kinds of problems.

Q6: Computation provides visuals (research) With regard to your personal research, rate the degree to which you agree
or disagree with the following statements:—Computation affords
visualization (graphs, animations) of solutions.

Q7: Computation research attractive for funding With regard to your personal research, rate the degree to which you agree
or disagree with the following statements:—Computational research is
attractive to funding agencies.

Q8: Computation is used across science (learning) Rate the degree to which you agree or disagree with the following aspects
of learning computation:—Computation is used in many science and
engineering applications.

Q9: Computation can solve unsolved problems
(learning)

Rate the degree to which you agree or disagree with the following aspects
of learning computation:—Computation can solve unsolvable
(analytical) problems.

Q10: Computation is generalizable (learning) Rate the degree to which you agree or disagree with the following aspects
of learning computation:—Computation is generalizable to many
different kinds of problems.

Q11: Computation provides visuals (learning) Rate the degree to which you agree or disagree with the following aspects
of learning computation:—Computation affords visualization (graphs,
animations) of solutions.

Q12: Computation focuses attention on modeling Rate the degree to which you agree or disagree with the following aspects
of learning computation:—Computation focuses student’s attention on
modeling the important physics of a problem.

Q13: Learning computation prepares the workforce Rate the degree to which you agree or disagree with the following aspects
of learning computation:—Learning computation prepares students for
the modern scientific workforce.

Q14: Computation allows me to bring new physics in Rate the degree to which you agree or disagree with the following aspects
of learning computation:—Computation allows me to bring new
physics into the classroom that I otherwise couldn’t.

(Table continued)

NICHOLAS T. YOUNG et al. PHYS. REV. PHYS. EDUC. RES. 15, 010114 (2019)

010114-12



TABLE II. (Continued)

Short name Question statement

Q15: Computation allows me to bring new problems in Rate the degree to which you agree or disagree with the following aspects
of learning computation:—Computation allows me to bring new
problems into the classroom that I otherwise couldn’t.

Q16: Computation instruction considered for new hires What level of consideration does your department give to undergraduate
instruction in computation when making decisions regarding:—
Hiring new faculty members

Q17: Computation instruction considered for T&P What level of consideration does your department give to undergraduate
instruction in computation when making decisions regarding:—
Tenure and promotion decisions

Q18: Computation instruction considered when
allocating resources for major

What level of consideration does your department give to undergraduate
instruction in computation when making decisions regarding:—
Allocating resources for programs or tracks within the undergraduate
major

Q19: Computation instruction considered when
allocating resources for individual courses

What level of consideration does your department give to undergraduate
instruction in computation when making decisions regarding:—
Allocating resources for individual undergraduate courses

Q20: Computation instruction considered when
changing service course

What level of consideration does your department give to undergraduate
instruction in computation when making decisions regarding:—
Changing undergraduate service courses

Q21: Computation instruction considered when
changing major course

What level of consideration does your department give to undergraduate
instruction in computation when making decisions regarding:—
Changing courses for undergraduate majors

Q22: Computation instruction considered for release
time

What level of consideration does your department give to undergraduate
instruction in computation when making decisions regarding:—
Releasing time for faculty to develop computation in undergraduate
courses

Q23: Computation instruction considered for pursuing
university funding

What level of consideration does your department give to undergraduate
instruction in computation when making decisions regarding:—
Pursuing university funding

Q24: Computation instruction considered for pursuing
grant funding

What level of consideration does your department give to undergraduate
instruction in computation when making decisions regarding:—
Pursuing grant funding

Q25: Actionable plans to increase computation
instruction

Do you have concrete and actionable plans to increase your use of
computation in your own undergraduate physics teaching in the
next year?

Q26: Highest degree What is your highest degree?
Q27: Field of degree In what field did you receive your highest degree?
Q28: Additional field of degree In what other field did you receive your highest degree?
Q29: Time of degree When did you obtain your highest degree?
Q30: Learned computation by self-teaching How did you come to learn computation?—Self-taught
Q31: Learned computation informally on-the-job How did you come to learn computation?—Informal on-the-job
Q32: Learned computation in formal course How did you come to learn computation?—Formal course(s)
Q33: Use computation for personal enrichment How do you personally use computation?—Exclusively for personal

enrichment or use
Q34: Use computation in my research How do you personally use computation?—In my research work
Q35: Use computation in research with students How do you personally use computation?—To provide research

experiences for my undergraduate students
Q36: Do not personally use computation How do you personally use computation?—I do not use computation.
Q37: Faculty rank What is your current faculty rank?
Q38: Employment status As of the Spring 2016 term, what was your employment status
Q39: Tenure status Are you currently a tenured faculty?
Q40: Gender What is your gender?
Q41: Race or ethnicity What is your race or ethnicity?
Q42: HBCU status Is your institution a historically black college or university?
Q43: Institution type What type of institution do you work at?
Q44: Highest physics degree offered What is the highest physics degree offered at your institution?
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