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For proper assessment selection understanding the statistical similarities amongst assessments that
measure the same, or very similar, topics is imperative. This study seeks to extend the comparative analysis
between the brief electricity and magnetism assessment (BEMA) and the conceptual survey of electricity
and magnetism (CSEM) presented by Pollock. This is accomplished by using large samples
(Npema = 5368 and Ncgey = 9905) within classical test theory (CTT) and item response theory
(IRT) frameworks. For the IRT comparison, after consideration of the conceptual content addressed in
each assessment, it was assumed that each of these assessments are measuring the same student latent
ability (0), specifically a student’s ability to do introductory electricity and magnetism. Via a CTT and IRT
analysis it was found that both assessments are essentially equal in overall difficulty. Classical item analysis
applied to 7 questions used by both assessments revealed that each assessment functions slightly differently
internally. The test information curves found from IRT show that the CSEM has superior information
compared to the BEMA in estimating student latent abilities for the entire range of typical latent abilities
achieved by students on each assessment, 6 ~ —2 to 6 ~ 3. Information in this case is interpreted as how
well a student’s latent ability was estimated by an assessment as a function of latent ability. When the
circuits questions are removed from the BEMA the majority of the information is lost in the § ~ 0 to 0 = 2
range. This means the circuits questions on the BEMA are information heavy for higher ability scores. So,
special considerations should be made as to which assessment a study uses depending on the specific

questions a researcher is attempting to answer.
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I. INTRODUCTION

For proper assessment selection understanding the stat-
istical similarities among assessments that measure the
same, or very similar, topics is imperative, since one
instruments may be more suited to answering a specific
research question over another. For example, numerous
studies have been conducted to investigate the understand-
ing of students introductory electricity and magnetism; see
Refs. [1-3]. Currently, two of the most commonly used
instruments for this subject are the conceptual survey of
electricity and magnetism (CSEM) and the brief electricity
and magnetism assessment (BEMA) [1,2]. Besides the
validation statistics (like item difficulty, item discrimina-
tion, Cronbach’s alpha, etc.) presented in Refs. [1,2] the
authors have found no further investigations into the
statistical structure of these assessments, with the exception
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of Ref. [4]. This study seeks to present a large sample
(Npema = 5368 and Ncgpy = 9905) classical test theory
(CTT) and item response theory (IRT) comparative analysis
of these assessments.

In 2008, Pollock did a classical test theory comparison of
the BEMA and CSEM with relatively small samples
(N < 200) [5]. It was found that the BEMA was slightly
more difficult than the CSEM with about a 5% difference in
mean scores. Ultimately, it was concluded that both assess-
ments were approximately equally useful for measuring the
understanding of students within introductory electricity
and magnetism courses. This study aims to corroborate the
results of Pollock and to extend them by utilizing IRT. To
achieve these goals this study seeks to answer the following
four research questions:

RQ I: How do the students’ total scores on the BEMA
and CSEM compare to one another?

RQ 2: How do nearly identical items on the BEMA and
CSEM compare in their behavior from a classical item
analysis perspective?

RQ 3: How do the latent ability scales from item
response theory on the BEMA and CSEM compare for
these samples and what is the linear translation between
them, assuming one exists?
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RQ 4: How do the assessments compare in their ability to
estimate student latent abilities from item response theory
as revealed by the test information curves?

Pollock found that both assessments have similar aver-
age total score percentages, as presented in Ref. [5]. This
study offers support for these results by performing the
same analysis using a much larger data set. To our
knowledge, the other three research questions have never
been addressed in the literature, and this study seeks to
expand the current body of knowledge within this domain.

Before the results of the analysis are presented and the
research questions answered, the conceptual content of
both assessments will be discussed, as well as other
limitations of this study in Sec. II. Next, the statistical
methods used in this study will be detailed in Sec. III, and
then the results of the analysis paired with discussion are
presented in Sec. IV. Lastly, the conclusions and implica-
tions of this study are presented in Sec. V.

II. CONTENT SIMILARITY CONCERNS AND
OTHER LIMITATIONS

Before the statistical comparative analysis can be per-
formed, the conceptual content of each assessment should
be compared. The BEMA contains conceptual questions
pertaining to Coulomb’s law, electric fields, electric poten-
tials, electric potential energy, magnetic fields, circuits, and
induction. This is similar for the CSEM with the exception
of circuits. Since the BEMA has questions about circuits
(questions 8, 9, 10, 11, 12, 13, and 17) that the CSEM does
not, a researcher may question whether these assessments
are measuring student understanding of the same content.

The topics discussed in a typical introductory electricity
and magnetism course are the same ones contained in the
BEMA. The BEMA can then be assumed to be measuring a
more complete student understanding of their introductory
electricity and magnetism course. The CSEM, since it is
missing circuits, is only measuring a subset of the under-
standing that the BEMA measures. In a traditional intro-
ductory electricity and magnetism textbook the topic of
circuits makes up roughly 1 to 2 chapters out of approx-
imately 15 chapters [6]. From this it can be inferred that
circuits in a typical introductory electricity and magnetism
course makes up between 6.67% and 13.33% of the course.
If we say that the BEMA measures 100% of a student’s
conceptual understanding from introductory courses, then
the CSEM could be said to measure at minimum 86.67% of
the same course. Thus, the lack of circuits on the CSEM is
not an overwhelming loss of course content. As a result this
study will assume that the effect of the CSEM not having
circuits will be minimal on the statistical interpretation of
the instruments and that both assessments are attempting to
measure the same understanding of the students, otherwise
known as student proficiency. Specifically, the ability of
students to conceptually answer questions about electricity
and magnetism from a second semester introductory

physics course taken in the first or second year of a
postsecondary educational institute. Thus for IRT, both
assessments will be assumed to measure the same, or a
similar latent ability and that a unidimensional model can
be assumed for each assessment.

To supply evidence that the CSEM’s lack of circuits does
not affect the statistical interpretations for this study a
reduced BEMA [BEMA(R)], one without the circuits
questions, was created from the full BEMA. Using the
full BEMA data from Physport, the BEMA(R) was created
by removing the circuits questions and recalculating the
total score for the students. This assumes that the corre-
lations between the circuits questions and the rest of the
assessment is small and does not significantly affect the
statistical conclusions made by this study. Since some of
the statistics calculated and discussed in this study required
the use of the total score students earned on the assessments
(like classical item discrimination, item point biserial, and
Cronbach’s alpha), the BEMA(R)’s results were calculated
and compared to the CSEM’s when needed. This allows
for a comparison of the assessments with and without the
circuits questions’ influence. Future studies using explor-
atory factor analysis or confirmatory factor analysis and
multitrait item response theory are intended to test how
interrelated the circuits questions on the BEMA are with the
other questions on the assessment.

There are other limitations to this study that should be
mentioned for the results to be interpreted in the correct
frame of mind. First, the samples used for the BEMA and
CSEM are assumed to be independent from each other, but
are sampled from the same population; this population
being second semester algebra or calculus-based introduc-
tory physics students attending all types of postsecondary
educational institutes from across the United States. Since
the sample that took the BEMA is not identical to the one
that took the CSEM, any differences found between the
assessments in the CTT analysis will be a combination of
sample differences and assessment differences. This is due
to CTT’s direct dependence on the sample being analyzed.
Without having the same sample take both assessments,
assuming one administration does not affect the other,
identifying how much of the difference in the BEMA
and CSEM is due to sample differences or assessment
differences is not possible. This issue is smaller for the
results of IRT since item parameters are assumed to be a
product of the questions themselves and not of the sample. It
is true that the scale the assessments are put on in IRT is a
product of the sample being analyzed at the time. However,
scale linking procedures can be used to put different samples
for the same assessment onto the same scale, where they can
then be compared. A similar linking of scale can be done for
two assessments that are not identical, but do share some
common items, which is the case for the BEMA and CSEM.
This ability to link scales reduces the impact of having
different samples for the two different assessments, and thus
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makes any conclusions about similarities and differences
more applicable to the assessments and less about the
samples.

Lastly, recall that the data used in this study were a
mixture of algebra and calculus-based classes, as well as a
mixture of teaching styles. The results of this study may be
affected due to the heterogeneity of the data used. A more
homogeneous data set, say one that comes from a calculus-
based flipped-classroom course only, may have different
results from those presented in this study. Because of the
novelty of the content discussed in electricity and magnet-
ism for students learning it for the first time, it is assumed
that the results of this study will change very little between
algebra and calculus-based classes, as well as across
different teaching styles. However, studies to look into
these possible differences are encouraged by the authors.

1. METHODOLOGY

The methodology section will begin with a discussion of
how the data were obtained. Following that is an explan-
ation of all the statistical tools used for this study. If the
reader has a strong understanding of classical test theory
and/or item response theory they are encouraged to begin at
Sec. IV. It should be made clear that the CTT analysis done
in this study is motivated by the one done in Ref. [5]. This
will help supply evidence for or against the conclusions
made in that analysis. The IRT analysis was done to supply
more evidence for any conclusions derived from a CTT
analysis.

A. Data

The data used in this study were received from Physport
and contained both pre- and postinstruction student
responses to the BEMA and CSEM [7]. All of the analyses
within this study were done on postinstruction student
responses due to the pretest results giving Cronbach’s alpha
values of 0.60 (£0.01) for the BEMA and 0.68 (£0.01)
for the CSEM. These values for Cronbach’s alpha, as is
explained in Sec. III B, indicate that these assessments do
not reliably (i.e., precisely) give students a total score for
preinstruction data. As such, any statements made about the
pretest data will be accompanied with a large amount of
error. To avoid this, the pretest data will not be analyzed for
this comparative study.

Originally the postinstruction BEMA and CSEM data
sets contained 5918 and 10410 student responses, respec-
tively. For each of these data sets any students whose
responses contained a blank entry were removed from the
data set. This left the BEMA data set with 5368 student
responses (a loss of 9.23%) and the CSEM set with 9905
student responses (a loss of 4.85%).

When grading the BEMA for the CTT calculation some
questions require careful consideration; solutions for the
BEMA and CSEM can be requested from Physport.org.

For example, questions 28 and 29 on the BEMA are graded
together as a single question. In order for a student to get
this paired question correct they must answer both individ-
ual questions correctly. So that the assessments could be
compared in a fair manner when performing the CTT
analysis, the grading scheme for the BEMA was adopted
for any shared items when grading the CSEM. For example,
questions 1, 2, and 3 on the BEMA are identical to 3,4, and 5
on the CSEM. So, these questions were graded using the
criteria demanded by the BEMA’s grading rubric and not
the CSEM’s. This grading of both assessments is in line with
the way the assessments were graded in Ref. [5].

Grading the BEMA in the manner indicated by its
creators introduces linked questions in the grading scheme,
which is something not allowed in the assumptions of
IRT. This grading criteria causes the probability of answer-
ing one of the linked questions correctly to depend on how
a student responded to another linked question(s). This
nonindependence of items on the BEMA breaks one of
the assumptions of IRT discussed in Sec. III. Thus, when
using IRT, the questions were graded as strictly correct or
incorrect (coded as 1 or 0, respectively) to avoid depend-
encies between items on the BEMA. This preserves the
independence of item assumption that is needed to perform
IRT on the data.

So, when CTT was performed the data were graded
following the BEMA’s grading criteria. When IRT was
performed the BEMA’s grading criteria were abandoned
and questions were graded strictly as right or wrong.
Correct answers in either grading criteria were coded as
a 1 and incorrect responses were coded as a 0. Further, for
IRT a tetrachoric correlation was used since the data was
graded dichotomously.

B. Classical test theory

Classical test theory is a psychometric theory that
assumes the observed score a student earns on an assess-
ment is a combination of their true score and error from
the assessment: S, = Syue + €. CTT is concerned with
the relationship between these three variables and how they
relate to test reliability. However, this kind of analysis
offers no insight on how the items (the questions on an
assessment) are functioning individually. Classical item
analysis is concerned with a number of item specific
statistics such as classical item difficulty, classical item
discrimination, and the item point biserial, all of which are
explained in detail in the following subsections.

To statistically compare some of these statistics, specifi-
cally the classical item difficulty and discrimination, the
spread of the statistic needs to be calculated. Since these
two item statistics are found through counting student
responses of the entire data set, they do not come with
any associated errors or measures of variance. To find a
standard deviation for the statistics, bootstrapping methods
were used. Generating 10 000 uniformly sampled classes
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TABLE 1. Test statistics for the BEMA and CSEM post-test
samples. BEMA(R) is the BEMA with the circuits questions
removed from consideration, and a stands for Cronbach’s alpha
reliability statistic.

Test No. students Mean St. Dev. Skew Kurt. a

BEMA 5368 0.487 0.184 0.071 —-0.686 0.818
BEMA(R) 5368 0.500 0.199 0.005 —0.787 0.800
CSEM 9905 0.446 0.185 0.453 —0.422 0.825

of 250 students from the ranked data for each assessment,
all of the item level statistics’ standard deviations were able
to be determined. The distribution of these statistics was
normal, so a Cohen’s d could be used to calculate the effect
size between measures. Cohen’s d is a measure of effect
size that is equal to the difference in the measurement
means divided by a pooled standard deviation. Specific
information on how this statistic is calculated can be found
in Ref. [8].

1. Overall test statistics

To look at the overall performance of each of the
assessments the mean, standard deviation, skew, and kur-
tosis were calculated. The test statistics for the BEMA,
BEMA(R), and CSEM can be found in Table I. To support
the assumption that the students’ total scores could be well
represented by a normal univariate distribution, the skew and
kurtosis should take values between —2 and 2 [9]. Since the
values of the assessments’ skew and kurtosis are well within
the recommended values, this study will assume that the data
come from a normal univariate distribution, which agrees
with what is seen visually in the histograms in Fig. 1.
Although the CSEM does have a relatively large skew, it
does fall into the recommended range of skew values for a
normal distribution.

of the assessment. Statistics that measure the reliability
can be thought of as measuring the consistency that an
assessment has for giving a student a particular score.
Meaning, if a student could take a test multiple times
while retaining no memory of their previous attempts,
then an assessment with perfect reliability will give that
student exactly the same score for every attempt the
student makes. This study used the commonly calculated
Cronbach’s alpha to measure the internal reliability of
the assessment; there are numerous other statistics that
measure the internal reliability, such as the KR20 or
KR21 [10]. Internal reliability is a measure of how well
the test performed in one administration and not neces-
sarily for test or retest administrations.

To calculate the Cronbach’s alpha the following expres-

sion was used:
(1-=37)

where K is the total number of items on the assessment, 67
is the variance of the students’ performance on item i, and
0% is the variance of the students’ total scores. Acceptable
values for Cronbach’s alpha range from 0.7 to greater than
0.9, however a value less than 0.8 may indicate that the
assessment is suitable for group measurements but not for
individual students [11].

K 2
i=10Y,

o%

K
K-1

a =

2. Classical item difficulty

Item difficulty (called classical difficulty so as not to be
confused with IRT item difficulty) measures the proportion
of students who answered the item being considered in a
correct manner. To calculate the classical item difficulty the
following equation was used:

Another important overall test statistic for verifying p. — &
that an assessment is operating properly is the reliability " N’
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FIG. 1. Histograms of the fraction of the total number of students for all possible total scores. For the BEMA there were no scores

below 3 and for the CSEM there were no scores below 2. The vertical red line indicates the sample mean and blue is for the median.
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where P; is the classical difficulty for item i, N; is the
number of students who got item i correct, and N is the total
number of students who attempted the item.

This statistic is traditionally presented as a decimal value
that ranges from O to 1. A classical difficulty of O indicates
that none of the students who attempted the item answered
in the correct manner, and 1 means that all of the students
who attempted the item got the item correct. Items are said
to be “very difficult” if their difficulties are below 0.35, and
ones with values above 0.85 are referred to as “very easy”
[11]. Since a value closer to 1 indicates an item which is
more frequently answered correctly, this statistic could be
thought of as the “easiness index,” however the current
nomenclature will be upheld. It has been suggested that
“ideal” classical difficulties should be between 0.40 and
0.60, or 0.20 and 0.80 [11]. This study used cutoff values
of 0.20 and 0.80 to identify acceptable classical item
difficulties.

3. Classical item discrimination

Item discrimination (called classical discrimination so as
to not be confused with IRT item discrimination), otherwise
known as the validity index or item power index, is a
comparative index between how the “high” students did on
an item versus “low” students [I11]. This is done by
calculating the classical difficulty using only the upper p
percentile students and the lower p percentile students for
an item. Then the difference in classical difficulties is taken
for the upper and lower p percentile students:

D;(p%) = Pi(upper p%) — P;(lower p%),

where D;(p%) is the classical item discrimination for item i
using the upper and lower p% of the students based on their
total scores on the assessment, P;(upper p%) is the item
difficulty for the students in the (100 — p)th percentile and
above, and similarly for P;(lower p%). This study used
p =27, so the high students were in the 73rd-100th
percentile and the low students were from the Oth to the
27th percentile. The p has been seen in the literature to take
on a few different values: p = 50 in Ref. [11], and p = 25
in Ref. [12]. This study used 27% since it appears to
maximize the differences between the high and low
students [13]. The bar plots for both exams’ item discrim-
inations can be found in Fig. 2.

Classical discrimination can take values from —1 to 1.
Negative values indicated that the low scoring students did
better on the item than the high scoring students, which
should not be the case. This is generally an indication that
there is a negative statement in the problem statement not
reflected in the response options, or that the key is not
identifying the correct response for the solution. There are
no maximum cutoff values for this statistic, but there have
been suggested minimum cutoffs at 0.2, 0.3, or 0.4 [11].
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FIG. 2. The error bars are 2 standard deviations from 10 000
randomly sampled classes of 250 students from the full sample
for the BEMA. The horizontal red lines indicate an ideal range of
difficulties for well-functioning questions. The colored bars are
the 7 identical items between the BEMA and CSEM.

This study used a minimum cutoff of 0.3, the mean of the
suggested cutoff values.

4. Item point biserial

The item point biserial is the correlation between the
responses given by the students on a given item (1’s and
0’s) and the total scores achieved by the students. The point
biserial can be calculated for each item using

where X, ; and X, ; are the test averages for the students
who got item i correct and incorrect, respectively, oy is the
standard deviation of all of the total scores for the assess-
ment, and N ; and N, ; are the numbers of students who got
item i correct and incorrect, respectively.

Because this statistic is a correlation, it is restricted to
values between —1 and 1. However, one would expect
that the better a student does on the assessment the greater
the likelihood that they will have answered any given
question correct. As a result any items with negative point
biserial should be put under scrutiny, similar to the classical
discrimination. The generally accepted values for this
statistic are above 0.2 [14].

C. Item response theory

Item response theory (IRT) is a model based theory that
attempts to model the probability that a student of a certain
latent ability will get an item correct given the parameters
of the item. Developed beginning in the 1950s, IRT is built
on three fundamental assumptions:
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FIG. 3. The error bars are &2 standard deviations from 10 000
randomly sampled classes of 250 students from the full sample
for the CSEM. The horizontal red lines indicate the range of ideal
difficulties for well-functioning questions. The colored bars are
the 7 identical items between the BEMA and CSEM.

(1) There exists a single latent ability, 8, of a student for
the subject being tested by an assessment.

(2) Items on an assessment are locally independent,
meaning that the probability of answering item i
and j both correctly can be given as P(i & j) =
P(i)P(j), where P is a probability.

(3) The probability for a correct response from a student
on an item can be estimated using the item response
function and the student’s latent ability score.

There is a multitrait extension IRT called multitrait item
response theory (MIRT) that changes the first assumption
to multiple traits, rather than only using one. The dis-
tinction of IRT as unidimensional as opposed to MIRT
being multi-dimensional is common throughout IRT and
MIRT literature.

To verify the unidimensionality of an assessment the
correlations amongst the items need to be analyzed. If it is
found upon an eigenvector reduction of the item correlation
matrix that one eigenvector is dominant (i.e., has an
eigenvalue an order of magnitude larger than the next
largest one) then the unidimensional assumption can be
used [15]. One method to check unidimensionality is to
examine the Scree plots for both assessments, see Fig. 3.
This method is preferred over other methods due to its
simplicity. A Scree plot displays the eigenvalues associated
with the eigenvectors in decreasing order. Since these are
the eigenvalues of a correlation matrix, they describe how
much of the assessment’s variance is explained by each of
the factors independently. From the Scree plots it can be
seen that both assessments have a single dominant factor
and as a result can be treated as being unidimensional. As
explained in Ref. [16], if the unidimensional assumption
holds then local item independence also holds as a result.
Further, it should be noted that the way in which the
BEMA, and, consequently, the CSEM, is graded appears to

remove any conflicts with the item
assumption of item response theory.

To support the unidimensional assumption of the assess-
ments analyzed in this study the goodness-of-fit indexes
were calculated for the unidimensional models found using
a 2-parameter logistic (2PL) model (discussed in detail
below). The fit statistics used to support the fit of the
unidimensional models will be the comparative fit index
(CFI), the Tucker-Lewis index (TLI), the upper 95% con-
fidence interval root mean square error of approximation
(RMSEA95%), and the standardized root mean square
residual (SRMR). Detailed explanations for these fit indexes
can be found in Ref. [17], as well as further resources for the
acceptable fit values used in this study. The following
are the “good fit” criteria for each of the fit indexes: for
the CFI and TLI values above 0.9 is said to be acceptable,
and both the RMSEA95% and the SRMR values should
be below 0.08 for an acceptable fit [18]. The CSEM had
the following fit indexes for its unidimensional model:
CFI = 0.921, TLI = 0.915, RMSEA95% = 0.042, and
SRMR = 0.034; all of which are within the acceptable
ranges. When all of the questions on the BEMA were
included it was found to not fit well with the unidimensional
model, and after investigation it was found that the sources
of this misfit were questions 14 and 29. Once these items
were removed the BEMA had the following fit indexes:
CFI = 0.921, TLI=0.914, RMSEA95% = 0.047, and
SRMR = 0.038; all of which are now within the acceptable
ranges of fit. The misfit of the BEMA, when all of its
questions are retained, could be an indication that a
multidimensional model would be better suited for this
assessment, or it could be a result of the sample itself. The
authors plan on a future study in which MIRT will be used to
model each assessment, and comparisons made between
these models. This study, however, will assume the assess-
ments are unidimensional and will be carried out as such.

There are many models used for the item response
function that relate the probability of answering an item
correctly to the latent ability of the student taking the
assessment. Some of the most commonly used models are
the Rasch model and the closely related 1-parameter
logistic model (1PL), the 2-parameter logistic model
(2PL), and the 3-parameter logistics model (3PL). For this
study the 2PL. model was used to analyze both assessments,
and can be written in the following manner:

1
14+ e—Da,(@—é,-) ’

independence

7i(0) = 7;(0]a;, ;) =

where 7;(0) is the probability that a student with a latent
ability of 8 will get item i correct, and a;, and 9; are the item
discrimination and difficulty for item i, respectively. Lastly,
D is a number, generally 1.702, which adjusts the scale
of the student ability axis to more closely correspond to a
normal ogive scale. The item parameters are estimated
using parameter estimation techniques that are described
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BEMA and the CSEM. The horizontal red line indicate the minimum appropriate discrimination for well-functioning questions. The upper
and lower 27% was used to calculate the classical discrimination. The colored bars are the 7 identical items between the BEMA and CSEM.

in part in Refs. [19,20]; this study used the open source
R based software “mirt” for all item parameter estimations
for the dichotomously graded assessments [19]. This study
used the 2PL model rather than the 3PL model since
instabilities in the parameter estimations of the 3PL model
were detected. These instabilities are known to exist and
suggest the data are insufficient or not large enough to
estimate the 3PL. parameters adequately [21].

1. Item difficulty

Item difficulty, similar to classical difficulty, relates to
the probability students will answer the item correctly. The
“harder” an item is the larger the item difficulty will be, and
vice versa. Thus, an item with a difficulty of 2 is harder than
an item with a difficulty of —2. In the 2PL model the item
difficulty parameter §; indicates the latent ability location of
the inflection point for the item response function and is
also where the item response function has a probability of
50%. Through some manipulations it can be shown that the
inflection point occurs at (6, 7;(6)) = (5;.3), as indicated
in Fig. 4.

2. Item discrimination

An item’s ability to discriminate amongst students refers
to its ability to identify students with latent abilities above
and below the item’s difficulty parameter. The larger an
item’s discrimination the better it is at placing a student
above or below a specific latent ability score. Functionally,
the larger the discrimination, the more like a step function
the item response curve will become. For items that are
meant to be used for ranking students (e.g., the GRE), item
discriminations should be relatively large for all of the
items on the assessment. However, even with this being the
case there are no cutoff values for IRT item discrimination.

Graphically, item discrimination a; is related to the slope
of the item response function at its inflection point. It can be
shown by direct calculation that the slope at the inflection
point comes out to be Da; /4, which can be seen in Fig. 4.

3. Information functions and scale comparison

From the probability function the likelihood can be
developed as well as the uncertainty in the estimation of the
latent ability. Taking the reciprocal of this uncertainty gives
the item information function. For the 2PL model the item
information function is given mathematically as

1,(0) = D*a;m;(0)[1 - m;(0)],

and an example of a plot for an item information curve can
be found in Fig. 4. Because of the local item invariance
assumption, the item information functions can be added
together to give test information function [20]. The item
information function describes how well a single item can
estimate a student’s latent ability and the test information
function describes the how well the entire test (i.e., assess-
ment) can estimate student ability scores. Information in this
case is interpreted as how well a student’s latent ability was
estimated by an assessment as a function of latent ability.
Latent abilities in a region with high information are thus
better estimated than those in regions of lower information.

Further, it can be shown that most of the item informa-
tion curves for these assessments will have their maxima
centered at @ = o,. If many of the items on these assess-
ments have the same difficulty values, then the test infor-
mation curve will also have a peak close to 6 =;.
Assessments that do a “good job” of estimating all students’
abilities will, more often than not, be ones that have their
item difficulties evenly spread out over the ability space. As
an analogy, think of identifying one’s location on a ladder via
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unevenly spaced rungs. The more evenly spaced the rungs
are the better locations can be identified along the entire
length of the ladder. Whereas, if the ladder’s rungs were
grouped up towards the bottom then locations at the bottom
of the ladder could be very accurately described, whereas the
top of the ladder would be left quite ambiguous. The rungs of
this ladder are similar to the location of the items along the
latent ability axis. The more grouped up the questions are the
better the student abilities in that region will be estimated
compared to regions where very few items exist.

Estimation of the item parameters allows one to create the
testinformation curves for each of the assessments. When the
2PL item parameters are estimated, as well as the other
models mentioned, they are put onto a scale thatis built based
on the latent ability scores estimated for the students who
took the assessment. For instance, the scale used along the
horizontal axis in Fig. 4 uses a spacing roughly equal to 1
standard deviation in the estimated students’ abilities. The
model used in this study is translationally invariant along
the latent ability axis. This can be seen by looking at the
relationship between € and 6;: 8 — 9,. If both parameters are
shifted by the same amount, then the difference will remain
the same. So, the definition of “0” along the latent ability axis
is usually taken to be the average of the estimated student
abilities (student centered) or the average of the item
difficulties (test centered). For this study, since the purpose
is to compare the IRT results, the scales of each assessment
will need to be linked through a linking procedure.

There are many linking procedures that place both exams
onto the same scale. For example, the fixed parameter
with score transformation procedure, and the mean-mean
or mean-sigma procedure are commonly used linking
procedures [22-24]. For these assessments it was found
that the mean-mean procedure produced the most acceptable
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transformation between the two scales. The details of the
mean-mean transformation, as well as many other linking
procedures, and the tests for identifying the “best” trans-
formation can be found in Ref. [22].

Now that the item parameters for the BEMA are known
in the CSEM scale, using the mean-mean transformation,
these item parameters can be used to estimate the student
abilities of the BEMA on the CSEM’s scale. These scales
are related through the linear transformation: 6* = S0 + C
where for mean-mean linking

S = u(BEMA’s a)/u(CSEM’s @),
C = u(CSEM’s §) — S - u(BEMA’s §),

from Ref. [22]. After following this procedure the values
for § and C were found to be § = 1.166 and C = 0.224. It
should be noted that this linking is data driven and thus will
change when repeated for different data sets. Further, it
must be assumed that the data sets are pulled from the same
population when performing this scale linking. Considering
these numbers and the linear transformation, it can be seen
that the original CSEM and BEMA latent ability scales are
quite close in spacing (S =~ 1). This should not be surprising
since the standard deviations for the total test scores in
Table I are almost identical. The scale linking transforms the
estimated parameters for the BEMA to the parameter space
of the CSEM. Thus, the goodness of fit of the new model
against the original data must be recalculated to ensure the
model is still appropriate. The goodness-of-fit indexes for
the BEMA’s fit to the unidimensional model using this scale
transformation comes out to be CFI = 0.921, TLI = 0.927,
RMSEA95% = 0.044, SRMR = 0.48; all of which are
within the accepted ranges of values. The test information
curves for the BEMA, BEMA(R) and CSEM, plotted in the
CSEM scale, can be found in Fig. 5.
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The point biserial for each of the items in the BEMA and CSEM. The red line is at 0.2, which is an accepted minimum for item

point-biserial values. There error bars represents the 95% confidence interval for each of the bins, respectively. The colored bars are the 7

identical items between the BEMA and CSEM.
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Now that both assessments can the placed onto the
same scale, the test information curves and item response
functions can be plotted and compared, which will be
presented and discussed in Sec. IV B.

IV. RESULTS AND DISCUSSION

The results of the analysis performed on the BEMA and
CSEM will be discussed below following a similar section
outline as in Sec. III.

A. Classical test theory
1. Overall test statistics

The distributions of the total scores on all of the assess-
ments have means of about 50% and standard deviations of
about 20%. Considering the suggestion from Ref. [11], that
the ideal classical item difficulty is 0.50, implies the ideal
average test score for an assessment is 50%. This suggestion
comes from the desire to avoid ceiling and floor effects due
to the rigid boundaries placed on the available total scores. If
the average on an assessment were too high, say 75%, then
the group of students above that score have a good chance of
bunching up at the 100% mark, and vice versa for an average
that is too low. By having the test mean close to 50% the
assessment will use the full range of total scores in the most
effective manner possible to distinguish students from one
another. So, all of these assessments are functioning ideally
from this consideration.

When comparing the BEMA and CSEM using a
two-tailed ¢ test it was found that the difference between
the means was statistically significant with a p value of
0.001 05. However, when the effect size was calculated the
difference was found to be negligible with a Cohen’s d of
0.054. Thus, the detection of significant difference was due
to the large samples used, and not because the difference in
the means is large. As a whole, when considering the mean
and standard deviations of these assessments, these two tests
were found to be the same in overall difficulty.

All forms of the assessments were found to have
satisfactory reliabilities with Cronbach’s alphas all greater
than 0.8; the specific values can be found in Table L.

2. Classical item difficulty

Bar plots of the classical difficulties for the BEMA and
CSEM can be found in Figs. 6 and 7, and values can be
found in Tables IV and V located in Appendix. Using cutoff
values of 0.20 and 0.80 it can be seen that the CSEM and
BEMA contain a few questions that fall outside of this
range. Comparing these results to Refs. [1,2], it is found
that the classical item difficulties found in this study for the
BEMA and CSEM are similar to the previously found
classical difficulties.

Of the shared questions only question 1 on the BEMA
(question 3 on the CSEM) falls above the 0.8 cutoff value,
which was also seen in Refs. [1,2]. This question asks about
the charge dependence of Coulomb’s law and what happens

Variance
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Factor Number

FIG. 6. Scree plots for each of the assessments. The hollow boxes
represent the BEMA’s eigenvalues and the solid dots represent the
CSEM. These plots support the assumption that these assessments
can be treated as unidimensional for an IRT model.

to the magnitude of the electric force when the magnitude
of a charge is changed. Considering the content of the
question, it is unsurprising that this question was found to
be easy for the student responses that make up the data.

None of the shared questions had an item difficulty
below the 0.20 cutoff. Questions 12, 27, and the paired 28
and 29 on the BEMA and questions 14 and 21 on the
CSEM were found to be quite difficult for these students.
Looking at the numerical values for these items in Tables [V
and V, it can be seen that question 21 on the CSEM only
just falls below the cutoff value. Thus, the majority of the
questions that appear on both assessments fall within the
accepted range of values for classical difficulty.
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FIG. 7. An example of an item characteristic curve (solid,
black) and its associated item information curve (dashed, black)
using the 2PL model. When the student ability is equal to the item
difficulty (@ = 6) the probability of the student answering the
questions correctly is 50%; this is also the location of the
maximum for the item information curve. The slope (m) of
the tangent line (dot-dashed, blue) at the 50% mark is propor-
tional to the item discrimination (). D is a constant generally set
so 1.702 so that the ability axes better lines up with spacings that
are equal to a standard deviation of student ability.
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TABLE II. Comparison between classical difficulties, discriminations, and point biserials for the questions on the BEMA and CSEM
that are the same. The numbers to the left of the “/”” are for the BEMA and to the right are for the CSEM. The entries marked with a x
were found to be statistically different. All other entries were found to not be statistically different with p values < 0.001. C.d stands for
the absolute value of Cohen’s d.

BEMA/CSEM Difficulty C.d. Discrimination C.d. Tpb C.d.
ql/q3 0.83/0.80* 1.26* 0.30/0.41* 1.79* 0.33/0.40* 1.50*
q2/q4 0.68/0.50* 6.02* 0.55/0.58 0.359 0.47/0.47 0.03
q3/q5 0.73/0.64* 3.08* 0.50/0.51 0.108 0.45/0.41* 0.72*
q23/q22 0.44/0.36* 2.46* 0.48/0.29* 2.34* 0.38/0.26* 2.20*
q24/q28 0.61/0.56* 1.70* 0.57/0.44* 1.69* 0.47/0.36* 2.27*
q30/q31 0.34/0.22* 4.33* 0.61/0.43* 2.67* 0.51/0.44* 1.42*
q31/q32 0.29/0.35* 2.05* 0.19/0.29* 1.30* 0.20/0.26* 1.10*

Comparing the questions on the assessments that are the
same (see Table II) reveals that many of these items have
similar values. Using a z test of proportions, since item
difficulties are by definition proportions of the number
correct versus the number attempted, it was found that all of
the item difficulties were found to be significantly different
for the same items between both assessments. This is likely
due to the large sample sizes used in this study. To under-
stand how different these difficulties actually are the
Cohen’s d was calculated for all 7 questions shared by both
assessments. All of these Cohen’s d values were found to be
large, even for q1/q3 when the difference in difficulties was
observed to be only 0.03. This appears to be too harsh of a
criteria, and a difference of 0.1 (10%) is suggested for a
significant difference [25]. From this, only questions 2/4
and 30/31 have significant differences in difficulty. Since
classical difficulty makes no reference to the total score on
the assessment, there is no need to consider the BEMA(R)
since the classical difficulties will not change.

3. Classical item discrimination

Many of the items on each of the assessments had
classical discriminations that fell below the 0.3 cutoff
value. From the BEMA these questions were 9, 12, 18,
27,28 and 29, and 31, of which only question 9 was about
circuits. For the CSEM questions 14, 20, 21, and 22 had
classical discriminations below the cutoff value. Because of
slight differences in how the classical discrimination was
calculated between this study and Ref. [1] and the factor of
12 difference in sample size, this study did not get nearly as
many malfunctioning items as was previously found. All of
the questions on the BEMA that were found to have classical
discriminations below 0.3 were found to have similar issues
in previous examinations, with the exception of question 12

the CSEM all have values around, or below 0.2. Thus, the
possible range of classical discriminations available to
these items is severely limited, and may be the cause for
their low discrimination values. This leaves items 9 and 18
on the BEMA and 22 on the CSEM without a reason for
their poor discrimination performance. Reasons for these
items’ performance may be revealed through student inter-
views, or distractor-level analysis.

Comparing the same items between the BEMA and the
CSEM (see Table II) reveals that some of the question
discriminations differ greatly. Since classical discrimina-
tion can be written as a proportion, the z test of proportions
was used to compare the items’ results. It was found that all
of the items, besides 2/4 and 3/5 on the BEMA/CSEM,
had significantly different discriminations, and similar
results were found when comparing the BEMA(R) and
the CSEM; see Table III.

4. Item point biserial

Since item point biserial and classical discrimination are
both measures of an item’s ability to distinguish between
high and low students their results should be qualitatively
similar, but not necessarily identical. This can be seen by
considering Fig. 8. A fundamental difference between the
two is that the item point biserial is more directly dependent

TABLE III. Comparison of classical discrimination and point-
biserial values for questions on the BEMA(R) and CSEM that are
the same. The numbers of the left of the “/” are for the BEMA(R)
and to the right are for the CSEM. The entries marked with a *
were found to be statistically different. All other entries were
found to be statistically different with p values < 0.001. C.d
stands for the absolute value of Cohen’s d.

from this study’s results [1]. The item discriminations for the BEMA(R)/CSEM Disc. Cd. "pb Cd.
CSEM have not been reported as of the time of this study, so ql/q3 0.33/0.41* 1.35* 0.35/0.40* 0.97*
no comparisons to other results could be made. q2/q4 0.58/0.58  0.04 0.48/0.47* 0.39*
Because of the relationship between classical difficulty ~ 93/95 0.51/0.51  0.01  0.46/0.41* 097"
and the maximum value possible for an item’s classical q23/q22 0.50/0.29* 261 0.40/0.26"  2.507
discrimination, some item’s poor discriminations can be q24/q28 0.57/0.44* 1'77f 0.48/0.36"  2.46"
explained due to their poor difficulty scores [11]. Questions q30/a31 0.62/0.43"  2.87"  0.52/0.44"  1.54"
q31/q32 0.20/0.29* 1.16* 0.20/0.26* 0.96*

12, 27, and 28 and 29 on the BEMA and 14, 20, and 21 on
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FIG. 8. Item response theory test information curves for the
CSEM (blue, solid), BEMA (purple, dashed), and BEMA(R)
(purple, dot-dashed).

on the classical difficulty as compared to the classical
discrimination, whose maximum depends on the difficulty
and not the value itself. This lends evidence that questions
12, 27, and 28 and 29 on the BEMA and 14 and 21 on the
CSEM are malfunctioning due to their low classical
difficulties, and that 9 and 18 on the BEMA are having
issues for other reasons.

Comparing the results for the BEMA to previously
published results the item point biserials presented here
differ for many of the questions that are the same between
the assessments [1]. This could be due to a number of
differences between these two studies, such as (i) only
calculus-based course data was used in the previous study
and a mixture of calculus and algebra-based data was used
in this study, or (ii) the difference in sample sizes. This
does warrant a hint of caution when trying to generalize
the results of this study to purely calculus or algebra-based
classes, and does suggest further research is needed.

To perform significance testing between the CSEM,
BEMA, and BEMA(R)’s point-biserial values for the
shared questions, 10000 classes of 250 uniformly
sampled students from the ranked data were used. The
item point biserials for each of the items for every class
were calculated. The resulting distributions of the item
point-biserial values were found to satisfy a univariate
normal distribution assumption for all three assessments
(|skew| < 2 and |kurtosis| < 2). From the assumed normal
distributions for all of the items a ¢ test was used to
compare the items between the CSEM and BEMA as well
as the CSEM and BEMA(R).

Between the BEMA and the CSEM it was found that
all of the point-biserial values were significantly different
for shared questions with the exception of question 2/4;
see Table II. When removing the circuits questions from the
BEMA and again comparing to the CSEM it was found that

all of the point-biserial values were significantly different.
This suggests that the circuits questions effect other items’
relations to the total score. So, if a factor analysis were to be
done, correlations between the circuits questions and the
others should be expected to be nonzero.

5. Conclusions of classical test theory

Since CTT is explicitly sample dependent any differences
found between the assessments could be a result of
differences in the samples. This means any conclusions
about differences in the assessments made using CTT cannot
be separated from potential sample differences, and thus
doing assessment comparisons in a CTT framework
becomes almost impossible and nongeneralizable.

Item response theory does not suffer from such issues.
Since IRT is model driven, and the results of each assessment
can be placed onto the same scale, comparisons can be made
without significant sample interference. These conclusions,
discussed below, give a more reliable comparison of the
assessments compared to CTT. This is because the item
parameters, item characteristic curves, and item or test
information curves are assumed to be independent of the
student results. The only influence the student responses
have is on the ability scale, which can be adjusted using
linear scale transformations. Thus, this study advises using
IRT to compare assessments in the future over CTT.

B. Item response theory

The item characteristic curves for each assessment can be
found in Figs. 11-15, located in the Appendix. The test
information curves overlaid with histograms of the esti-
mated student ability scores, each on the CSEM scale, for
both assessments gives a visualization for how well each
assessment estimates the student latent ability scores, see
Figs. 9 and 10. From these plots it can be seen that the
BEMA’s and CSEM’s test information curves adequately
cover the majority of the students’ latent abilities for the
samples analyzed. To compare each instrument to one
another the test information curves can be overplotted, as
was done in Fig. 5. From this figure it can be seen that the
CSEM has superior information compared to the BEMA
for the majority of the latent ability space. This is partially
due to the unidimensional treatment of the CSEM and
BEMA where all 32 questions on the CSEM fit the model,
but only 29 questions from the BEMA properly fit. Since
each question on an assessment lends information to the
test, the BEMA will have less information overall compared
to the CSEM since it has fewer questions. In short, it
appears that the CSEM is superior to the BEMA in
estimating student abilities for the entire range of typical
student scores, € ~ —2 to @ ~ 3. When the circuits questions
are removed from the BEMA the majority of the informa-
tion is lost in the # %0 to € ~ 2 range. This means the
circuits questions on the BEMA are information heavy for
higher ability scores.
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FIG. 9. Plotted in the CSEM scale, the histogram of estimated
student abilities for the BEMA is overlaid with the BEMA’s test
information curve. This shows that the bulk of the students are
located in a region of ability space where their latent abilities will
be well estimated.

The median student abilities for each instrument, on
the CSEM scale, came out to be BEMA: 0.177, CSEM:
—0.123, and the median item difficulties were BEMA:
0.358, CSEM: —0.274. The differences between these
values for each assessment (0.4 — Opmeq) COmes out to
be BEMA: —0.181, CSEM: 0.151. This means the student
abilities found by the BEMA tend to be located on the
bottom half of the item abilities slightly more often than the
top half. Similarly, the student abilities found by the CSEM
tend to be located on the top half of the item abilities
slightly more often than the bottom half. This may suggest
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FIG. 10. Plotted in the CSEM scale, the histogram of estimated
student abilities for the CSEM is overlaid with the CSEM’s test
information curve. This shows that the bulk of the students are
located in a region of ability space where their latent abilities will
be well estimated.

that the BEMA is seen by the students as being slightly
more difficult than the CSEM. However, since the BEMA
also tended to give a larger student ability score compared
to the CSEM it could be said than the BEMA is easier than
the CSEM. Evidence for one side of this dispute over the
other can be found in Fig. 5. As can be seen, the BEMA and
CSEM have very similar test information on the range from
0~ —4to 0= —1. Itis here that the CSEM’s information is
superior to the BEMA until € ~ 3. This indicates that the
CSEM better estimates student abilities in the higher ability
range, and could be said to be the more difficult assessment.
Ultimately, the differences in the difficulty of the assess-
ments are minor, so both assessments can be said to be of
equal difficulty, as was suggested by the CTT results. This
result seems to support the classical results presented in
Ref. [5], where it was concluded that although there were
minor differences, each assessment was essentially equally
difficult.

V. CONCLUSIONS

It was found through a two-tailed ¢ test of the total scores
that the assessments were significantly different from one
another, but this difference was marginal and for practical
use is not important. However, when a classical item level
analysis was done most of the 7 shared questions between the
BEMA and CSEM functioned in significantly different ways;
albeit the differences were quite small for most of the items.
This could be due to differences in the samples used
for each of the assessments, and/or due to differences in
the performance of the assessments themselves. However,
since the majority of the differences were small this indicates
that overall both assessments function in very similar man-
ners, but the internal interactions between questions are
slightly different. Ultimately, from a CTT perspective the
BEMA and CSEM are essentially identical in their overall
performance. This conclusion is in good agreement with the
conclusion reached by Ref. [5]. However, since CTT is
explicitly sample dependent, any differences found between
the assessments could be a result of differences in the samples.
Since the samples for the BEMA and CSEM are not identical,
any conclusions about differences in the assessments made
using CTT cannot be separated from potential sample
differences. This is why IRT was used to offer support for
the CTT conclusions. Since IRT is model driven, comparisons
can be made without significant sample interference.

Through the use of latent ability scale linking, using
the mean-mean method, it was found that the linear
transformation of student abilities from the BEMA scale
to the CSEM scale for these data sets was Ocspum scale =
SOBEMA scale + C, where S = 1.166 and C = 0.224 [22].
This shows that the spacing between the two scales is
essentially the same, S~ 1, and that the means of each
assessments’ item difficulties will be slightly different C # 0.
It was found that the student abilities for the BEMA tended
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to be higher than the ones found by the CSEM, and similarly
with the item difficulties. But, due to information superiority
of the CSEM over the BEMA in the higher ability ranges it
is hard to identify which assessment is more difficult than
the other. This potentially allows instructors to reduce the
effects of test and retest on pre-post testing since the CSEM
could be used as a pretest and the BEMA as a post-test, or
vice versa. With both assessment being of similar difficulty,
one assessment could be given as a pretest, and the other
given as a post-test. Results can then be compared knowing
that each assessment is of similar difficulty.

When looking at the assessments from an IRT perspec-
tive slight differences in performance were found.
Although both assessments were observed to be quite
similar, the CSEM was found to have superior test
information in the typical student ability range of 6 ~ —2
to 0 ~ 3 for these assessments. Thus, if IRT is to be used to
answer a research question in future studies, this result
suggests that the CSEM is the instrument of choice.

Because of content comparison concerns, specifically that
the BEMA contains circuits questions and the CSEM does not,
a reduced BEMA was constructed using the data from the full
BEMA. Upon redoing the analysis there were no large changes

in the CTT results of the study, which may indicate that circuits
are not well correlated with the other concept areas on the
BEMA. The IRT information function was heavily changed,
but this was due to the direct removal of items (and thus
information), and is not a result of item-item interactions which
have been assumed to be zero due to item independence.

Suggested further studies would be to perform the analysis
done here while attempting to fix some of the limitations of
this study addressed in Sec. II: An extension of this study that
exclusively explores the shared items for these assessments
using IRT which seeks to understand the interaction of the
items on each assessment; a comparative analysis between
the BEMA and CSEM with the Electricity and Magnetism
Conceptual Assessment would be of interest, as well as
an IRT comparative analysis between the Force Concept
Inventory and the Force and Motion Conceptual Evaluation
that would extend the results of Ref. [26].
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APPENDIX: TABLES AND FIGURES

The following are the numerical and graphical results for the questions on the BEMA and CSEM found within this study.
The CTT item statistics and IRT item parameters (with errors in parenthesis) are located in Tables IV-V. Figures 11-15
contain plots of the item response functions, also called item characteristic curves, which can be used to visually assess the

goodness-of-fit of the 2PL model to the data.

TABLE IV. BEMA’s CTT and IRT item parameters in the BEMA scale with standard errors.

CTT statistics

IRT statistics

Item Diff. (S.E.) Disc. (S.E.)

oo (S.E.) a (S.E) 5 (S.E.)

0.828 (0.023)

0.309 (0.061)

q2 0.681 (0.028) 0.558 (0.066)
93 0.731 (0.027) 0.507 (0.067)
q4 0.687 (0.029) 0.582 (0.068)
q5 0.439 (0.031) 0.665 (0.064)
96 0.478 (0.031) 0.7 (0.063)
q7 0.446 (0.03) 0.481 (0.074)
q8 0.704 (0.028) 0.439 (0.071)
q9 0.29 (0.028) 0.12 (0.077)
q10 0.544 (0.031) 0.566 (0.07)
ql1 0.333 (0.029) 0.392 (0.075)
ql2 0.187 (0.024) 0.291 (0.069)
ql3 0.723 (0.028) 0.477 (0.068)
ql4 0.44 (0.031) 0.317 (0.08)
ql5 0.687 (0.029) 0.673 (0.06)
q16 0.377 (0.03) 0.559 (0.069)
ql7 0.33 (0.029) 0.299 (0.077)
q18 0.537 (0.031) 0.113 (0.085)
q19 0.702 (0.028) 0.417 (0.071)

0.328 (0.024)
0.467 (0.021)
0.448 (0.022)
0.497 (0.02)
0.524 (0.02)

0.549 (0.019)
0.38 (0.023)
0.379 (0.023)
0.12 (0.026)
0.45 (0.022)

0.336 (0.024)
0.325 (0.024)
0.43 (0.022)

0.269 (0.025)
0.579 (0.018)

0.466 (0.021)
0.267 (0.025)
0.11 (0.027)

0.357 (0.024)

1.046 (0.054)
1.397 (0.055)
1.407 (0.053)
1.414 (0.055)
1.355 (0.05)

1.472 (0.053)
0.709 (0.036)
0.847 (0.042)
0.084 (0.033)
0.956 (0.041)

0.624 (0.036)
0.801 (0.044)
1.085 (0.047)

1.741 (0.065)

0.93 (0.047)
0.435 (0.034)
0.043 (0.03)
0.754 (0.04)

—1.805 (0.077)
—-0.75 (0.033)
—0.369 (0.028)
—-0.77 (0.032)
0.235 (0.028)

0.069 (0.026)

0.334 (0.045)
—1.183 (0.06)
10.671 (4.165)
—0.227 (0.035)

1.208 (0.078)
2.068 (0.104)
—1.093 (0.047)

—0.696 (0.028)

1.85 (0.083)
1.695 (0.14)
—3.451 (2.485)

~1.279 (0.07)
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TABLE 1V. (Continued)

Item

CTT statistics

Diff. (S.E.)

Disc. (S.E.)

rob (S.E.)

IRT statistics

a (S.E.)

5 (S.E)

q20

q21
q22
q23
q24
q25

q26
q27
q2829
q28
q29

q30
q31

0.466 (0.031)

0.751 (0.026)
0.556 (0.031)
0.44 (0.03)
0.615 (0.03)
0.459 (0.031)

0.326 (0.029)
0.135 (0.021)
0.079 (0.017)

0.342 (0.029)
0.289 (0.028)

0.699 (0.061)

0.583 (0.064)
0.737 (0.059)
0.474 (0.075)
0.575 (0.069)
0.546 (0.073)

0.534 (0.072)
0.191 (0.062)
0.159 (0.051)

0.606 (0.066)
0.196 (0.078)

0.555 (0.019)

0.532 (0.019)
0.571 (0.018)
0.385 (0.023)
0.471 (0.021)
0.441 (0.022)

0.453 (0.022)
0.236 (0.025)
0.269 (0.025)

0.513 (0.02)
0.195 (0.026)

1.471 (0.053)

1.905 (0.075)
1.664 (0.059)
0.747 (0.037)
1.116 (0.045)
0.928 (0.04)

1.043 (0.044)
0.624 (0.046)

0.533 (0.049)

1.329 (0.051)
0.276 (0.033)

0.115 (0.026)

—-0.926 (0.03)
—-0.216 (0.025)

0.36 (0.044)

—0.533 (0.034)

0.202 (0.036)

0.842 (0.042)
3.194 (0.217)

4.066 (0.345)

0.649 (0.033)
3.323 (0.405)

TABLE V. CSEM’s CTT and IRT item parameters, in

the CSEM scale, with standard errors.

CTT statistics

IRT statistics

Item Diff. (S.E.) Disc. (S.E.) rop (S.E.) a (S.E.) 5 (S.E)
ql 0.647 (0.03) 0.318 (0.077) 0.263 (0.018) 0.439 (0.026) —1.443 (0.091)
q2 0.437 (0.031) 0.365 (0.079) 0.301 (0.018) 0.511 (0.024) 0.52 (0.048)
93 0.798 (0.025) 0.422 (0.064) 0.399 (0.017) 1.297 (0.047) ~1.376 (0.039)
q4 0.502 (0.031) 0.579 (0.07) 0.466 (0.016) 1.284 (0.037) —0.042 (0.021)
q5 0.642 (0.03) 0.515 (0.07) 0.413 (0.016) 1.09 (0.033) 0.053 (0.023)
96 0.685 (0.029) 0.575 (0.069) 0.465 (0.016) 1.341 (0.041) —0.795 (0.025)
q7 0.386 (0.031) 0.707 (0.064) 0.58 (0.013) 1.814 (0.048) 0.35 (0.019)
q8 0.594 (0.03) 0.604 (0.067) 0.474 (0.015) 1.196 (0.036) —0.433 (0.023)
q 0.53 (0.031) 0.573 (0.071) 0.454 (0.016) 1.055 (0.032) —0.165 (0.023)
q10 0.438 (0.031) 0.578 (0.071) 0.476 (0.015) 1.117 (0.033) 0.253 (0.024)
qll 0.37 (0.03) 0.507 (0.071) 0.424 (0.016) 0.886 (0.029) 0.682 (0.033)
ql2 0.717 (0.028) 0.444 (0.072) 0.386 (0.017) 0.988 (0.035) ~1.133 (0.039)
q13 0.274 (0.028) 0.396 (0.072) 0.373 (0.017) 0.766 (0.028) 1.421 (0.054)
ql4 0.17 (0.023) 0.13 (0.066) 0.159 (0.019) 0.262 (0.028) 6.135 (0.657)
ql5 0.359 (0.03) 0.525 (0.073) 0.453 (0.016) 1.011 (0.031) 0.674 (0.03)
q16 0.325 (0.029) 0.486 (0.072) 0.428 (0.016) 0.925 (0.03) 0.914 (0.036)
ql7 0.47 (0.031) 0.554 (0.072) 0.446 (0.016) 0.979 (0.031) 0.122 (0.025)
q18 0.526 (0.031) 0.338 (0.08) 0.278 (0.018) 0.448 (0.024) —0.25 (0.048)
q19 0.482 (0.031) 0.571 (0.072) 0.459 (0.016) 1.021 (0.031) 0.059 (0.024)
q20 0.236 (0.026) 0.264 (0.072) 0.281 (0.018) 0.527 (0.027) 2.359 (0.117)
q21 0.195 (0.024) 0.264 (0.071) 0.314 (0.018) 0.706 (0.03) 2.207 (0.086)
q22 0.364 (0.03) 0.295 (0.079) 0.259 (0.018) 0.421 (0.024) 1.374 (0.089)
q23 0.591 (0.031) 0.632 (0.065) 0.498 (0.015) 1.365 (0.04) —0.397 (0.021)
q24 0.282 (0.028) 0.413 (0.075) 0.392 (0.017) 0.898 (0.03) 1.203 (0.042)
q25 0.432 (0.031) 0.567 (0.073) 0.461 (0.016) 1.008 (0.031) 0.303 (0.026)
q26 0.644 (0.03) 0.643 (0.064) 0.513 (0.015) 1.563 (0.046) —0.576 (0.02)
q27 0.243 (0.027) 0.352 (0.076) 0.373 (0.017) 0.827 (0.03) 1.561 (0.055)
q28 0.563 (0.031) 0.445 (0.076) 0.357 (0.017) 0.704 (0.027) —0.415 (0.034)
q29 0.268 (0.027) 0.342 (0.079) 0.347 (0.017) 0.728 (0.028) 1.528 (0.06)
430 0.548 (0.031) 0.461 (0.076) 0.371 (0.017) 0.722 (0.027) —0.311 (0.032)
931 0.222 (0.026) 0.427 (0.069) 0.439 (0.016) 1.068 (0.034) 1.423 (0.042)
932 0.348 (0.029) 0.299 (0.077) 0.26 (0.018) 0.415 (0.024) 1.57 (0.1)
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FIG. 11. Item characteristic curves for the item 1-15 on the BEMA, in the CSEM scale. The gray error bars represent 1 standard
deviation, from top to bottom, in the student responses. The horizontal axis is student latent ability.
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Item characteristic curves for the item 16-31 on the BEMA, in the CSEM scale. The gray error bars represent 1 standard
from top to bottom, in the student responses. The horizontal axis is student latent ability.
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FIG. 13. TItem characteristic curves for the item 1-15 on the CSEM. The gray error bars represent one standard deviation, from top to
bottom, in the student responses. The horizontal axis is student latent ability.
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FIG. 14. Item characteristic curves for the item 16—30 on the CSEM. The gray error bars represent one standard deviation, from top to
bottom, in the student responses. The horizontal axis is student latent ability.
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Item characteristic curves for the item 31-32 on the CSEM. The gray error bars represent one standard deviation, from top to

bottom, in the student responses. The horizontal axis is student latent ability.
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