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We design, validate, and administer a 24-item test to study student understanding of linear functions
in 1D kinematics [xðtÞ] and mathematics [yðxÞ] in the 9th grade. The items assess identification and
comparison of initial position and velocity in 1D kinematics and of the y intercept and slope in mathematics
using a graph or an algebraic formula. Results show that students’ performance on most mathematics items
is significantly better than on their isomorphic kinematic counterparts, but also that most of the easiest as
well as the most difficult items are kinematics items. Students achieve the highest accuracies on graphical
questions in which they must compare two positive slopes, and they achieve the lowest accuracies on
questions in which they must determine or compare a negative slope. We find that students have more
difficulties with the y intercept in mathematics and with the slope in kinematics. Furthermore, questions in
symbolic representation result in far lower accuracies compared to questions in graphical representation,
particularly when the y intercept or the slope has to be determined instead of compared. We also analyze the
results qualitatively by categorizing the students’ strategies and errors. We find frequent confusion between
the x intercept and the y intercept in mathematics, but far less in kinematics. Negative velocities in
kinematics are by far the largest pitfall, whereas negative slope in mathematics is rarely an issue. The results
also show a significant frequency of interval or point confusions in kinematics but very little in
mathematics. We reaffirm the occurrence of the interval or point confusion in questions with graphs and
discuss three different cases of interval or point confusions in questions with algebraic expressions:
numerical, algebraic, and unit based. Our results indicate a weak link between kinematics and mathematics
and we suggest that closer integration between these two contexts during education could benefit student
understanding of linear functions and linear phenomena in kinematics.
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I. INTRODUCTION

Linear functions are an essential part of any science
curriculum but recent studies show that students’ under-
standing thereof is subpar and that the context is an

important factor [1–8]. To gain more insight into students’
performance and into their strategies to solve linear
function problems during the early stages of learning about
them, we investigate how 9th grade students in Flanders
(Belgium) solve xðtÞ problems in 1D kinematics and in as-
isomorphic-as-possible yðxÞ problems in mathematics.
Furthermore, we are interested in the effect of the repre-
sentation and the task on students’ strategies and accuracy.
The target group is particularly interesting since these
students have only just received education on linear
relations in mathematics and physics. However, the math-
ematics and the physics curricula are not explicitly aligned
and uniform linear motion and linear functions are taught
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without much reference to each other. As such, it is unlikely
that students have constructed a deep understanding of
linear relations in different contexts and in different
representations. This mismatch opens the door for a deeper
look into how students link their understanding of linear
functions between physics and mathematics, which are the
two contexts in the curriculum likely to benefit the most
from increased synergy between them. To do so, we
develop and validate a test, and perform both quantitative
and qualitative analysis of students’ answers to gain as
much insight as possible.
We first provide background information from literature

about relevant factors in Sec. II. Next, we explain our
research design and the test development in Sec. III,
followed by a description of the test administration in
Sec. IV. The quantitative and qualitative results are described
in Secs. Vand VI, respectively. These results are then jointly
discussed in Sec. VII. Finally, implications for teaching and
future research are discussed in Sec. VIII and a conclusion is
provided in Sec. IX.

II. LITERATURE

Linear functions are of paramount importance to
describe, understand, and approximate many phenomena
in physics. Students encounter them throughout their
education and they are often the first step in learning about
abstract relationships between dependent and independent
variables. In most curricula, students start learning about
linear functions in lower secondary education. At that time,
they are likely to already have some deep-rooted beliefs and
tend to operate in different belief systems: the real world,
the physicsworld, and themathematics world, which are not
always well linked [9]. Multiple studies on this topic show
that conceptual understanding of linearity is indeed not
easily obtained and many difficulties have been reported
across various contexts and across various representational
formats such as graphs and formulas [1–8,10–22]. The target
groups in these studies range from secondary to higher
education but the results arevery similar,which is suggestive
of some obstinacy for these difficulties throughout educa-
tion. The slope of graphs of linear functions in physics has
been extensively studied and the most common difficulties
were grouped by Leinhardt et al. [13] into three distinct
categories: slope or height confusion in which the height of
the curve ismistaken for its slope; interval or point confusion
in which a single point is considered when an interval is
more appropriate, i.e., taking the ratio of coordinates instead
of the ratio of intervals to determine the slope; or iconic
interpretations in which the graph is viewed as a direct
representation of reality. The latter was found to be the most
frequently made error. Wemyss and van Kampen [3]
categorized interpretations of numerical linear distance time
and yðxÞ graphs from first-year university students enrolled
in an algebra-based course. They found that both context
and prior learning are likely of influence to explain poor

performance and that the ability to determine the slope of an
yðxÞ graph and a correct qualitative understanding of
distance-time graphs is insufficient for correctly determin-
ing the speed in a distance-time graph. Of note here is that
they explicitly asked students to determine the slope or the
speed at a particular instant. In their pretest data, they found
that just under 20%of all students could determine the speed
from an xðtÞ graph, and that just over 50% could determine
the slope in an yðxÞ graph. Slope or height confusion and
iconic interpretations were only present in a small minority
of their data, whereas interval or point confusions occurred
with 53%and 21%of their students in the kinematics and the
context-free questions, respectively. When students were
asked a similar question but with a graph in the context of
water level versus time, their accuracy doubled compared to
the distance versus time questions. Furthermore, almost
twice the percentage of students used interval reasoning
compared to the percentage for the distance-time questions.
A follow-up study was performed by Bollen et al. [7]. They
adapted the categorization and administered a similar test
with first-year university students in calculus-based courses
in the Basque country (Spain) and in Belgium. Their results
showed similar difficulties, often related to dividing two
coordinates to calculate the speed. Furthermore, they found
that the context influences the success rate and that quali-
tative understanding of kinematics is important but not
sufficient to determine the speed in xðtÞ graphs. The study by
Planinic et al. [2] investigated students’ understanding of
linear graphs inmathematics, kinematics, and contexts other
than physics. In their multiple choice test, students can
choose between three comparative statements about the
slope or the area under a graph, and must select the correct
one. The results showed that mathematics is the easiest
context for students and the other two are on par in difficulty.
Additionally, determining the slope was found to be more
difficult compared to determining the area under a graph—
the other concept they studied. Concerning the y intercept,
Davis [1] showed that students naturally and successfully
start to use the informal terminology “starting point” when
confronted with real-world contexts in multiple representa-
tions before the introduction of formal mathematics termi-
nology. The study showed that a disconnect between formal
and informal terminology in teaching activities results in
a fragile understanding of the y intercept, and strongly
suggests to include explicit learning activities to connect
these terminologies. After the introduction of formal math-
ematics terminology, students were confrontedwith abstract
tasks (no real-world context) using the same representations
and informal terminology which the researchers found to
negatively impact students’ performance. Adu-Gyamfi and
Bossé [5] showed that even students who perform admirably
at representation-related tasks concerning functions might
still have limited mathematical understanding. This implies
that testing students’ understanding of functions should
likely include, but certainly not be limited to, various
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representations. Also De Bock et al. [6] found that the
representational format significantly influenced student
performance as a main effect and as an interaction effect
with the specific type of function (proportional, inverse
proportional, affine with negative slope, and affine with
positive slope). Ibrahim and Rebello [21] studied students’
strategies when solving tasks concerning kinematics
and work. They showed that, irrespective of the various
representations offered in the questions’ format (verbal,
graphical, and symbolic), students preferred manipulating
equations and that theymore often rely on equations to solve
kinematics tasks whereas for tasks related to work they
preferred a qualitative approach, thus indicating the depend-
ency of the solution strategy on the context. Also Acevedo
Nistal, Van Dooren, and Verschaffel [18] came to the
conclusion that their students in secondary education prefer
to use formulas over tables or both to solve for the dependent
or independent variable in linear function problems. They
compared students’ choices and performance in choice and
no-choice conditions for the representation inwhich to solve
the problem. Additionally, they found that the choice to use
formulas, or the pressure students feel to use formulas,
increases with grade. The representation in which a problem
is presented and solved can strongly influence students’
performance and the use of representations has been found
to be very different between novices and experts [23].
Representational fluency in particular has been of interest
to the research community, and notably theRepresentational
Fluency Survey (RFS) [24] has been developed and applied
[25] to assess this ability with university students in the
context of physics. In light of this, we previously developed
a multiple choice test [8] for students’ representational
fluency—specifically for the ability to translate between
representations—of linear function problems in mathemat-
ics and kinematics. Our results showed that significant main
effects of the representational transition, the function type
(signs of slope and y intercept), and the context (kinematics
and mathematics) exist. The study we present here is
complementary to our previous one: now we focus more
on qualitative insights and on the use of strategies and
frequent errors.
All these findings point to a disconnect between con-

texts, a strong influence of, and a disconnect between
representations, and specific difficulties depending on the
task and the concepts related to linear functions. This
strongly suggests that students’ understanding is compart-
mentalized to the specific situation in which they first
learned about a specific topic. This is not unusual in the
early stages of learning, but the referenced studies in higher
education show that this compartmentalization continues to
exist. To amend the situation, links should be actively
constructed to connect these islands of understanding and
achieve deeper understanding with the flexibility to apply
knowledge and skills to new situations and achieve an
efficient transfer thereof. To do so, it is important to

understand students’ difficulties that hamper the construc-
tion of these links. More than anything, the literature shows
that these factors (contexts, representational format, func-
tion type, and task) should be included when assessing
students’ understanding.

III. RESEARCH DESIGN

A. Research questions

The broad goal of our study is to gain more insight in
students’ understanding of linear relations in kinematics
[xðtÞ] and in mathematics [yðxÞ]. Since effects from
context, representational format, function type, and task
have been observed in literature, we include these factors in
our research and ascertain their effects in a quantitative
analysis followed by a qualitative analysis to gain as much
insight as possible in students’ strategies and errors. Our
specific research questions are as follows:
(1) How do the accuracy and strategy of grade 9

students compare between solving xðtÞ problems
in kinematics and solving isomorphic yðxÞ problems
in mathematics?

(2) How do grade 9 students interpret negative velocity
in xðtÞ graphs and in algebraic formulas; and how
does this compare to positive velocity and to
negative and positive slope in the isomorphic yðxÞ
questions in mathematics?

(3) How does the use of graphs or algebraic formulas
affect grade 9 students’ accuracies and solution
strategies when determining or comparing velocity
or initial position in linear xðtÞ problems in kin-
ematics and slope or y intercept in linear yðxÞ
problems in mathematics?

(4) How can we categorize grade 9 students’ strategies
when comparing and identifying velocity or initial
position in linear xðtÞ problems in kinematics and
slope or y intercept in linear yðxÞ problems in
mathematics?

To answer these questions we design and validate a test in
the next sections. An English translation of the resulting test
is available for download as Supplemental Material [26].

B. Design choices

A linear relation can be characterized by the combination
of the signs of the y intercept and the slope. To limit the
number of items, we select the two function types most
familiar to our respondents: positive y intercept and positive
slope, and positive y intercept and negative slope; each of
these is represented by either a graph or an algebraic formula.
The subject of each question is either of the two concepts: the
y intercept or the slope. In addition, two kinds of tasks are
used: determine thevalue of a concept or compare thevalue of
a concept between two different situations. We combine the
representations and the tasks into three different question
types: determine via a graph, determine via a formula and
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compare via a graph. The other combinations are omitted
because they are deemed less prone to errors and to limit the
number of items. The contexts under investigation are
kinematics and mathematics. In kinematics, students are
presented with a description of one or two vehicles driving
along a straight roadwith constant velocity, thus performing a
1D uniform linear motion. In mathematics, the questions
concern a functionfðxÞ andnoadditional context is provided.
To gain insight in student reasoning, we choose an open-
ended question format including the explicit requirement for
an explanation in some strategically selected questions.
Finally, to obtain a consistently structured test and clearly
defined questions, some additional design choices are made
which are illustrated in the examples provided in Fig. 2:

(i) In graphs, we focus on the first quadrant because we
want to avoid issues which the use of other quad-
rants might trigger. We do show small sections of the
other quadrants and we draw the curves in those
quadrants depending on our students’ familiarity
with negative values for the respective variables. The
result is that we include negative values for position,
but exclude negative values for time. In mathematics
we include negative values for all variables.

(ii) In comparison questions with graphs, each curve is
drawn with a different thickness to better distinguish
them. Furthermore, the two curves intersect in the
first quadrant and each curve is labeled twice: once
at the left and once at the right of the intersection
point. These choices are motivated by the results
from a pilot study which showed some confusing
answers in which students referred to “the highest
curve” or “the lowest curve” which makes inter-
pretation of their explanations inconsistent.

(iii) In kinematics, units for the time t—always in
seconds—and for position x—always in meters—
are provided in the textual description of the
situation and in the case of a graph they are also
shown on the axis labels; coefficients in the formula
representation do not include units.

(iv) Formulas in kinematics use the x ¼ x0 þ vt format
in which the term with the lowest degree comes first,
a format more often used in physics. In mathematics,
formulas use the fðxÞ ¼ axþ b format in which the
term with the highest degree comes first, which is
more common in mathematics.

In addition, there is an important issue to highlight: a
stationary object must accelerate before achieving a con-
stant nonzero velocity. In the graphical kinematics items,
we implicitly assume that the measurement starts at t ¼ 0
and that the motion started before that moment, thus
avoiding the acceleration issue.

C. Test structure

The design choices result in a 24-item test structured as
shown in Fig. 1. Figure 2 shows some examples. The test

consists of two as isomorphic as possible context blocks:
12 kinematics items and 12 mathematics items. To avoid
possible learning effects of solving a particular context block
first, half of the respondents first complete the kinematics
part and then the mathematics part, and the other half has the
order reversed. The order of the items within each block is
also randomized. Both linear function types under study have
a positive y intercept but can have a positive or a negative
slope. To distinguish between these we will simply refer to
their slope sign. Each sign is questioned 6 times per context.
Each item has one concept as its subject: the slope or the y
intercept inmathematics and thevelocity or initial position in
kinematics. Furthermore, there are three different question
types. In the first type, students must compare the slope or y
intercept of two linear relations represented in a single graph.
In the second, they must determine slope or y intercept given
a graph. In the third question type, theymust determine slope
or y intercept given an algebraic formula. For the majority
of the items the respondents are required to provide an
explanation for their answer, using the additional instruction
“Explain your answer.” This was not done for all items to
limit the test time.The itemswhich require an explanation are
marked in Fig. 1 and are strategically chosen to gain as much
understanding as possible, to avoid repetition of similar
answers, and to collect answers about the items for which
we expected the most difficulties, e.g., the comparison of
negative velocities in a graph.
We designed this test to evaluate whether students can

interpret concepts related to linear relations in different
contexts. The test is not a concept test or an inventory [27]
in the sense that it aims to measure students conceptual
understanding in a particular domain, but rather aims at
comparing students’ understanding of particular isomor-
phic concepts between different domains like physics or
mathematics. Its structure is in line with many other
existing tests. It is most similar to the ones from Bollen
et al. [7] and Wemyss and van Kampen [3] which study a
similar topic in isomorphic contexts and make use of
written explanations for analysis. Also comparable are
the test from Planinic et al. [2,4] and Ivanjek et al. [28],
who studied line graphs in various contexts using multiple
choice tests and tests with open questions requiring an

FIG. 1. Test structure: two signs for the slope (positive
and negative); two concepts (slope and y intercept); three
question types using two tasks (compare or determine) and
two representations (graph and formula); two contexts [kinemat-
ics (K), mathematics (M)]. The items marked in gray require
an explanation.
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explanation. In addition, Bassok and Holyoak [29] com-
pared constant acceleration kinematics and the isomorphic
algebra question in a textual representation using think-
aloud protocols. Furthermore, similar test structures have
also been used for different topics by, e.g., Pollock et al.
[30] when they compared the understanding of integrals in
physics and mathematics; as well as by Barniol and Zavala
[31] who studied the effect of context on students’ under-
standing of vector concepts in their TUV-12 test and related

studies [32], though the latter made use of multiple-choice
questions.

IV. TEST ADMINISTRATION

A. Participants

The test was administered in 2017 in 17 classes distrib-
uted over 7 secondary schools in Flanders (Belgium) with
one physics teacher and one mathematics teacher per school

FIG. 2. Three kinematics (K) items and the three isomorphicmathematics (M) examples illustrating the different factors in the test design.
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for these classes. A total of 253 students with ages 14–15
participated in the study. These grade 9 students were
enrolled in programs with a strong science component.
Our cohort consists of 117 females and 136 males. All of
them had received instruction on linear relations in math-
ematics and on basic 1D kinematics in physics in compli-
ance with government imposed mandatory learning goals.
Typically, instruction starts with examples from everyday
life and simple experiments, followed by the introduction of
the mathematical formula for average velocity, after which
the graphical representation and interpretation in xðtÞ graphs
for uniform linear motions and other linear motions is
discussed, and finally, the necessity to use vectors and the
vector properties of velocity are made clear through exam-
ples. Additionally, experiments such as electric toy cars
tracked by a motion sensor which outputs the measurement
data in a graph are strongly encouraged. There is usually
little to no focus on the algebraic formulation of a uniform
linear motion in the physics course at this point. Total time
allocated for this is 6 teaching hours of 50 minutes each. In
mathematics students learn about linear relations and linear
functions in graphical representations, algebraic represen-
tations, and tabular representations during 17 teaching hours
of 50 min each. These lesson series start with the definition
of the linear function, drawing linear graphs, translating
between the various representations, discussing themeaning
of the coefficients, studying the signs of the coefficients, of
the dependent and independent variable, and solving stan-
dard exercises. Six schools participating in this study were
part of a larger research project for which they had agreed to
allow testing to take place within the classes with the
required profile. One additional school was also contacted
and voluntarily agreed to have classes with the requested
profile to participate in the study. The locations of these
schools are distributed across Flanders and all of them
provide “aso education” in which students receive education
on a broad number of topics to prepare them for higher
education. All students in each class had to participate,
but parents were given the possibility to have their child
excluded from the test for, e.g., performance anxiety
reasons, which only occurred a negligible number of times.
Ethical approval for this study was granted by the Sociaal-
Maatschappelijke Ethische Commissie (SMEC) Social and
the Societal Ethics Committee of KU Leuven.

B. Test procedure

The test is administered as a paper-and-pencil test to
allow the respondents as much freedom as possible in the
way they construct and explain their answers. The students
are notified beforehand that a test will take place as part of a
research project, that they do not need to prepare for it and
that no credit can be earned. At the start, they are informed
that the available time is 45 min, that it is crucial to explain
their answer whenever this is required, and that they may
use whatever method they prefer in their explanation, e.g.,

write a text, make a calculation, make a drawing, annotate
the graph or formula, etc. Furthermore, if they are unable to
answer a question they are asked to mark that question with
a forward slash to indicate that they have read the question
but do not know the answer.

C. Data analysis

In the quantitative analysis, coding of the data is
dichotomous: unanswered and incorrect items are coded
as incorrect (i.e., accuracy 0). An answer is considered
correct if both the answer and the explanation (when
required) are correct (i.e., accuracy 1). When the answer
is correct but the explanation is not, the item is marked as
incorrect. When the answer is correct but the required
explanation is missing, the item is marked correct, giving
the respondent the benefit of the doubt. For questions in
which no explanation is required the answer is coded as 1
when correct and as 0 when incorrect. Item K4 (included in
Fig. 2) requires special attention. This item asks to compare
two negative velocities in a graph, which can create a
polarizing discussion in Dutch since there is no linguistic
distinction between “velocity” and “speed,” both are
translated as “snelheid.” This issue has also been discussed
in our previous work [8]. In this study we choose to
interpret snelheid as velocity in all questions, meaning that
we expect students to take both the magnitude and the
direction into account. Essentially this means that, since
these are all 1D situations, we inquire about the scalar
component vx of velocity v̄ whenever we use snelheid in
this test. This choice means that we consider “Cyclist a” to
be the correct answer for question K4, which is in line with
the isomorphic question M4 (also included in Fig. 2), in
which answer “f” is correct. Also in questions with an
algebraic formula, the minus sign must be included in the
answer, e.g., in K11 in Fig. 2 the correct answer is
−10 m=s.
Analysis is done using generalized estimating equations

(GEE) [33,34], which is an adaptation of logistic regression
analysis and takes the repeated measurements of our
dichotomous scoring into account [35]. The IBM ®
SPSS ® Statistics version 24.0.0.0 software package is
used. Settings in the GEE functionality are binomial
probability distribution with the logit link function, the
Fisher parameter estimation method, the type III error
analysis type, Wald statistics, and the Bonferroni correction
to adjust for multiple comparisons. Our statistical model
includes context (1D kinematics or mathematics), QType
(compare given a graph, determine given a graph, deter-
mine given a formula), concept (y intercept, slope) and
slope sign (þ, −), gender (female, male). We include
gender since this has been shown to have a possible
(interaction) effect with the external representation [36],
which is related to the question type in this case. All main
effects, two-way effects, and three-way effects are included
in the model.
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For the qualitative analysis, we use open coding to
identify common strategies and recurring ideas across
different students. This results in a first categorization
scheme describing student explanations. To achieve a
sound categorization, the scheme is—based on a subset
of the data—refined by a second researcher and then
independently used to analyze a new subset of the data
by the first author and a colleague. The final categorization
scheme is discussed in Sec. VI.

V. VALIDATION AND STUDENTS’ ACCURACY

In this section the validation of the test is discussed,
followed by a quantitative analysis of the answers.

A. Validation

Here, we report on key validation parameters, which
show that the test has good internal consistency, a wide
range of item difficulty indexes and item discrimination
indexes, and a good discriminatory power which makes the
test well suited for our goals. An overview of these results
on a per-item basis is provided in Table I.

1. Internal consistency

The internal consistency is assessed using Cronbach’s α,
which is α ¼ 0.791 and is an acceptable value just shy of
0.80, the criterion for a “fairly high” internal consistency
[37]. Since omitting certain items from the test might
increase this value, α was also calculated for each case in
which an item i is omitted from the test. These values are
shown in Table I and show that omitting a test item would
only marginally increase the internal consistency by a
maximum of 0.04 in the case of item M4.

2. Item difficulty index

Because of our dichotomous coding for the accuracy, the
average accuracy of each item translates directly into the
item difficulty index P:

P ¼ Nc

N
; ð1Þ

in which Nc is the number of answers with accuracy 1, and
N is the total number of answers, which is the number of
participants: N ¼ 253. A higher value for P is indicative of

TABLE I. Validation results sorted by context (indicated by “K” for kinematics and “M” for mathematics in the question number Q);
by representation (graph or formula); by task (compare or determine), by slope sign (“þ” for positive, “−” for negative) and by concept
(y intercept or slope). The statistical parameters are item difficulty index P and its standard deviation SD; Cronbach’s α when the item in
question would be deleted; and item discrimination index D. Items marked with � require the respondent to provide an explanation for
their answer.

Q Representation Task Slope sign Concept P SD α when deleted D

K1 Graph Compare þ y intercept 0.88 0.33 0.783 0.34
K2� Graph Compare þ Slope 0.92 0.28 0.790 0.18
K3 Graph Compare − y intercept 0.83 0.38 0.788 0.26
K4� Graph Compare − Slope 0.13 0.34 0.795 0.12

K5 Graph Determine þ y intercept 0.74 0.44 0.783 0.46
K6� Graph Determine þ Slope 0.48 0.50 0.794 0.32
K7� Graph Determine − y intercept 0.66 0.47 0.782 0.53
K8� Graph Determine − Slope 0.14 0.35 0.791 0.15

K9 Formula Determine þ y intercept 0.37 0.48 0.779 0.53
K10� Formula Determine þ Slope 0.11 0.32 0.784 0.26
K11� Formula Determine − y intercept 0.35 0.48 0.781 0.51
K12� Formula Determine − Slope 0.05 0.21 0.791 0.07

M1 Graph Compare þ y intercept 0.53 0.50 0.779 0.66
M2� Graph Compare þ Slope 0.85 0.36 0.786 0.28
M3 Graph Compare − y intercept 0.54 0.50 0.786 0.49
M4� Graph Compare − Slope 0.41 0.49 0.791 0.44

M5 Graph Determine þ y intercept 0.39 0.49 0.776 0.66
M6� Graph Determine þ Slope 0.70 0.46 0.780 0.54
M7� Graph Determine − y intercept 0.37 0.48 0.770 0.82
M8� Graph Determine − Slope 0.67 0.47 0.787 0.43

M9 Formula Determine þ y intercept 0.36 0.48 0.777 0.65
M10� Formula Determine þ Slope 0.74 0.44 0.783 0.51
M11� Formula Determine − y intercept 0.36 0.48 0.772 0.74
M12� Formula Determine − Slope 0.71 0.45 0.780 0.62
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an easier item and a lower value indicates a more
difficult question. Table I shows an item difficulty range
between 0.05 and 0.92, and an average item difficulty
of 0.51� 0.26.
The items with the highest average scores are K1, K2,

K3, and M2, which are all “compare given a graph”
questions, three out of four have a positive slope, and
three out of four are kinematics questions. This illustrates
the contrast between the contexts since the most difficult
questions, as well as the majority of the easiest questions
are found in kinematics, while the mathematics items do
not have such extreme item difficulty indexes and are less
broadly distributed. Furthermore, these observations high-
light the important effect of the slope sign on the average
accuracy and the difficulty students have with negative
slopes in kinematics.
Items K4, K8, K10, and K12 stand out because they have

very low item difficulty indexes accompanied with some
of the lowest standard deviations, meaning that these
items are very difficult for the large majority of students.
The common factor for these four questions is that all are
kinematics items in which the concept is the velocity. The
sign of the velocity is negative for K4, K8, and K12; and the
task in items K8, K10, and K12 is to determine the velocity.
The counterparts of these questions in mathematics (M4,
M8, M10, M12) show no such pattern and the counterparts
which query about the y intercept (K3, K7, K9, K11) do not
show any similarities either. Furthermore it is clear from the
lower item difficulty indexes of K9 and K11 that determin-
ing the initial position given a formula is far more difficult
than when presented with a graph.
Of note here is the extreme contrast between item K2 and

K4, which are analogous questions except for the sign of
the velocity.
Another remarkable difference is clear when comparing

the K5–K8 block with the isomorphic M5–M8 block, i.e.,
the items in which to determine the y intercept or slope
given a graph. For these blocks, the item difficulty indexes
for the kinematics items have the opposite structure of those
in mathematics: it is easier to determine the initial position
than the velocity in kinematics graphs compared to math-
ematics, where it is easier to determine the slope than the y
intercept. Part of this might be explained by the lower
familiarity students have with the term “function value” in
the wording “the function value of 0” in the mathematics
items—compared to the more familiar “initial position” in
kinematics. Although the wording is part of the official
curriculum, many students made note of this lack of
familiarity during the test or in their explanations. This
is also clear in the items in which the y intercept has to be
compared (K1, K3, M1, M3). For these items we did not
require an explanation because we expected them to be
easy and result in fewer interesting explanations. This
proves to be correct in kinematics with accuracies for K1
and K3 above 0.80, but was not the case in mathematics

(M1 and M3) which have an accuracy of 0.53 and 0.54,
respectively. This difference between the isomorphic items
indicates that students did not recognize the similarities
between the contexts.

3. Discriminatory power

The discriminatory power of a test is a measure of its
ability to discriminate between respondents with high and
low ability. On a per-item basis, we can calculate the item
discrimination index D ¼ PU − PL, in which PU is the
item difficulty index of the upper group of test scores, i.e.,
the 27% of highest scoring students; similarly, PL is the
item difficulty index of the lower group, i.e., the group with
the 27% lowest scoring students [37]. The higher the value
of D for an item, the better that item discriminates. The
results are shown in Table I and range between 0.07 and
0.82 with an average of 0.44� 0.20. Again the same four
kinematics items (K4, K8, K10, and K12) stand out for
their low score; which—combined with their lower item
difficulty index—shows that the large majority of students
has severe difficulties with these questions and that the
score distribution for these four items is very narrow.
Additionally, item K2—a kinematics item to compare
positive velocities in a graph—has a very low item
discrimination index in combination with a very high item
difficulty index, indicating that this item is very easy for the
large majority of students and that its score distribution is
very narrow.
To assess the discriminatory power of the full test we use

Ferguson’s delta δ, which is the ratio of the interperson
differences to the maximum number possible:

δ ¼ ðkþ 1Þðn2 − Σk
i¼1f

2
i Þ

kn2
; ð2Þ

with k ¼ 24 the number of items in the test, n ¼ 235 the
sample size, and f the frequency of a certain score i, with i
from 1 to k. This results in δ ¼ 0.971, which easily satisfies
the minimum required value of 0.9, meaning that the test
has good discriminatory power [37].

B. Main effects and interaction effects

In this section we discuss the results from the GEE
analysis, the errors in this section are always standard
errors. The GEE analysis shows four significant
main effects. The first is context, for which we find Wald
χ2ð1Þ ¼ 27.363 and p < 0.001 and a significant difference
(p < 0.001) between a mean of 0.45� 0.02 for kinematics
and 0.56� 0.02 for mathematics, which is in line with the
results from our previous study [8]. The second significant
main effect is that from QType with Wald χ2ð2Þ ¼ 194.836
and p < 0.001. The means are 0.67� 0.02 for “compare
given a graph,” 0.51� 0.02 for “determine given a graph,”
0.33� 0.02 for “determine given a formula,” and each
pairwise comparison is significant (p < 0.001). Third, for
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concept the results are Wald χ2ð1Þ ¼ 17.567 and p <
0.001 with a significant (p < 0.001) difference between
0.55� 0.02 for y intercept and 0.46� 0.02 for slope. For
slope sign this results in Wald χ2ð1Þ ¼ 227.176 and
p < 0.001. Pairwise comparison of the slope sign shows
a significant difference (p < 0.001) with a mean of 0.61�
0.02 for positive slope and 0.40� 0.02 for negative slope.
Lastly, the variable gender—just like in our previous study
[8]—does not result in a significant main effect: Wald
χ2ð1Þ ¼ 1.356 with p ¼ 0.244.
There are also many significant interaction effects, which

are shown in Table II.
First, the term “context * concept” for which the results

are provided in Fig. 3. This shows that, concerning the y
intercept, students perform significantly (p < 0.001) better
in kinematics than in mathematics, while the opposite is
true for questions concerning the slope.
The results for the term “context * slope sign” are shown

in Fig. 4, which show that students’ performance for
questions with positive slope is very similar in kinematics
and mathematics. For negative slope though, there is a

significant (p < 0.001) difference between the two con-
texts which indicates that students have far more difficulties
with negative velocity than they dowith negative slope. The
majority of this difference originates from questions in
which the velocity or slope is the concept and the ∼50%
drop between positive and negative scores in kinematics
happens equally across all three questions types.
Figure 5 shows the results for the term context * QType,

which illustrates that there are significant differences
(p < 0.001) between the two contexts for “determine via
formula” and “compare via graph,” in which the former has
the largest difference between the contexts. Furthermore,
there are no significant differences among question types in
mathematics, but very significant differences (p < 0.001)
between all of them in kinematics.
Since the slope causes many difficulties in kinematics, it

is interesting to zoom in on the results for the slope in the
term context * QType * concept, which are shown in Fig. 6.
This graph shows significant (p < 0.001) differences
between contexts for the two question types including
the “determine” task. Furthermore, it shows no significant
differences between question types in mathematics, but

TABLE II. Significant two-way and three-way interaction
effects with Wald χ2, degrees of freedom (DOF), and significance
(p value) up to three digits.

Term χ2 DOF p

Context * concept 348.240 1 0.000
Context * slope sign 84.922 1 0.000
Context * QType 160.690 2 0.000
QType * slope sign 117.569 2 0.000
Concept * slope sign 156.080 1 0.000
Concept * gender 6.382 1 0.012
Context * QType * Concept 22.178 2 0.000
Context * QType * slope sign 10.351 2 0.006
Context * concept * slope sign 45.961 1 0.000
Context * slope * gender 4.009 1 0.045
QType * concept * slope sign 91.056 2 0.000
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FIG. 3. GEE results for the term context * concept. The
p value of the comparisons is indicated by * for p < 0.05,
** forp < 0.01, *** forp < 0.001. Highly significant differences
are found between the contexts for each of the concepts.
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FIG. 4. GEE results for the term context * slope sign. The
p value of the comparisons is indicated by * for p < 0.05, ** for
p < 0.01, *** for p < 0.001. A highly significant difference is
found between the contexts for negative slopes.
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FIG. 5. GEE results for the term context * QType. The
p value of the comparisons is indicated by * for p < 0.05,
** for p < 0.01, *** for p < 0.001. Highly significant
differences are found between the contexts for compare given
a graph and for determine given a formula question types.
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very significant (p < 0.001) ones in kinematics. The
highest mean accuracies in kinematics are achieved in
compare via graph because the very high accuracies for
positive slope questions in this question type compensate
the very low accuracies for negative slope questions in this
question type, thus averaging out slightly above 50%. For
the other two question types though, the mean accuracies in
kinematics are very low for both the negative and positive
slopes resulting in significantly lower mean accuracies
overall.
Figure 7 shows the significant difference (p < 0.001)

between physics and mathematics and positive and neg-
ative slope for questions concerning the slope. Most
importantly, it shows that negative slope is far more
difficult in kinematics compared to mathematics.
These results support those from the validation, which is

that students have the most difficulties with items in
kinematics, concerning slope, with negative velocity in
all three question types, i.e., items K4, K8, and K12.
In addition item K10, in which students must determine the
positive slope when given a formula, also poses increased
difficulties for students. In mathematics the main difficulty

is determining the y intercept in both graphs and algebraic
formulas. This is possibly explained by the relative unfa-
miliarity with the terminology “function value” in the
wording “the function value of 0” to indicate the y intercept
in the mathematics items. Furthermore, there is a larger
focus on the x intercept than there is on the y intercept in
mathematics lessons. In kinematics the initial position of a
motion is of greater importance since in this context the
choice of the coordinate system and its origin is often
intelligently chosen so that the initial position is in the
origin. Furthermore, terminology such as “initial position”
is more intuitively clear for students compared to the
function value of 0 as was also the case in Davis’ study [1].

VI. QUALITATIVE RESULTS

For the qualitative analysis, a categorization scheme
was constructed bottom up from the raw data. First, a
pilot study with 181 students and a first version of the
test was performed and a first version of the scheme was
constructed. A second researcher made refinements to the
test to make the graphs and the wording clearer and to
create a better distinction between the two contexts, but
the structure of the test remained. The scheme was
optimized by grouping some categories and creating a
better distinction between others. That optimized scheme
was then used to categorize a subset (n ¼ 42) from the
new data from the refined test by a third researcher,
which resulted in some additional refinements. The final
scheme was then used to categorize all the new data
(n ¼ 253) by the second researcher. In this section we
describe the scheme, validate its reliability, and discuss
trends in the data.

A. Categorization scheme

The final categorization scheme is shown in Table III. It
is split by concept (y intercept or initial position and slope
or velocity). The first seven categories are shared between
both concepts followed by two and four concept specific
categories. Answers usually fall in only a single category,
but a non-negligible number of questions had answers
which made use of multiple strategies, in which case they
were put into all suitable categories.

I1/S1: Location in an equation: A coefficient in the
equation is marked by underlining it or encircling it.
Alternatively, the student explicitly writes that, e.g.,
“6” is the answer because it is located before the “x.”

I2/S2: Identification of the x intercept: Instead of
identifying the y intercept or slope they identify the x
intercept (graphical or symbolic).

I3/S3: Construct an equation: Change of representa-
tion. When presented with a graph, an equation was
constructed.

I4/S4: Construct a graph: Change of representation.
When presented with an equation, a graph was
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FIG. 6. GEE results for the slope in the term context * QType *
concept. The p value of the comparisons is indicated by * for
p < 0.05, ** for p < 0.01, *** for p < 0.001. Highly significant
differences are found between the contexts for determine given a
graph and for determine given a formula question types.
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FIG. 7. GEE results for the slope in the term context * concept *
slope sign. The p value of the comparisons is indicated by * for
p < 0.05, ** for p < 0.01, *** for p < 0.001. Highly significant
differences are found for the slope between the contexts for both
slope signs.
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constructed. This need not be a detailed one, a simple
sketch suffices.

I5/S5: Construct a table: Change of representation. A
table is constructed with two or more data points.

I6: Intersection with vertical axis: When a graph is
given or constructed, the y intercept is marked by, e.g.,
encircling it or drawing an arrow towards it. Often this
is accompanied by written explanations such as “This
is where the line/graph/cyclist starts/begins.”

I7: Calculate a specific function value: When an
equation is given or constructed, the value of the
dependent variable is calculated for a specific value of
the independent variable, often with x ¼ 0 or x ¼ 1.

S6: Reasoning with “steepness”: Qualitative reasoning
concerning the steepness of the graph. Often wording
similar to “Graph a is steeper than graph b” is used.

S7: Drawing a triangle on a graph: Drawing a triangle
with a vertical and a horizontal side under or above the
line of a graph to indicate the step change in both
directions. Often these triangles are accompanied by
the change in value along each axis with notations
such as “+1” and “-2.” The size of the triangle does not
matter.

S8: Ratio of differences: Calculation of the slope using
Δy=Δx or ðy2 − y1Þ=ðx2 − x1Þ, or written explana-
tions such as “In 1s the cyclist traveled 2m;” “If x
increases with 1, then y increases with 3;” “If you go
one unit to the right, then you go 3 units up.” A
specific case in this category is when the ratio of the y
value of the y intercept over the x value of the x
intercept is calculated, which is essentially the ratio of
the differences from the intercepts with respect to the
origin. More qualitative explanations also fit in this
category, such as: “In the same time, cyclist b traveled
more meters;” “Cyclist b starts later, but still overtakes
cyclist a.”

S9: Ratio of coordinates: The ratio y=x of some
coordinate ðx; yÞ is calculated. This includes cases in
which the correct formula is written, e.g., v ¼ Δx=Δt,

but actually v ¼ x=t is calculated, signaling the dis-
regard or the misunderstanding of Δ in the formula.
Often fð1Þ=1 or fðx ¼ 1Þ is calculated. Also written
explanations such as “The yvalue of functionf is larger
than that of function g for the same x value” with
comparison questions are in this category.

I99/S99: Other: All answers which are less frequent and
do not fit in any of the other categories. For example,
confusion of y intercept and slope; calculations with
the coefficients of a formula such as a � b or aþ b in
fðxÞ ¼ axþ b; identifying the slope as 6x in
fðxÞ ¼ 6xþ 2; in the case of a y intercept question,
providing coordinates such as (0,2) given the equation
fðxÞ ¼ 6xþ 2, which is always considered incorrect
since the questions ask for the function value or the
initial position; or in case of a y intercept question,
providing a coordinate constructed of the x intercept
and the y intercept such as ð− 1

3
; 2Þ for fðxÞ ¼ 6xþ 2.

Categories I3/S3, I4/S4, and I5/S5 all describe a change
in representation, these categories are always accompanied
by another strategy to fully answer the question. We
deliberately keep these categories separate so we can
compare their prevalences. Categories S7 and S8 are both
essentially a ratio of differences, but our data strongly
suggest that it is useful to distinguish the two.

B. Interrater reliability

To validate the classification scheme, the interrater
reliability is calculated using Cohen’s κ, which provides
a measure for the agreement between two raters of the same
data. The coefficient can be calculated as follows:

κ ¼ p0 − pe

1 − pe
; ð3Þ

in which p0 is the accuracy of the agreement between the
raters, i.e., the percentage of agreement; and pe is the
probability of agreement by change. We found a Cohen’s κ
of κ ¼ 0.607 and calculation of κ on a per item basis
showed values often much higher than that, which indicates
good agreement [38,39] between the categorization of
the second and third researcher for a subset of the data
(n ¼ 42).

C. Results

In this section we describe students’ use of the strategies
in the categorization scheme. Since not all questions in the
test require an explanation and since not every answer
contained an explanation (required or not), we express
frequencies relative to the number of answered questions
for which at least one strategy was discerned by the
researcher. This means that unanswered questions are
not included. With this definition, the maximum frequency
of 100% for a certain category means that every answered
question was provided with an explanation and that this

TABLE III. Bottom-up constructed categorization scheme.

y intercept or initial position Slope or velocity

I1: Location in an equation S1: Location in an equation
I2: Identification of the
x intercept

S2: Identification of the
x intercept

I3: Construct an equation S3: Construct an equation
I4: Construct a graph S4: Construct a graph
I5: Construct a table S5: Construct a table
I6: Intersection with
vertical axis

S6: Reasoning with
“steepness”

I7: Calculate a specific
function value

S7: Drawing a triangle
on a graph

S8: Ratio of differences
S9: Ratio of coordinates

I99: Other S99: Other
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category was used in all those explanations. To clarify this
a bit more, let us assume that the data contains 2000
questions which were answered and for which an explan-
ation was provided which is categorized in at least one
category. Since some explanations contain multiple cat-
egories, the total number of items in all categories is higher
than 2000, but 2000 is the maximum prevalence for each
single category, i.e., this prevalence would result in a
frequency of 100%. If 400 out of 2000 cases with at least
one category are categorized in category X, then the
frequency for X is 20%. A discussion about the highlights
will be provided and the main discussion will be done
in Sec. VII.

1. y intercept

The results for the y intercept questions are shown in
Table IV. Answers without any explanation are omitted
from this analysis. When an explanation is provided but not
requested, the answer is included in the data. This results in
far more data than anticipated than from the four questions
which explicitly require an explanation for the y intercept
(shown in Fig. 1). The resulting data set contains 1600 uses
of at least one strategy across the twelve questions about the
y intercept, 723 in kinematics and 877 in mathematics. The
gathered data structure is largely in line with the full test
structure in Fig. 1. The data have a determine/compare ratio
close to 2=1, a graph/formula ratio close to 2=1, and a
positive/negative slope ratio close to 1=1. Because of the
inclusion of all items accompanied by an explanation,
about 13% of the kinematics questions in the data set are
comparison items. This means that the frequencies pro-
vided are predominantly from questions with a determine
task, that half of them use a graph and the other half a
formula, and that they are almost exclusively from ques-
tions with a negative slope.
The most common strategy—and simultaneously the

most common error—in general, is identification of
the x intercept (I2), with a frequency of 27.1%. A very
large difference between the contexts is found: only
9.7% in kinematics and 41.5% in mathematics. The

change of representation also shows interesting results.
Constructing an equation (I3) when a graph is provided also
shows a stark difference between kinematics (4.1%) and
mathematics (20.2%) with an overall frequency of 12.9%.
Furthermore, when construction of a graph (I4) is used, it
mainly happens in kinematics. Tables are rarely used to
determine the y intercept. The most used strategy in
kinematics is the determination of the intersection with
the vertical axis (I6) of a graph with a frequency of 39.6%,
which is in stark contrast with that for mathematics, which
is only 11.7%.
The calculation of a specific function value (I7) is also a

frequently used method, especially in mathematics with
28.6%, compared to 17.6% in kinematics. A total of 83% of
the answers in I7 are correct, meaning students indeed
calculate fð0Þ in the majority of these cases.

2. Slope

The results for the slope questions are shown in Table V.
Answers without any explanation are omitted from this
analysis. The data set contains 2501 uses of at least one
strategy across the twelve questions about slope, 1202 in
kinematics and 1299 in mathematics. As shown in Fig. 1,
all twelve slope questions require an explanation. The data
structure is inline with the structure of Fig. 1. This means
that the data have a determine/compare ratio close to 2=1, a
graph/formula ratio close to 2=1, and a positive/negative
slope ratio close to 1=1.
The most used strategy for slope is calculating the ratio

of differences (S8) at 31.4% overall and with a substantial
difference between the contexts with 41.5% in kinematics
and 22.0% in mathematics. The second most used strategy
is more qualitative: reasoning with steepness (S6) at 19.0%,
which is more often used in mathematics (22.9%) than in
kinematics (14.7%). Triangles are drawn on a graph (S7)
much more often in mathematics (19.7%) compared to
kinematics (5.6%) whereas calculating the ratio of coor-
dinates (S9) is far more frequent in kinematics (19.7%) than

TABLE IV. Frequencies (in %) for the y intercept questions. f
is across both contexts, fK is in the kinematics context and fM is
in the mathematics context. The percentages are relative to 1600,
723, and 877, respectively.

Category f fK fM

I1: Location in an equation 4.1 4.7 3.6
I2: Identification of the x intercept 27.1 9.7 41.5
I3: Construct an equation 12.9 4.1 20.2
I4: Construct a graph 2.9 5.0 1.1
I5: Construct a table 1.4 1.4 1.5
I6: Intersection with vertical axis 24.3 39.6 11.7
I7: Calculate a specific function value 23.6 17.6 28.6
I99: Other 17.3 24.8 11.2

TABLE V. Frequencies (in %) for the slope questions. f is
across both contexts, fK is in the kinematics context and fM is in
the mathematics context. The percentages are relative to 2501,
1202, and 1299, respectively.

Category f fK fM

S1: Location in an equation 15.6 1.6 28.5
S2: Identification of the x intercept 2.4 1.7 3.1
S3: Construct an equation 4.7 1.9 7.3
S4: Construct a graph 1.9 2.4 1.5
S5: Construct a table 1.5 2.0 1.1
S6: Reasoning with steepness 19.0 14.7 22.9
S7: Drawing a triangle on a graph 12.9 5.6 19.7
S8: Ratio of differences 31.4 41.5 22.0
S9: Ratio of coordinates 9.7 19.7 0.5
S99: Other 12.6 19.6 6.2
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in mathematics (0.5%). Another stark contrast between
contexts is the determination of the slope through the
location of the coefficient in an equation (S1) which
achieves an overall frequency of 15.6% with 28.5% in
mathematics and a mere 1.6% in kinematics. The repre-
sentational transitions are not often used, only the con-
struction of an equation (S3) in mathematics is notable with
a frequency of 7.3% compared to 1.9% in kinematics.

VII. DISCUSSION

The results in Secs. V and VI reveal significant main
effects and interaction effects, and substantial differences in
strategy between the two contexts. In this section, we
discuss these results as well as selected examples from
student explanations.

A. y intercept

The most difficult kinematics questions for this concept
are K9 and K11 which both require determining the initial
position when a formula is given. Very similar results are
found for the mathematics questions M9 and M11, which
illustrates the difficulty students have with interpreting an
abstract algebraic expression. We assume that experts are
more likely to determine the y intercept by identifying the
coefficient of the zeroth order term (I1), but to our
knowledge there is not yet any study available to support
this claim. Our data show that students make very little use
of this method and instead attempt a calculation to do so, or
determine the x intercept (I2) instead. Furthermore, the
change in the order of the terms in an equation between
kinematics and mathematics [design choice (iv)] does not
have a noticeable effect, though particularly because
strategy I1 is infrequently used.
Concerning representational transitions (I3, I4, I5), we

find that many students construct an equation (I3) in
mathematics but do this far less in kinematics. This
increased use of algebraic expressions in mathematics
is in line with the conclusions from Acevedo Nistal,
Van Dooren, and Verschaffel [18] who studied students’
flexibility in choosing a representation to solve linear
function problems. They found that students have a very
strong preference or feel very strong pressure to use
formulas, which increases with the grade they are in.
The categorization scheme could be simplified here by
grouping I4 and I5 into a single category due to the low
frequencies, but category I3 should definitely be kept
separate.
The most common strategy—and simultaneously the

most common error—in general, was identification of the
root, i.e., (I2) confusing the y intercept with the x intercept
with far more errors in the mathematics context. As
mentioned before, the large number of errors in mathemat-
ics can probably be attributed to a low familiarity with the
term function value of 0, which was used in the item

formulation. The low familiarity was indicated by the
students, though it is part of their official curriculum.
This compares well with the GEE results in Fig. 3, which
show a significant difference in average accuracy between
kinematics and physics for the y intercept. These results can
be linked to the conclusions from Davis [1], which also
indicated that students have more difficulties with using the
official terminology whereas they were more successful
with informal terminology such as “the starting point” in
physics questions. The use of terminology such as starting
point or “initial position” might also have a negative effect
though. A small number of students wrote replies similar to
“the initial position is always 0 m” in the kinematics
questions. These explanations were categorized in the
“other” category (I99) and did not occur in the mathematics
questions. In many standard kinematics exercises, students
are taught to intelligently choose the reference system such
that the initial position is in the origin, which simplifies the
equations and the calculation. Quotes such as the one above
show that some student believe that the point 0 m or the
origin in a position-time graph is always the initial position,
almost as if that is its name. This implies that students at
this early stage of learning kinematics have difficulties
understanding the concept of a reference frame. They seem
unaware that shifting a reference frame changes the graph
and the equation, but still describes the same physics and
the same reality. Such difficulties show that this might be an
opportune time—or perhaps already too late—to introduce
the first notions of relativity.
Category I99 contains another notable error, although

also with low frequency: the use of the coordinate notation,
e.g., ðx; yÞ or ðt; xÞ, which is most often a combination of
the x component of the x intercept and the y component of
the y intercept. This occurs in both contexts and most often
in questions with a graph with a negative slope. This use of
coordinate notation relates to the “Cartesian connection,”
which is the realization that each point on a line represents
an ordered pair that satisfies the equation representing the
line [1]. Davis [1] states that the y intercept can be used to
promote the Cartesian connection since it can be directly
identified in the equation—which we categorized as strat-
egy I1 and assume to be the preferred method by experts.
Our results show that a minority (less than 10%) use the
Cartesian connection to answer a y intercept or initial
position question, but do so incorrectly since we explicitly
inquire about the function value or the position, which is a
single number, not a coordinate.
In general, the most interesting results concerning the y

intercept are found in mathematics since here the accuracies
are far lower than in kinematics, students’ use of strategies
shows more variation and use of informal terminology has a
bigger impact. Finally, no specific cases are of note for the y
intercept questions, the categorization scheme—when not
accounting for the representation transitions—can be used
very well to classify the most common errors and strategies.
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B. Slope

In this section we first discuss the GEE results and the
most common strategies and errors. Next, we zoom in on
the interval or point confusions by discussing three differ-
ent cases and compare between kinematics and mathemat-
ics. Afterwards, we have a similar discussion about how
students treat the sign of the slope in kinematics and
mathematics.

1. General discussion

Questions concerning slope are found to be particularly
difficult in the kinematics context with a negative slope
and the most difficult when presented with a formula.
In determine via formula questions about the slope in
kinematics, the average accuracies are extremely low
compared to their isomorphic version in mathematics.
Furthermore, negative slope questions result in acceptable
average accuracies in mathematics, but extremely low
average accuracies in kinematics. A large factor of influ-
ence in these results is the inclusion of the possible minus
sign for the one-dimensional velocity as a criterion for a
correct answer. The results show that the large majority of
students does not include the minus sign in kinematics, i.e.,
they consider the magnitude and omit the direction. This
pattern is not present in the mathematics questions, so when
isomorphic equations and graphs are used, students are far
more likely to include the minus sign.
Part of the large overall difference between the two

contexts can be explained by the more expertlike use of
strategies in mathematics by determining the slope from an
equation through locating the coefficient in the expression
(S1). This strategy achieved a 28.5% frequency in math-
ematics compared to a mere 1.6% in kinematics. This
shows that students do not see the link between the slope of
linear functions and of velocity in xðtÞ expressions, which
indicates a weak link between contexts and a compart-
mentalization of understanding within contexts.
By far the most preferred method in kinematics is

calculating the ratio of differences (S8) (mainly in ques-
tions with a graph). The method is not always applied
correctly though. After calculating the ratio of differences,
students often omit the minus sign (when present) from
the result. From students’ explanations it is clear that
this is triggered by the use of the formula v ¼ Δx=Δt in
kinematics and a ¼ ðy2 − y1Þ=ðx2 − x1Þ in mathematics.
Although this is essentially the same formula, there are
a few differences in students’ use. In mathematics, the
formula is usually used correctly. In physics students
usually write down the correct formula but often
calculate v ¼ jΔx=Δtj. The second most common error
in kinematics—also often after writing down the correct
formula—is misinterpretation of the Δ and calculation of
the ratio x=t of coordinates ðx; tÞ for some point on the
graph (S9). This S9 strategy has a frequency of 19.9% in
kinematics but only 0.5% in mathematics. In mathematics,

a lot more students resort to drawing a triangle on a graph
(S7), which in almost all cases has a set horizontal length of
1 and a vertical length proportional with the slope—usually
also including the correct sign in mathematics. This differ-
ence between the two contexts for S7 confirms the useful
distinction between calculating the ratio of differences (S8)
and drawing a triangle on a graph (S7) in the categorization
scheme, despite that both essentially calculate a ratio of
deltas. The answers in category S8 are correct in 62% of
these cases with errors mainly due to omissions of the
minus sign or miscalculations. In contrast, the answers in
S9—a frequent strategy in kinematics questions—are
always incorrect and contain various interesting errors
which will be discussed in Sec. VII B 3. This distribution
of students’ strategies between S7, S8, and S9—which are
all predominantly used in questions with graphs—and the
frequent use of the expertlike strategy S1 in mathematics
are the most striking results for the slope in this data.
Concerning the representation transitions (S3, S4, S5),

the results show very low frequencies. Just like with the y
intercept, the construction of an equation (S3) is the
dominant one and it is more frequently used in mathematics
than in kinematics. A straightforward simplification of the
categorization scheme is to take S3, S4, and S5 together in
the same category called “change in representation,” or at
least group S4 and S5 into a single category called “change
in representation other than equation.”

2. Comparison to similar studies

We can compare our results with the categorization into
slope or height, interval or point, and iconic representations
from Leinhardt et al. [13]. First, we find a negligible
number of slope or height confusions in both contexts,
hence this is not a separate category in our scheme and we
categorize these answers into category S99: Other. Second,
we do find a substantial number of interval or point
confusions—essentially S9 in our scheme—which almost
all occur in kinematics questions. Last, we find only a small
number of iconic interpretations which are almost always in
addition to another strategy and are also categorized in the
other category (S99) due to their low occurrence.
We can also compare our results about the ratio of

differences and the ratio of coordinates to those from
Wemyss and van Kampen [3] and to those from the
follow-up study from Bollen et al. [7]. The key differences
between our study and the others are that we ask to
determine the velocity, whereas they ask to determine
the instantaneous speed, and that our respondents are
9th grade students in the Flemish educational system
whereas their students are first-year university students
in the Irish, Flemish, or Basque higher educational system.
Table VI provides an overview including the relevant data
which can be compared, specific details about this are
provided in the footnote [40]. In general, we find that the
results from our students in Flemish secondary education
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are similarly structured (lowest and highest frequencies,
largest differences, ratios of frequencies) as those from the
Flemish undergraduate students at KU Leuven, which is
that they use the ratio of differences about twice as often as
the ratio of coordinates in kinematics, and that they use
the ratio of differences far more often than the ratio of
coordinates in mathematics. This shows that the effects
from the educational system last from secondary education
to higher education. Furthermore, all cohorts show large
context gaps with kinematics being the most difficult,
indicating that students have difficulties linking their
understanding of linear function in mathematics to a similar
topic in kinematics.

3. Interval or point confusions

In questions with graphs, our data contain many exam-
ples of the well-documented interval or point confusion; in
questions with an algebraic representation though, this—to
our knowledge—has not yet been well studied. In questions
with a determine via formula task, different and kinematics-
specific errors occur in which students exhibit interval or
point confusion often combined with the use of dimen-
sional arguments. In addition, many of the examples in this
section illustrate that different contexts often result in
different strategies and errors. Three cases are discussed:

Case 1: Numerical interval or point confusion: A
value for one of the variables is entered into the
equation and the matching value for the other variable
is calculated. The ratio x=t is then calculated. This is
illustrated in Fig. 8 in which the student chose x ¼ 2,
calculated the corresponding value for t and then
calculated the ratio of both. Note that this student
correctly wrote down the formula for velocity but
failed to interpret it correctly.

Case 2: Algebraic interval or point confusion: The
student seems to look for the ratio of x over t, which
by some is literally written as distance/time, while
actually position/time is calculated. The focus here is to
find “an x” and “a t” or “a distance (position)” and “a
time” because the formula requires them. In contrast
with case 1, the first step here is to find algebraic
expressions for x and t instead of finding numerical
values. This confusion is illustrated in the answer

to K12 in Fig. 9, where the student also omits the
deltas from the formula for velocity and tries to find an
algebraic expression for x, for which the student uses
the equation of motion. After calculating the ratio, the
student is stuck and does not know how to continue to
end up with a numerical value. In contrast, in the
isomorphic question M12 (also shown in Fig. 9), the
student manages to solve the question with an (as-
sumed) expertlike strategy by identifying the slope
through its location in the equation (S1).
Another illustration of an algebraic interval or point

confusion is given by the answer to K10 in Fig. 10, in
which the student first makes clear that the equation of
motion provides the expression for x, and then manip-
ulates the equation to find an expression for t. Next, the
correct formula for v is written, and the previous two
expressions are incorrectly entered in that formula like
an interval or point confusion. Finally, the student is
stuck. Interestingly, in the comparable questionM12—
in which only the sign of the slope or velocity is
different—the student applies the (assumed) expertlike

TABLE VI. Comparison between our results (Flanders) and those fromWemyss and van Kampen [3] (W& vK) and those from Bollen
et al. [7] (KU Leuven in Belgium, UPV/EHU in Basque country in Spain, DCU in Ireland). The categories are Δy=Δx in which in some
way a ratio of differences is used (combined S7þ S8); and y=x in which in some way a ratio of coordinates is used (S9). Frequencies fK
in kinematics and fM in mathematics are expressed in percentages with respect to the total number n of answered questions.

Flanders W & vK KU Leuven UPV/EHU DCU

fK fM fK fM fK fM fK fM fK fM

Category ðn¼ 433Þ ðn ¼ 455Þ ðn¼ 403Þ ðn¼ 355Þ ðn¼ 202Þ ðn¼ 202Þ ðn ¼ 121Þ ðn ¼ 224Þ ðn ¼ 480Þ ðn ¼ 355Þ
Δy=Δx 63 86 22 57 50 81 46 74 18 57
y=x 27 1 56 25 22 5 30 9 66 25

FIG. 8. Example of case 1 with question K10 in which the
equation x ¼ 4þ 8t was provided: a numerical interval or point
confusion and additionally the Δ in the formula for v is written
but not taken into account.
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strategy S1 in which the slope is identified through its
location in the equation.

Case 3: Unit-based interval or point confusion: Here,
the student tries to find a ratio of somethingwith units in
meters over something with units in seconds to achieve
meter per second which they know is a proper unit for
velocity. Recall that we opted to not include the units in
an equation in kinematics, as stated in design choice
(iii). Figure 11 shows an example in which the student
tries to find an expression in units of meters and an
expression in units of seconds and then takes the ratio.
For the numerator the equation of motion is chosen
since this results in a value expressed in meters. Also,
the student incorrectly indicates that the term 8t has
units of seconds and chooses the full term (coefficient
and variable in this particular case) for the denominator.
An incorrect calculation then results in 4 m=s.
Figure 12 shows another example of question K10

in which the student identifies the suspected units of
the coefficients and takes the ratio to achieve a value
with units m=s. The term 8t is incorrectly thought to be
expressed in units of seconds and the other term is
correctly thought to be expressed in units of meters.

These cases and the examples illustrating them, also
provide evidence of poor algebraic manipulation skills, as

FIG. 11. Example of case 3 with question K10 in which
equation x ¼ 4þ 8t was provided: a unit-based interval or point
confusion in which the equation of motion and a term in the
equation are thought to be expressed in units of meters and units
of seconds, respectively.

FIG. 12. Example of case 3 with question K10 in which
equation x ¼ 4þ 8t was provided: a unit-based interval or point
confusion in which the coefficients from the equation were each
linked with a unit and then the appropriate ratio was taken to
calculate the velocity.

FIG. 10. Example of case 2with questionK10 inwhich equation
x ¼ 4þ 8t was provided: an algebraic interval or point confusion
in which the equation of motion is used for x and a manipulated
version for t. The comparable questionM12 from the same student
is solved using strategy S1 by identifying the slope through its
location in the equation, made clear by comparing with a standard
form fðxÞ ¼ mxþ q. The written explanation translates as: “the
slope is -6.”

FIG. 9. Example of case 2 with question K12 in which
the equation x ¼ 3–12t was provided: an algebraic interval or
point confusion inwhich the equationofmotion is substituted in the
formula for velocity. Additionally, the isomorphic question M12
from the same student is shown, in which strategy S1 is used: the
location of −6 is underlined in the question and the explanation
translates as “the slope is located before the x in the form
fðxÞ ¼ mxþ q.”
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well as poor understanding of units in algebraic expres-
sions, of the Δ symbol and of the equation of motion.
This highlights the weak link between students’ under-
standing in mathematics and in kinematics. The quality of
the link between mathematics and kinematics is likely low
in case 1 and case 2, since these are basically mathematical
approaches without any sign of proper understanding in
physics other than a formula learned by heart. Yet at the
same time the kinematics context does cause difficulties
that do not arise in the isomorphic mathematical questions.
In case 3, the students take more of a physics approach
since they take the units into account—which is promoted
by many teachers—but here they fail to connect the units to
the correct parts in the algebraic expression, which high-
lights their difficulties with algebraic expressions in con-
texts other than mathematics.

4. The sign of the slope

In questions with a negative slope, and mainly in
kinematics questions, students sometimes made statements
related to the motion of the cyclist such as: “the cyclist is
returning” or “is riding backwards” or “is slowing down.”
The first two statements indicate that these students include
a sense of direction in their interpretation, but some have
difficulty to understand and/or express moving with or
opposite the direction of the position axis. There was even a
respondent who repeatedly wrote “riding backwards or
back” thus illustrating doubts about the correct interpreta-
tion. The “slowing down” statement illustrates the difficulty
students have with interpreting xðtÞ graphs with constant
velocity by confusing them with vðtÞ or vðxÞ graphs. Our
results show that the sign of the slope in mathematics is no
problem for the majority of students, but when confronted
with a negative sign for the velocity in kinematics they
frequently omit the minus sign. Recall that Dutch speaking
students only have the single word snelheid, whereas
English speaking students have velocity and speed.
This difference in student strategy between mathematics

and kinematics concerning the negative slope is well
illustrated with some examples from the test. Figure 13
shows isomorphic questions K8 andM8 solved by the same
student, both solved by using a triangle (S7). In kinematics
the minus sign is omitted, but is taken into account in
mathematics. Also note that in kinematics the students used
the intercepts while in mathematics a horizontal step size
of þ1 was used.
Figure 14 also shows two isomorphic questions solved

by the same student, but in this case with positive slope.
The kinematics question is solved incorrectly and shows an
interval or point confusion, while the mathematics question
is solved correctly by drawing a triangle (S7) with a
horizontal step size of þ1. In this case M6 was eventually
also incorrect because the ratio was inverted.
Figure 14 shows isomorphic questions K8 and M8

solved by the same student who answered the questions

in Fig. 15. This student incorrectly solved the kinematics
question (interval or point confusion) and omitted the
minus sign, but answered the mathematics question by
drawing a triangle (S7) with a horizontal step size of þ1
and includes the minus sign. Again, the mathematics
question was also incorrect because this student consis-
tently used the inverted ratio for the slope.
Another question which challenged students’ reasoning

with negative velocities is K4 in which two negative
velocities are compared graphically. As stated before, the
average scores were very low for K4, but they were also at
the low end for M4. The reason why both were not solved
very well is because when asking to compare two negative
numbers, e.g., −5 and −2, many students reasoned that −5
was the largest because 5 > 2, thus not taking into account

FIG. 13. Example of isomorphic questions K8 and M8 solved
by the same student. In both cases strategy S7 is used, but in
kinematics the minus sign has not been taken into account in
contrast to M8. Translated wording in K8 and M8 are “The speed
or velocity of the car is 0.5 meters per second.” and
“The slope is -3.”
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the minus sign. This occurred in kinematics and in
mathematics. An additional problem for kinematics—as
made clear in the discussions above—is that students tend
to consider speed instead of velocity, which increased the
number of incorrect answers significantly. These two
difficulties fully explain the difference between the average
accuracies for K4 and M4. No such issues occurred in
questions K2 and M2 which are the isomorphic versions
with a positive slope.

VIII. IMPLICATIONS FOR TEACHING AND
FUTURE RESEARCH

The validation shows that teachers can use the test
for groups or individuals [37,41] to assess students’

FIG. 15. Example of isomorphic questions K8 and M8 (with
negative slopes) solved by the same student who answered the
questions in Fig. 14. In K8, the interval or point confusion occurs
and the minus sign is omitted. In M8 a triangle with horizontal
step size ofþ1 is drawn and the minus sign is included. In K8, the
text translates as “velocity: distance/time.”

FIG. 14. Example of isomorphic questions K6 and M6 (with
positive slopes) solved by the same student. In K6, the interval or
point confusion occurs resulting in an incorrect answer, but in M6
a triangle is drawn (S7) with a horizontal step size ofþ1 resulting
in a correct answer. The text in the K6 translates as “speed or
velocity train.”
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understanding, to identify difficulties, and to uncover
solution strategies and confusions, which can then be used
for targeted remediation. The test can also be used as a
pretest and post-test for intervention studies similar to how
Hill et al. [42] used the Force Motion Concept Evaluation
[43] and the Representational Fluency Survey [24] to
measure learning gains after an intervention. The test
can also be modified to suit other research questions in
which case some interesting changes can be made, e.g.,
require an explanation in every question, include negative
values for some variables in the graphs, drop some items in
favor of items with other sign combinations or other
quadrants, expand the test to include other linear graphs
from 1D kinematics ½vðtÞ; vðxÞ; aðtÞ; aðxÞ;…�, include
other contexts, etc.
Our comparison with other studies shows substantial

differences between different cohorts depending on age
group, the educational system and the type of course
(algebra- or calculus-based). Because of our fairly large
number of respondents, distributed over multiple schools
and classes across Flanders, the results are representative
for students in a science oriented curriculum in the early
stages of learning about kinematics and linear functions.
Additional studies with different age groups and curriculum
programs would bewelcome, as well as longitudinal studies
which follow students’ progress concerning this topic.
To improve students’ understanding and their linking

between contexts, we suggest introducing isomorphic quan-
tities such as slope and velocity in parallel. Comparing
isomorphic situations from different contexts could be a
good approach, e.g., show a graph and the matching
algebraic expression in mathematics and in kinematics side
by side and annotate them while highlighting the similar-
ities. Additionally, we suggest discussing examples in
different reference systems to illustrate the effect on equa-
tions and graphs. We also observed difficulties with the Δ
symbol, which is why we advise to explicitly write the
incremental steps in calculations to clarify its meaning in
both contexts, e.g., v ¼ Δx=Δt ¼ ðx2 − x1Þ=ðt2 − t1Þ.
Furthermore, the significant main and interaction effects
in our study strongly imply that students could benefit from
an increased focus on linking different contexts; therefore,
this issue also requires appropriate attention during teacher
education.
Because of the isomorphic structure of our test and the

direct mapping between, e.g., itemM1 and item K1, the test
can also be considered a transfer of learning test. Transfer
of learning is often defined as the ability to use and apply
skills and knowledge in a different context from the one in
which they were learned [44–46]. To quantify transfer of
learning is not a straightforward task, but Britton et al. [47]
have made progress by introducing the transfer rating [47],
which was subsequently improved by Roberts et al. [46]
when they introduced the transfer index. Based upon
correlating performance between matching questions in

two contexts, a transfer score can be ascribed to each
matching set using the system presented in Table VII. For a
test with n pairs of matching items, the transfer index is
calculated as follows:

Transfer index ¼
P

n
i¼1 transfer score

2n
× 100; ð4Þ

resulting in a value between 0 and 100, with higher values
indicating higher transfer of learning.
Calculating the transfer index from mathematics to

kinematics for our data we find a value of 37.63� 17.45.
Although it is always possible to calculate this index, a
consistent interpretation requires an appropriate research
design. Our designwas chosen to study howwell students in
the Flemish education system—which uses mandatory
learning goals—perform in two related contexts without
controlling for the specific implementation in the classroom,
essentially considering the classroom a black box governed
by the educational system. This means that our data are not
fully suited for interpretation in terms of transfer of learning
since we cannot verify one of the important conditions to
assess transfer between contexts, which in our study would
be that learning took place in mathematics before it took
place in kinematics. Though it is highly likely to be the
case, we did not include this information in our original
design. Furthermore, as discussed in Roberts et al. [46], to
verify the causal relationship of improvements in a context
due to transfer of learning from another context, all other
variables which can influence the performance should be
checked and included, which is not possiblewith our design.
For illustrative purposes, we also calculated the transfer
index from kinematics to mathematics which results in
41.58� 21.21, which is actually higher than that for
mathematics to kinematics. Furthermore, we found a
Spearman’s rank correlation coefficient ρ of 0.356 between
kinematics and mathematics items. These results show that
the interpretation of the transfer index is not always
straightforward and should be done with appropriate care.
With a matching research design and detailed control of
classroom activities though, our test can certainly be used in
combination with this index to study transfer of learning,
which would be an interesting subject for future research.
Additionally, it would also be interesting to calculate the
transfer index between mathematics and kinematics for,
e.g., the items concerning graphs with those concerning
formulas separately, which could providemore insight in the
effect of representations on transfer.

TABLE VII. Allocation of transfer score [46].

Accuracies

Item accuracy in context A 1 0 1 0
Item accuracy in context B 1 1 0 0
Transfer score from A to B 2 1 0 0
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IX. CONCLUSION

In conclusion, we studied student understanding of the
concepts y intercept and slope in linear function problems
with graphs and algebraic expressions in isomorphic
kinematics and mathematics questions. Test validation
resulted in good values for internal consistency, item
difficulty indexes, item discrimination indexes and
Ferguson’s delta. Our results show that students’ difficulties
are concentrated in physics, algebraic expressions, and
questions with negative slope. Results from a GEE analysis
of the accuracy show that context (kinematics or math-
ematics), concept (y intercept or slope), slope sign (positive
or negative), and question type (determine via graph,
determine via formula or compare via graph) are all highly
significant factors, as well as almost all interaction effects
(up to three way interactions). The study also resulted in a
bottom-up constructed categorization scheme for students’
explanations which proved a reliable tool and showed that
there are only a few strategies or errors for questions
concerning the y intercept, and a more detailed scheme for
slope questions. The scheme included representational
transitions, but we found that such strategies were not
frequently used in general with only one exception, namely,
the transition from a graph to an algebraic expression in
mathematics questions concerning the y intercept. The
main error for the y intercept was the determination of the x
intercept instead and students very rarely used the location
in an algebraic expression to identify the y intercept.
Additionally, we found that students had poor understand-
ing of formal terminology concerning the y intercept since
the wording function value of 0 caused some difficulties.
More variation was found in students’ explanations for the
slope questions. For questions with an algebraic expression
we found little use of identification of the velocity or the
slope through the location in the expression in kinematics

but far more in mathematics. Slope or height confusion and
iconic interpretations were infrequent in our results, but
interval or point confusions were seen often. In graphical
questions we confirmed presence of the interval or point
confusion in physics, but found almost none in mathemat-
ics. In questions with an algebraic expression we also found
a high frequency of interval or point confusions in
kinematics but almost none in mathematics and discussed
three notable cases: numerical interval or point confusion in
which the focus lies on finding the numbers for x and t;
algebraic interval or point confusion in which the focus lies
on finding expressions for x and t; and unit-based interval
or point confusion in which the focus lies on finding
expressions or values with the requested units for x and t.
These were often interwoven with additional errors result-
ing from poor algebraic manipulation skills, poor under-
standing of units, poor understanding of the Δ symbol, and
poor understanding of the equation of motion. Additionally,
isomorphic examples illustrated that there is a weak link
between kinematics and physics and that students are
unable to successfully transfer their mathematical under-
standing to kinematics. Finally, we highlighted the sign
issue of velocity in kinematics, which for our respondents
was a particular issue due to linguistic difficulties.
Isomorphic questions again showed that students consider
the minus sign in mathematical questions, but ignore the
minus sign in kinematics questions, and tend to reason with
speed rather than velocity.
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in representations of linear functions, Int. J. Sci. Math.
Educ. 12, 167 (2014).

[6] D. De Bock, W. Van Dooren, and L. Verschaffel,
Students’ understanding of proportional, inverse propor-
tional, and affine functions: Two studies on the role of
external representations, Int. J. Sci. Math. Educ. 13, 47
(2015).

[7] L. Bollen, M. De Cock, K. Zuza, J. Guisasola, and P. van
Kampen, Generalizing a categorization of students’ inter-
pretations of linear kinematics graphs, Phys. Rev. Phys.
Educ. Res. 12, 010108 (2016).

[8] S. Ceuppens, J. Deprez, W. Dehaene, and M. De Cock,
Design and validation of a test for representational fluency
of 9th grade students in physics and mathematics: The case

STIJN CEUPPENS et al. PHYS. REV. PHYS. EDUC. RES. 15, 010101 (2019)

010101-20

https://doi.org/10.1080/10986060701533839
https://doi.org/10.1080/10986060701533839
https://doi.org/10.1103/PhysRevSTPER.9.020103
https://doi.org/10.1103/PhysRevSTPER.9.020103
https://doi.org/10.1103/PhysRevSTPER.9.010107
https://doi.org/10.1103/PhysRevSTPER.9.010107
https://doi.org/10.1007/s10763-012-9344-1
https://doi.org/10.1007/s10763-012-9344-1
https://doi.org/10.1007/s10763-013-9416-x
https://doi.org/10.1007/s10763-013-9416-x
https://doi.org/10.1007/s10763-013-9475-z
https://doi.org/10.1007/s10763-013-9475-z
https://doi.org/10.1103/PhysRevPhysEducRes.12.010108
https://doi.org/10.1103/PhysRevPhysEducRes.12.010108


of linear functions, Phys. Rev. Phys. Educ. Res. 14, 020105
(2018).

[9] J. Woolnough, How do students learn to apply their
mathematical knowledge to interpret graphs in physics?,
Res. Sci. Educ. 30, 259 (2000).

[10] D. E. Trowbridge and L. C. McDermott, Investigation of
student understanding of the concept of velocity in one
dimension, Am. J. Phys. 48, 1020 (1980).

[11] D. E. Trowbridge and L. C. McDermott, Investigation of
student understanding of the concept of acceleration in one
dimension, Am. J. Phys. 49, 242 (1981).

[12] L. C. McDermott, M. L. Rosenquist, and E. H. van Zee,
Student difficulties in connecting graphs and physics:
Examples from kinematics, Am. J. Phys. 55, 503 (1987).

[13] G. Leinhardt, O. Zaslavsky, and M. K. Stein, Functions,
graphs, and graphing: Tasks, learning, and teaching, Rev.
Educ. Res. 60, 1 (1990).

[14] R. J. Beichner, Testing student interpretation of kinematics
graphs, Am. J. Phys. 62, 750 (1994).

[15] P. B. Kohl and N. D. Finkelstein, Student representational
competence and self-assessment when solving physics
problems, Phys. Rev. ST Phys. Educ. Res. 1, 010104
(2005).

[16] P. B. Kohl and N. D. Finkelstein, Effect of instructional
environment on physics students’ representational skills,
Phys. Rev. ST Phys. Educ. Res. 2, 010102 (2006).

[17] P. B. Kohl and N. D. Finkelstein, Patterns of multiple
representation use by experts and novices during physics
problem solving, Phys. Rev. ST Phys. Educ. Res. 4,
010111 (2008).

[18] A. A. Nistal, W. Van Dooren, and L. Verschaffel, What
counts as a flexible representational choice? An evaluation
of students’ representational choices to solve linear func-
tion problems, Instr. Sci. 40, 999 (2012).

[19] W. M. Christensen and J R. Thompson, Investigating
graphical representations of slope and derivative without
a physics context, Phys. Rev. ST Phys. Educ. Res. 8,
023101 (2012).

[20] M. De Cock, Representation use and strategy choice in
physics problem solving, Phys. Rev. ST Phys. Educ. Res.
8, 020117 (2012).

[21] B. Ibrahim and N. S. Rebello, Representational task for-
mats and problem solving strategies in kinematics and
work, Phys. Rev. ST Phys. Educ. Res. 8, 010126 (2012).

[22] A. A. Nistal, W. Van Dooren, and L. Verschaffel, Students
reported justifications for their representational choices in
linear function problems: An interview study, Educ. Stud.
Math. 39, 104 (2013).

[23] M. T. H. Chi, P. J. Feltovich, and R. Glaser, Categorization
and representation of physics problems by experts and
novices, Cogn. Sci. 5, 121 (1981).

[24] M. Hill, M. D. Sharma, J. O’Byrne, and J. Airey, Devel-
oping and evaluating a survey for representational fluency
in science, Int. J. Innovation Sci. Math. Educ. (formerly
CAL-laborate International) 22, 22 (2014).

[25] M. Hill and M. D. Sharma, Students representational
fluency at university: A cross-sectional measure of how
multiple representations are used by physics students using
the representational fluency survey, Eurasia J. Math. Sci.
Technol. Educ. 11, 1633 (2015).

[26] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevPhysEducRes.15.010101
for the full test translated from Dutch to English. The items
are in the order in which they were administered. The first
twelve items are in the context of kinematics, the last
twelve items are in the context of mathematics. Item
numbers match those used in the paper.

[27] D. Hestenes and M. Wells, A mechanics baseline test,
Phys. Teach. 30, 159 (1992).

[28] L. Ivanjek, A. Susac, M. Planinic, A. Andrasevic, and Z.
Milin-Sipus, Student reasoning about graphs in different
contexts, Phys. Rev. Phys. Educ. Res. 12, 010106 (2016).

[29] M. Bassok and K. J. Holyoak, Interdomain transfer be-
tween isomorphic topics in algebra and physics, J. Exp.
Psychol. Learn. Mem. Cogn. 15, 153 (1989).

[30] E. B. Pollock, J. R. Thompson, and D. B. Mountcastle,
Student understanding of the physics and mathematics of
process variables in pv diagrams, AIP Conf. Proc. 951, 168
(2007).

[31] P. Barniol and G. Zavala, Force, velocity, and work: The
effects of different contexts on students’ understanding of
vector concepts using isomorphic problems, Phys. Rev. ST
Phys. Educ. Res. 10, 020115 (2014).

[32] G. Zavala and P. Barniol, A detailed analysis of isomorphic
problems: The case of vector problems, in Proceedings
of the Physics Education Research Conference 2013,
Portland, OR, (AIP, New York, 2013), pp. 377–380.

[33] K.-Y. Liang and S. L. Zeger, Longitudinal data analysis
using generalized linear models, Biometrika 73, 13 (1986).

[34] M. Stokes, C. Davis, and G. Koch, Categorical Data
Analysis Using the Sas®System, 2nd ed. (SAS Institute
Inc., Cary, NC, 2000).

[35] C. Sheu, Regression analysis of correlated binary
outcomes, Behav. Res. Meth. Instrum. Comput. 32, 269
(2000).

[36] D. E. Meltzer, Relation between students problem-solving
performance and representational format, Am. J. Phys. 73,
463 (2005).

[37] P. Engelhardt, An introduction to classical test theory as
applied to conceptual multiple-choice tests, in Getting
Started in PER, edited by C. Henderson and K. A. Harper
(American Association of Physics Teachers, College Park,
MD, 2009).

[38] J. Cohen, A coefficient of agreement for nominal scales,
Educ. Psychol. Meas. 20, 37 (1960).

[39] A. J. Viera, J. M. Garrett et al., Understanding interob-
server agreement: The kappa statistic, Fam. Med. 37, 360
(2005).

[40] The questions selected in our test are all those with the
“determine via graph” question type in which the concept
is the slope or velocity. This includes all kinematics and
mathematics questions and both positive and negative
slope. For detailed comparison between the data from
the other two studies we refer to the study from Bollen
et al. [7]. Note that KU Leuven and UPV/EHU data is from
undergraduate students in a calculus-based course and that
from W & vK and DCU are from students in an algebra-
based course at DCU. The selected data from the two
referenced studies is from Table II and Table III in each of
them. This includes all questions with distance-time graphs

9TH GRADE STUDENTS’ UNDERSTANDING AND … PHYS. REV. PHYS. EDUC. RES. 15, 010101 (2019)

010101-21

https://doi.org/10.1103/PhysRevPhysEducRes.14.020105
https://doi.org/10.1103/PhysRevPhysEducRes.14.020105
https://doi.org/10.1007/BF02461633
https://doi.org/10.1119/1.12298
https://doi.org/10.1119/1.12525
https://doi.org/10.1119/1.15104
https://doi.org/10.3102/00346543060001001
https://doi.org/10.3102/00346543060001001
https://doi.org/10.1119/1.17449
https://doi.org/10.1103/PhysRevSTPER.1.010104
https://doi.org/10.1103/PhysRevSTPER.1.010104
https://doi.org/10.1103/PhysRevSTPER.2.010102
https://doi.org/10.1103/PhysRevSTPER.4.010111
https://doi.org/10.1103/PhysRevSTPER.4.010111
https://doi.org/10.1007/s11251-011-9199-9
https://doi.org/10.1103/PhysRevSTPER.8.023101
https://doi.org/10.1103/PhysRevSTPER.8.023101
https://doi.org/10.1103/PhysRevSTPER.8.020117
https://doi.org/10.1103/PhysRevSTPER.8.020117
https://doi.org/10.1103/PhysRevSTPER.8.010126
https://doi.org/10.1080/03055698.2012.674636
https://doi.org/10.1080/03055698.2012.674636
https://doi.org/10.1207/s15516709cog0502_2
https://doi.org/10.12973/eurasia.2015.1427a
https://doi.org/10.12973/eurasia.2015.1427a
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.15.010101
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.15.010101
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.15.010101
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.15.010101
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.15.010101
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.15.010101
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.15.010101
https://doi.org/10.1119/1.2343498
https://doi.org/10.1103/PhysRevPhysEducRes.12.010106
https://doi.org/10.1037/0278-7393.15.1.153
https://doi.org/10.1037/0278-7393.15.1.153
https://doi.org/10.1063/1.2820924
https://doi.org/10.1063/1.2820924
https://doi.org/10.1103/PhysRevSTPER.10.020115
https://doi.org/10.1103/PhysRevSTPER.10.020115
https://doi.org/10.1093/biomet/73.1.13
https://doi.org/10.3758/BF03207794
https://doi.org/10.3758/BF03207794
https://doi.org/10.1119/1.1862636
https://doi.org/10.1119/1.1862636
https://doi.org/10.1177/001316446002000104


(kinematics) in which the respondents are asked to deter-
mine the speed at a specific instant, and all yðxÞ graphs
(mathematics, which they call context-free) in which the
respondents are asked to determine the slope at a specific
point. In our data, questions without an explanation are not
included. In the referenced studies though, there is a
category “No answer” in the mathematics data. For a fair
comparison, we subtract the cases in no answer from the
total and recalculate the frequency. In their kinematics
questions there is a category “Other or no answer” or “No
response or incoherent or other,” which complicates the
comparison. In the study from Wemyss and van Kampen
we see that in the mathematics table the total prevalences in
“Other” and “No answer” are very similar. In line with this
we subtract half of the other or no answer prevalence from
the total n in the kinematics table. We did the same with the
data from the Bollen et al. This seems appropriate for the
DCU data since the numbers in other and no answer are
very similar, but less so for KU Leuven and UPV/EHU. For
these last two universities, we calculate that the maximum
deviation is only about 3%, which would occur if, e.g., “No
response or incoherent or other” would actually all be no
response, which is unlikely. There are two useful categories
to compare. The first are the ones in which some form of a
ratio of differences is used—which are S7 and S8 in
our scheme—and their category Δy=Δx and Δx=Δt. The

second one is the one in which some form of a ratio of
coordinates is used, meaning S9 in our scheme and y=x and
x=t in theirs.

[41] R. L. Doran, Basic Measurement and Evaluation of Sci-
ence Instruction (National Science Teachers Association,
Washington, DC, 1980).

[42] M. Hill, M. D. Sharma, and H. Johnston, How online
learning modules can improve the representational fluency
and conceptual understanding of university physics stu-
dents, Eur. J. Phys. 36, 045019 (2015).

[43] R. K. Thornton and D. R. Sokoloff, Assessing student
learning of newtons laws: The force and motion conceptual
evaluation and the evaluation of active learning laboratory
and lecture curricula, Am. J. Phys. 66, 338 (1998).

[44] D. N. Perkins and G. Salomon, Transfer of Learning
(Pergamon Press, Oxford, England, 1992) pp. 6452–6457.

[45] J. Mestre, Transfer of learning: Issues and research agenda
(2002).

[46] A. L. Roberts, M. D. Sharma, S. Britton, and P. B. New, An
index to measure the ability of first year science students to
transfer mathematics, Int. J. Math. Educ. Sci. Technol. 38,
429 (2007).

[47] S. Britton, P. B. New, M. D. Sharma, and D. Yardley, A
case study of the transfer of mathematics skills by
university students, Int. J. Math. Educ. Sci. Technol. 36,
1 (2005).

STIJN CEUPPENS et al. PHYS. REV. PHYS. EDUC. RES. 15, 010101 (2019)

010101-22

https://doi.org/10.1088/0143-0807/36/4/045019
https://doi.org/10.1119/1.18863
https://doi.org/10.1080/00207390600712695
https://doi.org/10.1080/00207390600712695
https://doi.org/10.1080/00207390412331271401
https://doi.org/10.1080/00207390412331271401

