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In upper-division physics courses, students’ use of differential line, area, and volume elements and their
facility with the various multivariable coordinate systems consistently go hand in hand. As part of an effort
to investigate student understanding of the structure of non-Cartesian coordinate systems and the associated
differential elements, we interviewed students (mostly in pairs) in junior-level electricity and magnetism
courses at two universities. In a sequence of tasks, students were asked to construct a differential length
vector and a differential volume element in an unconventional spherical coordinate system. None of the
students were able to arrive at a correct differential length element initially. This work addresses the
construction and checking of the volume element. Volume element construction occurred by either
combining associated lengths, an attempt to determine sides of a differential cube, or mapping from the
existing spherical coordinate system. Students who constructed volume elements from differential length
components corrected their length element terms as a result of checking the volume element expression by
integration. Other students who relied heavily on spherical coordinates displayed further difficulty
connecting dimensionality and projection ideas to differential construction.
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I. INTRODUCTION

An understanding of mathematical concepts, equations,
and expressions is often key to the foundational under-
standing of upper-division physics. Research on student
learning in electricity and magnetism (E&M) has indi-
cated several categories of difficulty related to mathemat-
ics, including accounting for underlying physical
symmetry, extracting information from physical situations
for calculation, and interpreting the results of calculation
physically [1]. Vector calculus, including vector integra-
tion and vector differential operators, is ubiquitous across
the E&M curriculum, often providing the underlying
representation for relationships between various concepts.
A crucial aspect of problem solving in E&M is setting
up the mathematical expressions for desired quantities,
often in integral or differential form, based on the physical
scenario. The prominent role of multivariable calculus
operators requires students to have a reasonable command
of differential quantities in a two- or three-dimensional
space. Additionally, due to the high instantiation of non-
Cartesian symmetry, understanding of these differential

quantities is often mitigated by an understanding of
spherical or cylindrical coordinate systems and the asso-
ciated differential length, area, and volume elements.
The variation in the use of coordinate systems is one of

the key factors in the “vector-calculus gap,” [2–4] which
represents the pedagogical and conceptual differences
between the two disciplines of mathematics and physics.
Among the differences is the idea that mathematics courses
predominantly use Cartesian coordinates, whereas physi-
cists often choose a coordinate system from the symmetry
of the physical scenario. Other work in this area notes a
large concern over the lack of standardization of variable
labeling conventions in non-Cartesian coordinates between
disciplines [2]. For this work, we will use the physics
convention for spherical coordinates, which labels the
azimuthal angle as θ and the polar angle as ϕ.
Beyond this, a survey of calculus curricula reveals

different methods of integration over volumes [5].
Volume integration in mathematics is typically approached
by thinking about the area between two functions and
finding the volume obtained by rotating that area about a
specific axis, or by finding the volume enclosed between
two planar surfaces. In E&M, volume integration is
commonly used to determine the total charge of a given
object (e.g., sphere or cylinder) with a given charge
distribution. In these tasks, students are expected to
integrate the product of the charge density and a differential
volume element expressed in the appropriate coordinate
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system. As many of the physical scenarios in E&M are
most easily solved in a non-Cartesian system, differential
volumes include scaling factors that account for the
curving of spherical (dτ ¼ r2 sin θdrdθdϕ) or cylindrical
(dτ ¼ sdsdϕdz) space, rather than the straightforward
dxdydz from a rectangular coordinate system.
While scaling factors can be determined through a

Jacobian or coordinate transformation, they can also be
constructed less formally with an understanding of the
underlying geometry. The latter involves recognizing that
the curvature of the space necessitates arc lengths to
represent some of differential length components and that
the resultant volume element is composed of a product
of the magnitude of the length components. The length
component and subsequent volume component for spheri-
cal coordinates are given by

d⃗l ¼ drr̂þ rdθθ̂þ r sin θdϕϕ̂;

dτ ¼ ðdrr̂Þ · ðrdθθ̂ × r sin θdϕϕ̂Þ
¼ ðdrÞðrdθÞðr sin θdϕÞ ¼ r2 sin θdrdθdϕ:

However, as shown in the final form of the volume
element above, most conventions for writing the differ-
ential volume element involve the scaling factors written
out by variable in front of the set of differentials,
obscuring the origin of the term as a product of differ-
ential lengths.
Previous research has addressed student use and under-

standing of many aspects of vector calculus quantities
in the context of E&M, including differential elements [6],
integration [7–10], applications of symmetries for Gauss’s
law and Ampère’s law [1,11–15], and vector differential
equations in mathematics and physics settings [16,17].
But despite the centrality and ubiquity of non-Cartesian
symmetry in E&M problems requiring vector calculus
operations, little attention has been given to student under-
standing of differential elements in non-Cartesian coordinate
systems, and the extent to which these elements are used in a
rote fashion or whether the structure of the expressions has
meaning to students when employed. As part of a broader
study to investigate these issues, we developed an interview
task in which students were asked to construct a differential
length vector and a differential volume element for a
spherical coordinate system where variable labels and
placement are changed from standard conventions.
Findings from the differential length construction part of
the task are presented in a companion paper [18]. The results
presented here address students’ construction of differential
volume elements, in line with the following research
questions:
(1) To what extent do students understand the multi-

variable coordinate systems used in E&M?
(2) What ways do students build and/or determine differ-

ential volume elements in multivariable systems?

(3) To what extent do students connect a differential
volume element to the differential length compo-
nents in a given non-Cartesian coordinate system?

Addressing these questions provides knowledge of
students’ geometric understanding of non-Cartesian coor-
dinate systems, as well as insight into how understanding
of the differential elements used in may E&M expressions.

II. CONTEXT FOR RESEARCH

Course observations were conducted in the first semester
of junior-level E&M at the first of two universities (uni-
versity A). These observations revealed discrepancies in
students’ performance when writing differential elements
for spherical and cylindrical coordinate systems. It is in this
course that students first encountered these multivariable
coordinate systems and differential vector elements.
Spherical coordinates were introduced and used for several
units of class before the introduction of cylindrical coor-
dinates. Once both coordinate systems had been introduced
and used in standard examples, an in-class quiz was
administered as part of regular instruction. Results showed
more students were able to construct differential length
vectors in cylindrical coordinates; as the course progressed,
homework and exam data suggested students were more
proficient with spherical differential elements when solving
various integration tasks. This suggested underlying diffi-
culties in students’ understanding of how differential
elements are constructed and used in particular coordinate
systems, and suggested that performance on spherical
coordinates was due to extended use early in the semester.
These observations prompted investigations into stu-

dents’ conceptual and symbolic understanding of differ-
ential elements in non-Cartesian coordinate systems within
and without physics context [18,19]. As reported in a
companion article, analysis of differential length construc-
tion showed student attention to various conceptual aspects
and symbolic structures needed to express a three-
dimensional differential length vector [18]. However, no
student was initially able to completely construct a correct
length element. This work explores students’ construction
of the differential volume element for the unfamiliar system
as well as students’ checking of the correctness of the
element in terms of the ideas accessed during the initial
length construction, as well as the connections made
between the differential length vector and differential
volume for a given coordinate system.

III. RELATED LITERATURE

Research on student understanding of vector calculus in
E&M has addressed topics in several key areas. Much of
this work has explored student understanding of Gauss’s
and Ampère’s laws, expressed as a flux and line integral,
respectively. These laws are frequently employed in E&M in
the abundance of highly symmetric cases. Thus, much of the
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literature in either case focuses on students’ recognition
and/or application of symmetry. It is common for students
to overgeneralize the use of either law to include cases
where symmetry is not present, or attempt to apply any given
coordinate symmetry as long as the Gaussian surface or
Ampèrian loop encloses the desired charge or current
[1,11–15].
Other work within the realm of vector calculus has

explored student understanding of vector differential oper-
ators and students’ interpretations of vector fields [16,17].
Researchers found students were adept at procedural
calculation when provided tasks involving gradient, diver-
gence, and curl, but were unable to appropriately express
the conceptual meaning of the operations [20]. These
difficulties speak to the larger difficulties that students
have with the application and interpretation of mathematics
at this level, as categorized by Pepper and colleagues:
assessing underlying physical symmetry, establishing
mathematical representations of physical situations for
the purpose of calculation, and interpreting the results of
calculation in terms of the given physical situation [1].
Pepper and colleagues briefly noted two cases of student

difficulties with construction of differential elements. In
one case, students neglected to include the necessary
scaling factors when writing spherical differential areas,
using da ¼ dθdϕ, rather than da ¼ r2 sin θdθdϕ. This is
reminiscent of students’ attempts to pattern match a product
of two differentials in a non-Cartesian system with one in
Cartesian coordinates [21,22]. Research has shown stu-
dents at various levels are less comfortable when working
within polar coordinates [22–25]. In a second example, a
group attempted a three-dimensional line integral using
dxdydz as a path length element. These types of errors
show difficulty with understanding and constructing differ-
ential elements in multivariable coordinates that have been
relatively unexplored before now.
Student understanding of calculus concepts has been

another area of focus in E&M. Hu and Rebello have
investigated student understanding of differentials in the
context of integration of charge or resistivity along one
dimension [6]. Several resources and conceptual metaphors
were used by students across these tasks, establishing four
common treatments of differential quantities: derivatives as
small amounts, as unitless points, as a cue to differentiate a
formula to derive a second differential quantity, and as an
indicator of the variable of integration. The identification
of the differential as a small amount can be connected to a
specific cue for students to integrate, where students
identify the need to add up “little chunks” using an integral
[7,8]. However, research in mathematics education has
commonly reported student treatment of the differential as
a meaningless quantity that only serves to identify the
variable of integration [26–29]. The sum of this work
highlights the fact that many students do not connect the
differential quantity to a physical meaning, even when

given a specific context. While addressing larger concerns
about students’ treatment of integration and differentials,
these studies largely focused on integration in one dimen-
sion, or on quantities such as resistance or capacitance.
Therefore, despite significant forays into various levels

of mathematical understanding, little work has explored
student understanding of the differential vector element,
in particular as expressed in the non-Cartesian coordinate
systems used in physics problems. This work takes a
reasonable next step toward analysis of student under-
standing of one of these elements—the differential volume
element—as it appears in non-Cartesian coordinate systems
used in E&M.

IV. THEORETICAL PERSPECTIVE

Building largely off of work on student construction of
differential length elements within the same task [18], we
analyze student construction of differential volume ele-
ments using a concept image framework [30] to make
explicit connections to earlier work as well as address new
ideas related specifically to differential volume elements.
A student’s concept image is the multifaceted cognitive

structure that includes all the properties, processes, mental
pictures, or ideas that they associate with a particular topic.
For example, students may have multiple ways to think
about integration: with a Riemann sum, area under the curve,
or anti-derivative approach. A concept image would addi-
tionally contain associated properties for each of these
methods. The sum of these ideas that the student associates
with integration make up the student’s full concept image;
however, a specific task or context may only elicit one of
these approaches [8]; this is referred to as the evoked concept
image for that task or context. While a student may have
other ideas related to integration, determining a student’s
evoked concept image for a particular task (e.g., area under
the curve) allows insight into how a student approaches a
problem in a given context. Likewise, it is also telling if a
student only has a rule-based understanding, e.g., the integral
of nxðn−1Þdx is xn þ C, without an understanding of the
underlying meaning. The particular concept image evoked
for a given topic dictates the approach and properties a
student would use for a given task.
Notably, as a student continues to apply and extend an

idea, their concept image grows and may pick up ideas that
are false or that contradict earlier aspects. In some cases, a
student can develop what is referred to as a restricted concept
image if the student learns and applies a concept in a very
specific way for an extended period of time. Following
the development of a restricted concept image, a student
may later have difficulty extending the specific conceptual
understanding to a broader context. For example, a student
learning Coulomb’s law who then spends several weeks
using Gauss’s law may develop a restricted concept image
of integration of electric fields, and may attempt to apply
Gauss’s law in a case where symmetry is absent, a situation
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well documented in the literature [1,11–13]. The formation
of a restricted concept image is a reasonable way to describe
algorithmic knowledgewithout conceptual understanding. In
these cases, students have only learned a particular concept
as a computational entity (e.g., integrals as antiderivatives)
and have not been asked to interpret or make sense of the
computation. The absence of appropriate ideas or procedures
within a student’s restricted concept image can contribute to
difficulties solving a given task and may further cause the
student to rely, correctly or incorrectly, upon the mathemati-
cal procedure without deeper physical understanding.
The use of concept image as an analytical perspective has

recently been adopted by physics education researchers
studying students’ mathematical reasoning in the context
of vector integration [8] and differential vector operators
in electromagnetism courses [17], as well as to identify
the specific properties and associations students used (or
neglected to use) when constructing the differential length
element for an unconventional coordinate [18].
In the context of this work, we use concept image to

address the ways in which students think about the differ-
ential volume element and to provide further insight into
understanding of the properties related to d⃗l.

V. RESEARCH DESIGN AND METHODOLOGY

In order to investigate student understanding of asso-
ciated differential elements, a task was developed in which
students were asked to construct expressions for differential
elements of an unconventional spherical coordinate system
that we called “schmerical coordinates” (Fig. 1) [18]. While
schmerical coordinates are left handed, the most noticeable
difference in the system from spherical coordinates is the
placement of the polar angle: while theta ranges from 0 (the
z axis) to π, increasing away from the z axis, the schmerical
coordinates polar angle, alpha, increases towards the z axis
(up), and ranges from −π=2 to π=2 (the z axis), with α ¼ 0
corresponding to the xy plane. This necessitates the use of
cosðαÞ rather than sinðθÞ to describe the projection used to
construct the azimuthal component of a vector. This change
then carries through to the construction of the differential

volume element, but becomes abstracted from its origin as
a projection. The use of an unconventional coordinate
system enabled observation of conceptual exposition in the
construction process and reduced the effect of recall of
memorized quantities as static knowledge. Interviews used
a semistructured protocol with the following series of tasks
and questions:
(1) Does this depict a feasible coordinate system and if it

is valid, what type of situations (kinds of problems)
would it be appropriate for?

(2) Construct a differential length vector d⃗l, for the
system.

(3) Construct a differential volume element for this
coordinate system.

(4) Check that the volume element is correct.
Clinical think-aloud interviews were conducted with

students in a junior-level E&M sequence at two univer-
sities. Four pairs of students (N ¼ 8) were interviewed at
one university (university A) at the end of the first semester
of a two-semester sequence. In order to access a larger
student population, two pairs and a single student (N ¼ 5)
were interviewed at a second university (university B) at the
beginning of the second semester of this same sequence.
Both courses followed a similar structure starting with
electrostatics, used the same textbook [31], and were
predominately lecture based. However, the course at uni-
versity A placed specific instructional emphasis on coor-
dinate systems. Students were selected on a volunteer basis
and represented a mixture of low to high achievers. Pairs
were formed based solely on students’ availability. The use
of pair interviews facilitated authentic discussion between
students where they could arrive at a single answer with
minimal input or influence from the interview. Groups are
identified as AB, CD, etc., with individual students given
pseudonyms associated with the letters (e.g., Adam and
Bart for AB).
Interviews were videotaped and fully transcribed.

Analysis used open coding to identify common actions
and recurring ideas across interview groups with the purpose
of identifying the ways in which students constructed and

FIG. 1. (a) Conventional (physics) spherical coordinates; (b) an unconventional spherical coordinate system given to students,
for which they were to construct differential length and volume elements. The correct elements for each system are in (c) and (d),
respectively.

SCHERMERHORN and THOMPSON PHYS. REV. PHYS. EDUC. RES. 15, 010112 (2019)

010112-4



conceptualized differential volume elements. Categories
were coded by the first author, then refined and recoded
to the agreement of both authors.
Student responses to the first two questions or tasks, in

which students were asked to judge the reasonableness of
the coordinate system and to construct a differential length
vector, are discussed in a companion paper [18]. That
initial analysis categorized these ideas as aspects of
students’ concept images [30]. Concept image aspects
and building actions associated with differential length
construction that emerged from this study are reproduced
in Tables I and II, respectively. Concept image aspects
include component and direction, dimensionality, differ-
ential, and projection. Building actions involved recall of
and transliteration from other coordinate systems, as well
as grouping of specific terms.
The current work addresses student responses to the last

two tasks, in which students were asked to construct a
differential volume element and subsequently check the
correctness of that element. As the differential volume
construction task followed the differential length construc-
tion task, analysis sought to specifically connect student
ideas associated with differential lengths to their construc-
tion of volume elements.

VI. RESULTS AND DISCUSSION

The schmerical coordinates differential volume element
task took place after completion of the differential length

vector construction task for the system. This task involved
asking students to construct a differential volume element
and then to check the correctness of the differential volume
element.

A. Construction of a schmerical differential
volume element

Groups constructed the schmerical differential volume
elements in three distinct ways. Three pairs utilized a
concept image of dτ as the product of length components
and easily multiplied the previously determined compo-
nents. With mixed results, two pairs had previously
attempted to monopolize upon this product understanding
by recalling a spherical differential volume element and
extracting the length components for comparison to their
schmerical dl construction. Not having accessed the
component and direction concept image aspect of the
differential length vector, one group evoked a more
pictorial or geometric concept image of the differential
volume, and the other group attempted to reconstruct the
sides based on coordinate system geometry. The latter
approach is considered distinct because while this group
connected the volume to the product of lengths, they did not
connect the sides of their constructed differential volume
to the need for three components of a differential length
vector. Lastly, the remaining groups could not exploit the
product of length components concept image at all,
typically either expressing a length element in Cartesian

TABLE I. Aspects of students’ concept image of a differential length vector in a non-Cartesian coordinate system [18].

Concept image aspect Associated idea Example (in bold)

Component and
direction

Recognition of multiple components,
each displaced independently

Frank: Yeah, so like there, dl, there are three different dl’s. There
is dl with respect to M, dl with respect to a, α, and dl with
respect to β…

Dimensionality Each term needs units of length Adam:… This doesn’t have any units of length … so, it needs to
have some M term.

Differential Small changes (of displacements) Carol: Right. So you have a change in your M̂ is going to be your
dM, it’s your change in your M.

Projection Use of cosine or sine explicitly
(not rote recall)

Elliot: … but if we’re pointed way up here, then we need to take
the cosine so that we’re, we have the component of r that is
actually in the β plane,…

TABLE II. Actions taken by students during construction of a differential length vector for schmerical coordinates [18].

Construction action Associated idea Example

Grouping Combining elements by like variables or terms Harold: You’ve got rdrr̂ plus, is it sin θdθ or is there an r
in there?

Rote Recall Writing or remembering elements from
Cartesian or spherical coordinate systems

Greg: dτ in spherical is r2 sin θ ¼ … ¼ dθdr ¼ … ¼ dϕ

Transliteration Direct matching of variables from existing
coordinate system

Bart:…so now we have just to compare so we have r it is
M, θ is α ¼ … ¼ ϕ is β.
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components or expressing the differential length as a single
component in the M̂ direction. They determined dτ by
mapping to the more familiar spherical volume element.
These results are summarized in Table III.

1. Volume as a product of differential
length components

When asked to construct a volume element for schmer-
ical coordinates, AB, CD, and EF immediately knew to
take a product of differential length magnitudes.

Interviewer: Okay, so can you make a differential volume
element?
Adam: Sure, just multiply them all together.

Each of these groups had constructed a differential
length vector with three components based on the unit
vectors of the unconventional system [18]. However, due to
errors with differential length construction, the constructed
differential volumes included an incorrect trigonometric
function (Fig. 2), or lacked the trigonometric function
entirely.
While the creation of a differential volume as a product

may seem trivial, during length construction (the second of
four tasks), students having difficulty with direct recall to a

spherical dl
!

struggled to isolate the length components
from the more easily recalled spherical volume. For
example, after recalling the spherical differential volume
expression, Carol explicitly recognized that the differential
volume element is constructed from a product of length
components and that the terms are grouped differently in
the volume element.

Carol: … I was trying to figure out which, I guess, um,
I don’t know, vector direction each come from, um,
because I feel like, right? This is right, right? We just
write it r2 for convenience, right? It comes from
separated out [terms].

Carol and Dan then began to check the units (dimen-
sionality) of terms to check their separation of components.
Similarly, Greg and Harold recall the spherical dτ in an
attempt to recall the spherical length vector.
However, rather than recreating the appropriate length

components, both pairs grouped angular terms based on
variables (Fig. 3), pairing the sin θ with the dθ similar to
how the terms would appear in multivariable integration.
Because this is what the differentials are typically used
for in solving E&M problems, the typical expressions for
differential volume elements (e.g., r2 sin θdrdθdϕ for
spherical coordinates) involve a grouping of terms in a
way that dissociates the variables from their particular
length component. Students’ coupling of the theta terms
and ease of recalling the spherical volume element over
the assembly of the volume element from the differential
length components supports the idea that students do not
have the fundamental understanding of non-Cartesian
systems necessary for interpreting vector calculus
in E&M.
After some time, Carol and Dan were able to correct the

grouping error, when Dan made the explicit connection
to length vector construction in spherical coordinates and
connected the sin θ to a projection into the plane of the
polar angle [18]. Because of transliteration of terms, this
lead to a sin α in their length component that carried over
into their dτ as they multiplied length terms (Fig. 2).
However, for Greg and Harold, the dissociation from

length components was much more complicated, as neither
student attended to the necessary dimensionality [Fig. 3(b)].

TABLE III. List of methods used by students to determine the
differential volume element and groups having used each method.

Method of dτ
construction Student pairs using this method

Product of length
components

Adam and Bart, Carol and Dan,
Elliot and Frank, Greg and Harold

Labeling sides of
differential volume

Rachel and Silas

Comparison to spherical
volume element

Correct mapping: Rachel and Silas
Direct transliteration: Greg and
Harold, Perry and Quinn, Tyler

FIG. 2. Final differential volume constructed by Carol and Dan
including incorrect trigonometric function.

FIG. 3. (a) Incorrectly distributed length terms in a spherical
differential volume written by Carol and Dan. (b) Unsuccessful
attempt to reconstruct differential spherical length element by
Greg and Harold.
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Harold: You’ve got rdrr̂ plus, is it sin θdθ or is there an
r in there?
Greg: I think there is an r there. It’s an r because you
want, you want at that radius uh, plus a small angle.

Harold seemed to have a concept image in which the
grouping of terms based on like variables dwarfs the
grouping based on correct ideas for each length component.
If he had only been concerned with the grouping of
variables, all the r terms in the differential length compo-
nent would have been grouped with r̂. As they decomposed
the volume element, they ran out of components to be able
to express the remaining ϕ component. The pair then
abandoned this method of construction and began to
express the differential length in terms of Cartesian unit
vectors [18]. This goes further to show how a lack of
reasoning about dimensionality can hamper problem solv-
ing in E&M.

2. Volume as product of sides of a differential cube

Rachel and Silas entered the volume construction phase
of the task after first constructing a differential length
vector as a single component accounting only for change
in the radial direction. Without the three components,
which pairs AB, CD, and EF relied upon, Rachel and
Silas started their volume construction attempt by drawing
a small volume at the end of M⃗ [Fig. 4(a)]. This con-
struction elicited a discussion of arc length to account for
the sides of the volume element, but did not cause the
students to reflect upon the single-component differential
length vector constructed in the earlier phase of the task.

Rachel: That is like the differential volume element right
here, with dM as the thickness. So if alpha changes you
have this arc length.

This shows that students’ difficulties with length con-
struction may not have been due to lacking the prerequisite
ideas, but to having a restricted concept image of the
differential length vector as a whole. Given that the
majority of problem solving in the electrostatics portion
of E&M involves calculating a change in potential over a

radial field, the predominance of such problems early in
E&M may restrict students’ concept image to only needing
to account for the radial component of the differential.
Yet the ideas of dimensionality and arc length—ideas

that other groups correctly attributed to the length
component—were elicited from Rachel and Silas once
they were able to build the differential volume geometri-
cally. As RS continued in their construction, they correctly
represented Mdα as the side resulting from a small change
in alpha, but placed Mdβ where dM had previously been
on their diagram. As a result, dM took on the role of the
“thickness” into and out of the page rather than in the radial
direction, as previously depicted [Fig. 4(b)]. This highlights
a difficulty of visualizing the geometric directions of the
schmerical unit vectors. This difficulty could be connected
to a student difficulty reasoning about three-dimensional
objects within a two-dimensional space, something sparsely
studied in mathematics education research [32,33]. At the
end of this differential volume construction, Rachel and Silas
were unsatisfied with their differential volume lacking a
trigonometric function, and began to build a volume by
making a comparison of variables (mapping) to spherical
coordinates.

3. Volume as mapping from spherical coordinates

Students who had difficulty with length construction,
either constructing a differential length vector with one
component (RS, T) or without scaling factors (RS), or who
represented the differential length vector in terms of
Cartesian symmetry (GH, PQ), could not draw on the
same product of terms of the first three groups.
Rather than finding a solution pattern to determine the

volume element in schmerical coordinates, students
recalled the spherical volume element and then mapped
the schmerical variables to the spherical terms. This
problem-solving approach is consistent with the translit-
eration to mathematics epistemic game [34]: students
identified the task target quantity, found a related solution
pattern, mapped new quantities into the related solution,
and ended by evaluating the mapping.
After attempting to construct a physical volume and

expressing a need to include trigonometric function in their
schmerical differential volume, RS began to match varia-
bles to the spherical coordinate system (Fig. 5). Here they
appropriately accounted for the relationship between theta
and alpha, as α ¼ −θ þ π=2. The pair then connected the
differentials and rewrote the spherical volume in terms
of the associated schmerical variables. They recognized
mathematically that the π=2 shift of alpha from the original
theta turns the sin θ to cos α, but they did not connect the
change or original trigonometric function to the physical
justification of projection.

Rachel: Well okay, so if we have it down in this plane
then wait, set alpha equal to 0 right? So it’s down in

FIG. 4. Physical construction of a differential volume element
by Rachel and Silas. (a) Beginning of volume construction using
the single length component. (b) Final differential volume, where
location of dM has changed. Students do not connect the sides of
the volume to length components.
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[the xy] plane. I can convince myself that this is cosine.
No, no, that’s beta. Hold on. I don’t even know.
Silas: Well I know that is right. I know that much.
Rachel: Yeah, … I just don’t know why it is right.

Here Rachel and Silas are able to arrive at the correct
expression for the differential volume element by a change
in variable but do not recognize that the trigonometric
function scales the specific arc length of the β component.
Without being able to physically justify the cosine, their
epistemological stance is to trust the mathematics [35]. This
lack of understanding of the reason behind the projection
is pervasive across all groups, especially during length
construction [18].
After arriving at a correct volume element, RS returned

to their differential length vector, but again, due to the lack
of a trigonometric function in the drawn volume element,
they did not connect the length and volume differential
expressions. Rachel and Silas then augmented their length
vector to include a dα and dβ, in their respective directions,
but failed to recognize the need for arc length discussed
previously during the construction of the volume [18].
Additionally they did seek to reconcile the differences
between the differential elements as the previous groups did
during the checking phase of the task.
Individual subject Tyler and group PQ also attempted

to map onto a spherical differential element but did so
unsuccessfully, connecting the physics variation of the
differential element with the mathematical conventions for
the spherical coordinate system (θ as polar angle, ϕ as
azimuthal). Compounded with the missing idea of projec-
tion in the polar length component, this resulted in differ-
ential volume elements that include a sin β instead of a
cos α (Fig. 6).
Having had particular trouble with construction of a

differential length vector, Greg and Harold quickly con-
structed their new dτ from a direct mapping of the
previously recalled spherical differential element. Greg
initially accounted for the different placement of alpha
by writing (π=2α) as the argument of the sine function,

but then decided a direct replacement of the variable would
be sufficient.

Greg: Actually, if you just said sin α I think it would
work. You would just have to know that it points in a
different direction.

At this point they returned to the differential length
element upon request of the interviewer and eventually
reconstructed a correct differential length element based on
the process in the course text [31]. When asked if they were
still satisfied with their differential volume element, they
had difficulty recognizing the need to reconcile the cosine
in their length vector with the sine in their volume element.

Harold: I still like our volume element=
Greg: Yeah, I think so.
Harold: = I don’t know about you, this one over here,
I still think that.
Greg: They’re the same, yeah.
Interviewer: Okay, and can you check that that volume
element is correct?
Greg: Isn’t that kind of the same question?
Harold: Oh, you want us to actually do this integral out.
Greg: Oh. No, but see in down here we’ve gone with the
cos α.
Harold: Oh, we’ve gone cosine, oh yeah.
Greg: And so we might want cosine. Yeah, I think we do.
Oh wait, let’s see. Oh not, that’s, alright. Yeah, we do
want these. We want these to agree so they need to be,
this needs to be a cosine [in the volume element].

Despite GH’s attempt to deconstruct the volume element
as a product of terms, their hesitancy to connect the length
and volume terms, coupled with the difficulty deconstruct-
ing the volume element due to misuse of the grouping of
terms and inattention to dimensionality, show that Greg and
Harold did not have a strong understanding of the structure
of these differential elements.

B. Checking of the schmerical differential volume

The last phase of the task involved the checking of the
differential volume element. This most often involved
integration to obtain the expression for the volume of a
sphere of constant radius, but in some cases additionally

FIG. 5. Rachel and Silas directly compare coordinate systems
and account for changes in variable placement as they construct a
volume element.

FIG. 6. Tyler’s determination of a schmerical differential
volume by comparison to spherical. Tyler unknowingly uses
mathematics conventions for spherical coordinates.
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involved a dimensional analysis. Students were asked to
check their differential volume element if they used terms
associated with their (incorrect) differential length vector or
mapped incorrectly from spherical coordinates and thus
had an incorrect term within their differential volume.
Students who mapped correctly were not asked to check
their differential volume, as the connection between their
differential volume and length elements was weaker and a
correct differential volume would not likely lead towards
reconciliation between the terms.
For students with differential length elements in which

only the trigonometric function was missing or incorrect,
the checking of the differential volume elements led to the
eventual correction of the differential length vector and
solidification of the connection between the trigonometric
function and the projection aspect. Groups using recall and
transliteration to construct the differential volume element
were still not able to recognize the need to invoke projection:
the use of cosine remained a mathematical transformation
rather than acquiring a geometric justification.

1. Checking of volumes constructed
by a product understanding

Upon checking their differential volume elements, both
AB and CD easily recognized that integration of their
differential volume would give the expression for the
volume of a sphere of radius M, but due to their incorrect
trigonometric function, integration over the bounds of α
yielded a volume of 0 for both groups. This alerted the
groups to an error in their length components, which they
(quickly) traced to the sin α term. Adam immediately
recognized the mistaken projection that resulted from
directly substituting α for θ during their mapping. He
articulated that the change in the placement of the angle
meant a cos α was needed to get the appropriate length
component. Carol and Dan were able to recognize that sinα
was the cause of their unexpected result, but did not
immediately connect this to the idea of projection.

Carol: 0, which means our volume is wrong. Which
means, should this be cosine? No, we need…
Dan: I mean, well our trig might be wrong but we also
could be running into the problem that we were
incorrect about. Oh… when you assumed sin α, you
assumed you were basing it off sin θ where θ was on a
different part of the graph.

Carol first suggested cosine as a way to make the
mathematics work. It is not until after a couple of incomplete
exchanges that Dan connected the mathematical implications
of change in trigonometry to the physical difference in the
geometry of schmerical coordinates. The construction and
checking of the volume component cued projection, the
absence of which had previously led to a shift to recall
during length construction.

When asked to check the volume element, Frank
reasoned using dimensionality, saying that integration of
theM terms would give units of length cubed and therefore
it did not matter what the remaining integrals gave as a
result. Unconvinced, Elliot suggested integration of the full
differential volume element M2dMdβdα. As their expres-
sion contained no trigonometric function, their integration
yielded a result with π2 in their answer (Fig. 7).

Frank: π2, so …
Elliot: We needed that sine in there.
Frank: We need a sine or a cosine so we can get rid of
a π.
Elliot: But I don’t know where it comes from… [audible
gasp] Oh, I remember where it comes from… like if r is
pointing way up here, then we need to get the component
that’s in the flat plane and then that is times dβ.

The pair recognized they need a trigonometric function
to get the appropriate mathematical result, but as with their
difficulty during length construction, they could not figure
out the particular reason for the inclusion of the term.
Shortly after this discussion, Elliot recognized the need for
a cosine function to account for the necessary projection
and the group corrected their length vector. Just as with CD,
EF recognized the mathematical need for cosine but was
not immediately able to connect it to the radius term in the β̂
component.

2. Checking of volumes constructed
by recall and transliteration

As the pair GH checked their differential volume
element, Greg became unsure about the reason for the
cosine term, despite earlier work during their second
attempt at length construction.

Greg: Why did we change it to cosine?
Harold: I’m sorry?
Greg: Actually wait, no, because the negative sign, the
negative sinðπ=2Þ is one.
This further suggests that projection is not strongly tied

to this pair’s understanding of the differential elements
here. It was upon seeing that the computation resulted in the
expected answer that Greg regained comfort with the use of
the cosine function.

FIG. 7. Elliot and Frank check their incorrect differential
volume element by integrating.
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The result of Tyler’s checking of the volume element,
dτ ¼ M2 sin βdMdβdα, via integration yielded 0, but he
was unable to connect this to the discipline-specific
variable label conventions or to the projection. At this
time the interviewer conveyed the physics convention for
the spherical coordinate system and Tyler changed the sin β
to sin α. A second attempt at integration still yielded 0,
which Tyler connected to the difference in how θ and α are
defined. However, Tyler still did not connect this to his
differential length element or recognize the need for the
length vector to have three components. Tyler further drew
upon graphical representations of sine and cosine functions
to illustrate the change in the angle as a mathematical shift.
The rote-computational reasoning resulting in the change
in the trigonometric expression substituted for a connection
to the projection, as it did for Rachel and Silas.
Notably, this use of mathematical formalism rather than

geometric reasoning presents even in the interviews in
which students treated the differential as a product of
lengths: groups CD and EF first see the shift as math-
ematical transformation before identifying the geometric
motivation. Students here engaged with the “doing” of
mathematics first and sense-making second. Furthermore,
geometric reasoning was not easily accessed, even though
the task involved quantities directly related to coordinate
system geometry.

VII. CONCLUSIONS

The construction of and ability to reason about non-
Cartesian differential length and volume elements are keys
to many of the concepts in E&M that make use of vector
calculus. This work shows that students do not necessarily
have a strong understanding of the geometrical aspects of
three-dimensional polar coordinate systems that are impor-
tant to the invocation or construction of these differential
elements in physics contexts in particular.
Our results suggest that students struggle to think

critically about the aspects that go into the construction
of differential elements, but that some are able to check
the validity of their expressions and make appropriate
adjustments when prompted. Following construction of a
differential length vector in an unconventional spherical
coordinate system, students used one of three approaches to
construct a differential volume element: multiplication of
length components, determination of the sides of a differ-
ential cube, or recall and transliteration from a spherical
differential volume element. The group initially using the
second approach did not include a trigonometric term and
subsequently switched to recall and transliteration after
not being able to determine the justification for inclusion of
the term. In general, recall and transliteration was used in
groups that had greater difficulty with construction of the
differential lengths. These groups either had difficulty
recognizing the need to account for multiple components,
suggesting that the task did not evoke the component and

direction aspect of the differential vector concept image,
or instead constructed a differential length vector with
Cartesian unit vectors. Additionally, these groups did not
try to connect the expressions for the differential length
vector and differential volume element.
Furthermore, the construction and checking aspects of

these tasks provide stark contrast between those groups
who could connect the necessary geometric ideas to the
differential volume and those who could not. The checking
process only cued projection to students who were already
performing stronger on the task and had accessed arc length
or projection during length construction [18], while others
only saw the use of cosine as the result of a variable change
from θ to α into the sine term in the spherical differential
volume. Thus some students have an incomplete under-
standing of the coordinate systems due to misapplication of
particular ideas, while for other students the prerequisite
ideas are sometimes present but not accessed or activated in
this particular context.
Regardless of variations in students’ geometric reason-

ing ability, the differential volume element appeared more
accessible to students than the differential length vector,
but the disconnect between the differential elements for
students made it difficult for students to construct or
correct their length elements accordingly. Two groups
in particular attempted to use the spherical differential
volume element to make sense of their schmerical length
vector after failing to directly recall a spherical length
vector. Students’ difficulty reconstructing a spherical
differential length from these terms, as well as an over-
arching difficulty recognizing the need for a trigonometric
projection, further supports earlier work reporting student
difficulty accessing necessary aspects for the construction
of a differential length vector [18].
Lastly, overreliance on spherical coordinates and

attempts to map trigonometric functions directly are find-
ings reminiscent of x,y syndrome [36], in which a particular
process is remembered in terms of symbols rather than how
it comes about. The symbols and trigonometric functions
of the differential volume element are remembered in the
way they are first taught and lose particular meaning over
continued use. This is consistent with the formation of a
restricted concept image [30]: prolonged use of a particular
idea in a formulaic context or limited range of situations
can obscure underlying understanding. Thus when students
meet a broader context, they struggle with the application
of fundamental ideas. Bollen and colleagues similarly
report that students are able to perform calculations with
differential vector operators but struggle to interpret the
conceptual meaning [17]. Our students’ mostly computa-
tional use of spherical volume and area elements earlier in
the semester appears to obscure any underlying under-
standing of how these elements are constructed. Thus when
students work within an unconventional system, they
struggle to access or apply appropriate concepts.
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The accessibility of the differential volume elements
coupled with students’ failure to connect mathematical
aspects to geometric aspects imply that in order to improve
instruction of non-Cartesian differential elements in E&M,
more focus should be given to how length, area, and
volume elements are constructed and determined when
problem solving, with explicit emphasis on building the
requisite ideas by connecting them to geometric aspects and
motions within the space of the coordinate systems. In
order to address these concerns, results of this study have
been used to develop preliminary instructional resources in
the style of Tutorials in Introductory Physics [37] to be
used at the beginning of E&M or in a mathematical
methods for physics course. These activities structure
students’ construction of a differential length element in
schmerical coordinates in order to engage them with the
act of element construction within a non-Cartesian system,
and additionally use 3D physical manipulatives to allow
students to construct the elements within a physical space
in order to elicit geometric reasoning. Based on the

pedagogical value of the differential volume construction
and checking tasks in helping students recognize issues
with the differential length expressions in the interviews,
these tasks are included in the materials. Preliminary results
of the implementation are promising: the materials seem to
generate discussions similar to those in the interviews but
allow students to harness an understanding of the physical
space, to realize the geometric features of the differential
length elements, and to connect those features to properties
of the differential volume element. Ongoing testing and
development are occurring, and we hope to report on the
effectiveness of these materials in the future.
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