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[This paper is part of the Focused Collection on Astronomy Education Research.] This paper presents
the first item response theory (IRT) analysis of the national data set on introductory, general education,
college-level astronomy teaching using the Light and Spectroscopy Concept Inventory (LSCI). We used the
difference between students’ pre- and postinstruction IRT-estimated abilities as a measure of learning gain.
This analysis provides deeper insights than prior publications both into the LSCI as an instrument and into
the effectiveness of teaching and learning in introductory astronomy courses. Our IRTanalysis supports the
classical test theory findings of prior studies using the LSCI with this population. In particular, we found
that students in classes that used active learning strategies at least 25% of the time had average IRT-
estimated learning gains that were approximately 1 logit larger than students in classes that spent less time
on active learning strategies. We also found that instructors who want their classes to achieve an
improvement in abilities of average Δθ ¼ 1 logit must spend at least 25% of class time on active learning
strategies. However, our analysis also powerfully illustrates the lack of insight into student learning that is
revealed by looking at a single measure of learning gain, such as average Δθ. Educators and researchers
should also examine the distributions of students’ abilities pre- and postinstruction in order to understand
how many students actually achieved an improvement in their abilities and whether or not a majority of
students have moved to postabilities significantly greater than the national average.
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I. INTRODUCTION

We report on our item response theory (IRT) analysis of
a national data set of 3205 students’ matched pre- and
postresponses to the Light and Spectroscopy Concept
Inventory (LSCI) [1,2]. The LSCI is a twenty-six item
multiple-choice assessment instrument designed to mea-
sure students’ conceptual understandings and reasoning
abilities on topics involving the properties of light, the

luminosity-area-temperature relationship, Wien’s law, the
Doppler shift, and spectroscopy. All students in the data set
were enrolled in one of sixty-nine different introductory,
general education, college-level astronomy classes (here-
after, Astro 101) from across the United States (with one
class in Ireland), representing twenty-nine colleges and
universities, including associate (2-year) colleges, bacca-
laureate colleges (4-year primarily bachelor’s-granting
institutions), master’s colleges and universities (4-year
primarily master’s- and bachelor’s-granting universities),
and doctorate-granting (research) universities. Class sizes
ranged from less than ten to more than 400 students. In a
previous publication, students’ responses from this national
data set were used to investigate the relationship between
interactive teaching, classes’ learning gains, and class size
and institution type [3]. Subsequent studies examined how
interactive instruction and students’ ascribed (e.g., race)
and achieved characteristics (e.g., college grade point
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average) are related to students’ learning [4], and how
classical test theory (CTT) statistics and individual stu-
dents’ performances change pre- to postinstruction [5].
IRT has a number of potential advantages over CTTwith

respect to the analysis of concept inventory data. CTT
statistics do not estimate the underlying abilities of students
independent of the items to which they responded [6]. In
contrast, when the assumptions of IRT hold and the model
fits the data, an IRT analysis can estimate students’ abilities
and item properties independent of one another [7]. IRT
models have been used in an increasing number of
physics and astronomy education investigations, including
analyses of the Force Concept Inventory [8–10], the
Mechanics Baseline Test [11], the Conceptual Survey of
Electricity and Magnetism [12], the Star Properties
Concept Inventory [13], the Newtonian Gravity Concept
Inventory [14], and the Astronomy and Space Science
Concept Inventory [15].
We performed an IRT analysis of the LSCI national data

set in order to move beyond the limitations of CTT, gain
further insights into the functioning of the LSCI’s items,
test the robustness of our earlier analyses of the LSCI
national data set, and investigate the capacity of active
engagement instruction to evolve individual students’
underlying astronomy reasoning abilities. This paper is
organized as follows. In Sec. II, we demonstrate that our
data set satisfies the assumptions of IRT and that the model
fits the data. Section III presents the results of our analysis.
Our conclusions are in Sec. IV.

II. DATA ANALYSIS

A. Selecting an IRT model

For our analysis, we initially attempted to fit both a two
parameter logistic (2PL) and a three parameter logistic
(3PL) model to the data. The 2PL model can be written as

PðXpi ¼ 1jθp; ai; biÞ ¼
exp½aiðθp − biÞ�

1þ exp½aiðθp − biÞ�
; ð1Þ

where PðXpi ¼ 1Þ represents the probability that a student
p of ability θp correctly answers an item i with difficulty bi
and discrimination ai. The 3PL model is similar to the 2PL
model, except the former includes a third item parameter ci,
which is called the guessing parameter. This guessing
parameter takes into account the fact that there may be
some items for which students with extremely low abilities
θp still have a nonzero probability of giving the correct
response. The 3PL model can be written as

PðXpi ¼ 1jθp;ai;bi;ciÞ¼ ciþð1−ciÞ
exp½aiðθp−biÞ�

1þ exp½aiðθp−biÞ�
:

ð2Þ

Readers looking for a pedagogical treatment of these
IRT models should consult Embretson and Reise [16],
Hambleton and Jones [6], Harris [17], or Wallace and
Bailey [13], and references therein.
We used the IRTPRO software [18] to estimate item

parameters and student abilities. We selected the MML
estimation procedure for estimating item parameters and
the EAP estimation procedure for estimating students’
abilities; see Baker and Kim [19] for details on these
estimation procedures. It is very important to note that the
logit scale was anchored such that the mean ability of the
postinstruction scores is 0 logits.
We first tried to fit the 2PL and 3PL models to both the

pre- and postinstruction responses of all 3205 students to
all twenty-six of the LSCI’s items. However, when we
calibrated the items to the preinstruction responses, we got
quite different results from when we calibrated the items to
the postinstruction responses. Furthermore, all our attempts
to fit 2PL and 3PL models to the preinstruction data
consistently yielded poor goodness-of-fit statistics. This
result makes sense. We previously found that the average
preinstruction scores for classes were clustered in the very
narrow range of 24%� 2% [3]. When we look at individual
students’ preinstruction scores, we find that 57% of
students score at or below 25% correct, which is the most
probable score one would expect to receive if one is purely
guessing [5]. This strongly suggests that, preinstruction,
many students possess very little of the latent trait measured
by the LSCI, which severely limits the utility of the
preinstruction data for producing accurate estimates of
the item parameters. Consequently, we used only students’
postinstruction responses to estimate the item parameters.
We then used these established item parameter values when
we estimated students’ preinstruction abilities.
We found that the χ2 goodness-of-fit statistics for many

individual items on the LSCI were significantly better for
the 3PL model than the 2PL model. While adding another
free parameter (ci) will almost always improve model fit,
the degree to which the fit improved was greater than one
would expect from simply adding a free parameter. This
can be seen by calculating the root mean square error of
approximation (RMSEA) [20] for both the 2PL and 3PL
models. The RMSEA is a statistic that measures the
goodness-of-fit of a model relative to the number of
parameters in the model such that merely adding a new
parameter cannot reduce the value of the RMSEA unless
the new parameter actually models a real feature present in
the data (e.g., a lower asymptote in the probability of a
correct response á la the 3PL model). The 2PL model’s
RMSEA is 0.07 while the 3PL model’s RMSEA is 0.06.
This suggests that guessing was a significant factor in many
students’ responses on many items. While some items
ended up with values of ci near zero (suggesting that these
items had many powerful distractors), other items saw as
many as 40% of low-ability students answer correctly.
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Items with high guessing parameters tended to be those
with only one or two frequently chosen distractors. In a
previous publication, we found that these one or two
distractors, plus the correct answer, tend to dominate the
answer choices actually selected by students, which implies
that these distractors are well matched to students’ con-
ceptual and reasoning difficulties [5]. Because guessing
appears to be an important component of students’
responses, we abandoned the 2PL model. All results
reported in the rest of this paper were obtained using the
3PL model.
Before we proceeded with testing for potential violations

of IRT’s fundamental assumptions, we dropped two of the
LSCI’s items from our analysis: Items 21 and 25. Item 21
(Fig. 1) had extremely poor goodness-of-fit statistics (e.g.,
χ2 ≈ 180 with 22 degrees of freedom), regardless of the
model used. We found no clear relationship between
student ability and success on item 21. We already
suspected item 21 might be inappropriate for this popula-
tion based on our previous CTT analysis, which revealed
that it had an extremely low discrimination value, which
actually decreased from 0.14 to 0.12 pre- to postinstruction
[5]. Item 21 requires students to understand that a hot,
diffuse cloud of gas produces a bright line emission
spectrum and that a dense hot object does not, which
distinguishes choices “a” from “c.” While 75% of students
postinstruction select either choice a or choice c, over half
of those students selected a, suggesting that many students
do not understand the distinction between a “dense” and a
“diffuse” object, even though they recognize that a “bright
line emission spectrum” must come from a hot object [5].
This item fails to probe the latent trait of interest since
students’ responses are dominated by their knowledge of
the definitions of these words.
Item 25 had the largest difficulty parameter of any item

on the LSCI (b25 ¼ 21). Item 25 presents students with
graphs of energy output per second as a function of
wavelength for four different objects (A–D); students must
determine which object, if any, could be the same size as
object D. The probability of a student correctly answering
this item remains low across all abilities of students in the
study population. The reasoning required to correctly
answer item 25 challenges many professional astronomers,
and we previously found its postinstruction CTT difficulty
to be 0.89, with only 11% of students giving the correct
answer [5]. Because student success on this item was very
weakly correlated with ability, it yielded essentially no

useful information about students’ abilities, while degrad-
ing the overall goodness of fit of the data to the model.
After removing both item 21 and item 25, we examined

whether or not we satisfied the two fundamental assump-
tions of IRT: local independence and unidimensionality. If
both of these assumptions hold, then the IRT model
possesses the property of parameter invariance, which
means that estimates of students’ abilities do not depend
on the specific items administered and estimates of item
parameters do not depend on the abilities of students
responding to those items [7].

B. Local independence

An item is locally independent if the probability of
correctly answering that item is entirely determined by a
student’s ability θp and not by his or her responses to other
items or other sources of unaccounted-for variance [16].
We used Yen’s Q3 statistic to look for violations of local
independence [21]. For each pair of items, Yen’s Q3
statistic is the linear correlation between the items’ resid-
uals (i.e., the difference between students’ observed and
3PL model-predicted scores). If student ability θp is the
only latent trait that determines the probability of correctly
answering items, then there should be essentially no
correlation between the residuals of two different items.
Yen and Fitzpatrick recommend flagging item pairs for
which the value of jQ3j > 0.20 [22].
We found that the following pairs of items had values of

jQ3j > 0.20: Items 7 and 8, items 18 and 19, and items 2
and 22. Before discussing how we dealt with these
violations of local independence, we must stress that just
because these items have high Q3 values does not mean
they are “bad” items. To the contrary, Schlingman et al.’s
CTT analysis suggests that all of these items possess
favorable psychometric properties [5]. If the flagged
items are not bad, then why do they have high Q3 values?
Take, for example, items 18 and 19 (Fig. 2). Item 18 asks
students to identify which of four spectra corresponds to
an object at rest, while item 19 asks students to identify
which spectrum corresponds to the object moving the
slowest toward the observer. This item pair had a high Q3
value (Q3 ¼ 0.51) because the probability of correctly
answering item 19 is not independent of the probability of
correctly answering item 18. This pair of items exhibits
what Yen calls “item chaining,” which means that one
item builds off of the previous item such that knowing the
answer to one item increases one’s probability of correctly
answering the other [23]. Someone who gives the correct
answer to item 18 has a much higher probability of giving
the correct answer to item 19, regardless of his or her
ability level.
The other item pairs with high Q3 values also exhibit

item chaining. Items 7 and 8 require students to determine
which pictorial representation of the Bohr model of the
atom corresponds to the formation of an absorption line and

21.  If the light coming from a distant object produces a bright
       line emission spectrum, what kind of object is it?  

 a.   Hot and dense. 
 b.   Cool and dense. 
 c.   Hot and diffuse.  
 d.   Cool and diffuse. 

FIG. 1. Item 21 from the LSCI.
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an emission line, respectively. Items 2 and 22 ask students
to reason about whether they can infer information about
the color and temperature of a star, respectively, given its
absorption line spectrum. The high Q3 values for these
pairs of items make sense given the overlapping nature of
their content.
We also found that item 23 had high Q3 values with

several items. Item 23 asks students to compare the energy,
frequency, wavelength, and speed of radio waves and
visible light. The specific reasons why item 23 exhibits
local dependence with multiple items are not clear.
However, to correctly answer item 23, students must
synthesize their knowledge of how different types of light
compare in terms of energy, wavelength, frequency, and the
speed at which they travel through a vacuum. These ideas
are so fundamental that students must frequently invoke
them when reasoning about other items on the LSCI.
There are two possible solutions for how to deal with

locally dependent item pairs. One solution is to drop one
item from each offending pair from the data set. However,
dropping items from the test reduces the amount of
available information that can be used to estimate students’
abilities. We therefore took an alternative approach and
combined each high-Q3 pair into a single polytomous item.
We tried several versions of the test with different pairwise
combinations in an attempt to find a set of items that were
all locally independent. After several trials, we were able to
resolve the problem for all items except for item 23;
regardless of the changes made to the rest of the test, this
item was always found to be locally dependent on other
items on the test. We were therefore forced to remove item
23 from the test.

We ended up with three polytomous items (items 7 and 8
combined, items 18 and 19 combined, and items 2 and 22
combined). These three items were calibrated using the
two-parameter graded response model [24]. The graded
response model can be written as

PðXpi ≥ jjθp; ai; bijÞ ¼
exp½aiðθp − bijÞ�

1þ exp½aiðθp − bijÞ�
; ð3Þ

where the student’s ability θp and item’s discrimination
parameter ai have the same meaning as in Eqs. (1) and (2).
Unlike the 2PL and 3PL models, the graded response
model does not assign each item a single number bi to
represent that item’s difficulty. Instead, each polytomous
item is assigned multiple threshold parameters bij. A given
threshold parameter bij represents the ability a student must
have in order to have a 50% probability of responding at or
above the jth threshold for a given item i. For each of these
polytomous items we created (items 7 and 8 combined,
items 18 and 19 combined, and items 2 and 22 combined), a
student can receive one of three possible scores: 0, 1, or 2.
As an example, consider a student responding to items 7
and 8. That student will receive a score of 0 if he incorrectly
responds to both items 7 and 8, a score of 1 if he correctly
responds to one item but not the other, and a score of 2 if he
correctly responds to both items. Therefore, bi1 represents
the ability a student needs in order to have an equal
probability of scoring a 0 or 1, and bi2 represents the
ability a student needs in order to have an equal probability
of scoring a 1 or 2. See Embretson and Reise for a
pedagogical treatment of the graded response model [16].

Use the four spectra shown to the right for objects A-D, to answer the next two questions.  Note 
that one of the spectra is from an object at rest (not moving) and the remaining spectra 
come from objects that are all moving toward the observer. Assume that the left end of each 
spectrum corresponds to shorter wavelengths (blue light) and that the right end of each spectrum 
corresponds with longer wavelengths (red light). 

Object C

Object D

Object B

Object A18. Which of the four objects A-D is at rest? 
a. Object A. 
b. Object B. 
c. Object C. 
d. Object D. 

19. Of the three objects that are moving, which is 
moving with the slowest speed?  

a. Object A. 
b. Object B. 
c. Object C. 
d. Object D. 
e. They are all moving the same speed, the 

speed of light. 

FIG. 2. Items 18 and 19 from the LSCI.
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Items 21, 23, and 25 were dropped from the instrument.
We maintained all other items in their original form and
calibrated them using the 3PL model. We will uses this
twenty-item reduced version of the LSCI for all of the
analyses subsequently described in this paper. Table I
contains the matrix of Q3 values for every item pair on
this reduced version of the LSCI. Table I shows that this
version of the LSCI satisfies the assumption of local
independence.

C. Unidimensionality

A test such as the LSCI is considered to be unidimen-
sional if a single latent trait (aka ability θp) can fully
explain a student’s performance on the test given the
parameters describing the items on that test (e.g., ai, bi,
and ci). In other words, a test is unidimensional if it
measures students’ abilities on a single construct. Local
independence is a necessary but not sufficient condition for
unidimensionality, so we conducted two additional tests to
determine whether or not the assumption of unidimension-
ality holds.
For the first test, we fit the data with a two-latent-trait

model and compared the results to those we obtained from
the single-latent-trait model. The two-dimensional model
did not yield a set of goodness-of-fit statistics that were
better overall than those obtained by the unidimensional
model. Specifically, neither the average of the items’ χ2

values nor the RMSEA were smaller for the two-
dimensional model compared to the unidimensional model.
This suggests that a single latent trait is adequate to explain
students’ response patterns to the reduced version of
the LSCI.
We then performed Bejar’s test for unidimensionality

[25]. Bejar reasons as follows: Imagine that a researcher
suspects a test contains subsets of items that each probe
their own unique construct. The researcher could estimate
item difficulties bi using the data for every item on the test.
The researcher could also estimate the item difficulties for
the items on each subtest by using the data on those subtest
items only. If the test is truly unidimensional, then a plot of
the subtest-based item difficulty estimates versus the
whole-test-based item difficulty estimates should show a
series of points that fall near a line of slope one and
intercept zero. This is because the probability of correctly
answering an item should not depend on which items are
included on the test if the test is unidimensional. Significant
departures from this line are thus considered evidence that
unidimensionality is violated.
For Bejar’s test, we place items into three mutually

exclusive groups, which represented our hypothesis about
which items might possibly form subtests that probe
different constructs. One group included items that probe
students’ understandings of Wien’s law and the luminosity-
area-temperature relationship (items 3, 6, 9, 12, 16, 20, 24,
and 26), another included items that probe students’ TA
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understandings of spectroscopy (items 4, 7 and 8, 11, 17,
18 and 19, and 2 and 22), and the third included items that
probed students’ understandings of the properties of light
(items 1, 5, 10, 13, 14, and 15). In all cases, the difficulty of
each item fell within two standard errors of the target line
of slope one and intercept zero. We conclude that the results
of Bejar’s test are consistent with the assumption of
unidimensionality.

III. RESULTS

A. Item parameters and model fit

Table II shows the 3PL-estimated discriminations, diffi-
culties, and guessing parameters of the dichotomous items
on the reduced LSCI. The standard errors of these param-
eters are also shown. In order to assess how well the 3PL
model fit the data for each item, we grouped students into
ability bins 0.1 logits wide, except in a few cases where we
had to increase the bin width in order to ensure there were at
least five correct responses per bin. A minimum of five
correct responses per bin is generally considered sufficient
to accurately estimate the average ability of a bin [26].
Some bins became extremely wide when we attempted to
meet this criteria, so we occasionally kept bin width at 0.1

logits and ignored all bins that failed to have at least five
correct responses. This is why some items have fewer
degrees of freedom than others. We compared each
observed score to the expected score predicted by the
3PL model and calculated a χ2 statistic for each item.
Table II also reports the χ2 values, the degrees of freedom,
and the reduced χ2 values ( χ2r) for each item.
Table III contains the item parameters, their standard

errors, the χ2 values, the degrees of freedom, and the reduced
χ2 values for the three polytomous items. We calculated the
χ2 values using the same procedure described above, except
we found the expected score of each bin by taking the
weighted average of the probability of receiving a score of 1
and a score of 2 [i.e., PðXpi ¼ 1Þ þ 2PðXpi ¼ 2Þ].
With a few exceptions, the χ2r values are close to unity,

suggesting the IRT models adequately fit the data. As an
additional check on model fit, we plotted the model-
predicted score on each item as a function of ability θp;
these plots are reproduced in the Supplemental Material
[27]. In each plot, the black curve [called the item
characteristic curve (ICC)] represents the model-predicted
score while the red triangles represent the average scores of
students in each bin. Note that some of the ICCs diverge

TABLE II. The discrimination (ai), difficulty (bi), and guessing parameters (ci) of the seventeen dichotomous items from the reduced
LSCI, along with their standard errors (SE). The χ2, degrees of freedom (d.o.f.), and reduced χ2 (χ2r) values are also shown.

Item ai ai’s SE bi bi’s SE ci ci’s SE χ2 d.o.f. χ2r

1 1.30 0.07 −0.75 0.05 0.00 0.00 31.66 15 2.11
3 1.71 0.33 2.09 0.14 0.20 0.01 16.40 18 0.91
4 1.81 0.22 −0.56 0.17 0.23 0.09 27.65 17 1.63
5 1.57 0.23 −0.28 0.21 0.44 0.07 11.40 18 0.63
6 1.83 0.21 0.19 0.10 0.24 0.04 20.05 18 1.11
9 2.22 0.24 0.70 0.05 0.16 0.02 23.42 17 1.38
10 1.33 0.21 1.22 0.10 0.23 0.03 21.61 19 1.14
11 1.81 0.22 0.89 0.07 0.21 0.02 26.95 19 1.42
12 2.68 0.36 0.18 0.08 0.36 0.03 18.99 17 1.12
13 1.35 0.17 0.32 0.13 0.18 0.05 22.29 19 1.17
14 1.34 0.23 −0.73 0.39 0.40 0.14 16.83 18 0.94
15 1.42 0.07 −0.32 0.04 0.00 0.00 37.48 14 2.68
16 1.36 0.24 0.35 0.18 0.36 0.06 11.44 18 0.64
17 1.26 0.22 1.88 0.13 0.15 0.02 25.94 18 1.44
20 1.14 0.23 0.99 0.15 0.31 0.05 17.76 19 0.93
24 2.57 0.33 0.53 0.06 0.31 0.02 15.87 18 0.88
26 2.33 0.34 1.39 0.07 0.23 0.01 30.07 19 1.58

TABLE III. The discrimination (ai) and thresholds (bi1 and bi2) of the three polytomous items from the reduced LSCI, along with their
standard errors (SE). The χ2, d.o.f., and reduced χ2 (χ2r) values are also shown.

Item ai ai’s SE bi1 bi1’s SE bi2 bi2’s SE χ2 d.o.f. χ2r

7 and 8 1.06 0.05 −0.38 0.05 0.33 0.05 36.65 36 1.02
18 and 19 0.74 0.05 0.01 0.05 1.31 0.09 40.98 37 1.11
2 and 22 1.52 0.07 0.05 0.03 0.84 0.05 43.59 29 1.50
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from the data points at the low end of the ability spectrum.
This suggests that the abilities of low-ability students may
be overestimated, which means the learning gains reported
in Secs. III C and III D may actually slightly underestimate
the gains achieved by some students. Further elaboration
on this point is beyond the scope of this paper, although it
may be a worthwhile topic for a future investigation.
However, the overall close fit between the observed and
predicted response patterns in many cases provides further
evidence that the IRT models are appropriate for modeling
student ability.

B. Item interpretations

Before discussing the estimated student abilities and the
learning gains achieved by different classes in our data set,
we must comment on what the item parameters in Tables II
and III tell us about the LSCI as an instrument. First,
consider the fact that the five items with the largest values of
the discrimination parameter ai (items 12, 24, 26, 9, and 6,
ranked from largest to smallest ai) all come from the group
of items that probe students’ abilities to reason about and
apply Wien’s law and the luminosity-area-temperature
relationship. Furthermore, all five of these items require
students to interpret a graph, such as star properties plotted
on a graph of luminosity versus temperature. The remaining
items from the Wien and/or luminosity-area-temperature
group (items 3, 16, and 20) are entirely word-based
questions and have lower discrimination values. This
demonstrates that graph-based items assessing Astro 101
students’ understandings of Wien’s law and/or the lumi-
nosity-area-temperature relationship are especially effective
at discriminating between high- and low-ability students.
The plots in the Supplemental Material [27] show that a

student must have an ability greater than 0 logits in order to
have at least a 50% probability of correctly answering any
of the Wien and/or luminosity-area-temperature items, with
the exception of items 6 and 12. This is significant because
the average postinstruction ability of students in the data set
was set at 0 logits. That means 50% or more of students
have less than a 50% chance of giving the correct answer to
six of the eight Wien and/or luminosity-area-temperature
items even at the end of their Astro 101 course.
Overall, the Wien and/or luminosity-area-temperature

items appear to be challenging for most Astro 101 students.
However, they are not so difficult that success on these
items is unattainable, which is why they tend to have high
values of ai, indicating that they are effective at discrimi-
nating between students of different abilities. We suspect
that many of these items might have had higher discrimi-
nation values if not for the fact that they also have nonzero
guessing parameters. Items 3, 6, 9, and 26 have guessing
parameters that are around 0.20 to 0.25, which is consistent
with low-ability students randomly guessing the correct
answers when there are four to five available choices. Items
20 and 24 have guessing parameters c20 ¼ c24 ¼ 0.31 and

items 12 and 16 have c12 ¼ c16 ¼ 0.36. These values of ci
suggest that, after instruction, many low-ability students
can eliminate at least one of the distractors before making a
guess. For example, only 10% of students selected choice a
for item 20 (Fig. 3), while 52% selected b, 24% selected c,
and 14% selected d. We conclude that the discriminatory
powers of the Wien and/or luminosity-area-temperature
items are attenuated because low-ability students have a
nonzero probability of correctly guessing the correct
answers. This result is consistent with the findings of
Wooten et al., which suggest that student performance on
multiple-choice questions in many cases overestimates
student understanding of a topic [28].
In contrast to the Wien and/or luminosity-area-temper-

ature items, items probing students’ understandings of the
properties of light (items 1, 5, 10, 13, 14, and 15) tend to
have both lower discrimination values and lower difficulty
parameters. If we separate the nine dichotomous items with
the largest values of ai from the nine dichotomous items
with the smallest values of ai, then we find that all of the
properties of light items fall in the latter category.
Furthermore, many students with below average postin-
struction abilities (θp < 0 logits) still have a greater than
50% chance of correctly answering items 1, 5, 14, and 15.
Items 5 and 14 have extremely high guessing parameters
(0.44 and 0.40, respectively). These questions ask students
to select a photon (item 5) or an electromagnetic wave
(item 14) with the largest energy. We suspect that many
students, even those of low ability, can eliminate one or
more of the distractors based on what they learned in their
Astro 101 classes about the relationships between the
energy, wavelength, frequency, and color of light. Items
1 and 15 are interesting because they both have guessing
parameters of 0. Both of these questions address the
common incorrect idea that more energetic forms of light
travel faster. The fact that these items have nonexistent
guessing parameters while simultaneously having low
difficulties suggest that while many students can readily
learn the fact that all forms of light travel at the same speed
in a vacuum, low-ability students who never commit this
fact to memory are almost certainly going to choose one of
the distractors. This implies that the distractors on these
items are highly effective. Overall, we are not surprised by
the low difficulties and discriminatory capabilities of these
items given that they tend to probe what is simply
declarative knowledge for many Astro 101 students.

20. The coolest stars emit most of their energy in 
      which portion of the electromagnetic spectrum? 

a.   X-ray. 
b.   Infrared. 
c.   Visible. 
d.   Ultraviolet. 

FIG. 3. Item 20 from the LSCI.
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C. Estimated student abilities

Figure 4 shows the distribution of estimated pre- and
postinstruction abilities for all 3205 students in the data set.
Preinstruction abilities range from −1.9 to 1.0 logits, with
an average of −1.1 logits and a standard deviation of 0.45
logits. The postinstruction abilities span a wider range,
from −1.9 to 2.4 logits, with an average of 0 logits and a
standard deviation of 0.89 logits. Recall that the average
postinstruction ability is set at 0 logits, as described
in Sec. II.
We calculated the difference between post- and prein-

struction abilities (Δθ) for each student. This difference
represents an IRT-estimated learning gain [13]. Figure 5
shows the distribution of these IRT learning gains for all
3205 students. The minimum “gain” was −1.8 logits, the
maximum was 4 logits, and the average was 1.1 logits with
a standard deviation of 0.93 logits. These data show a range
in the shift of abilities, with less than 10% of the assessed
population exhibiting a shift ≤0 logits, which would be
consistent with students moving backward or achieving no
improvement in their understanding.
Since this study was carried out in order to examine the

effects of active learning on individual students, we want to
look at changes in abilities for students who took Astro 101
classes with high and low levels of interactive instruction.
The preceding study of Prather et al. [3] looked at the level
of interactivity of classes in this data set with at least 25
students. They estimated each class’s level of interactivity

based on instructors’ responses to the interactivity assess-
ment instrument [3]. These responses allowed Prather et al.
to calculate an interactivity assessment score (IAS) for each
class. IAS scores ranged from 0% to 49% and represent an
estimate of the percentage of class time during which active
learning techniques are used. Prather et al. found that IAS
scores of at least 25% are necessary, but not sufficient, to
produce classes with average normalized learning gains
above hgi ¼ 0.30. An average normalized gain of hgi ¼
0.30 is significant because Hake [29] found that only
interactive physics classes—and not traditionally taught
classes—were able to achieve this level of improvement in
student performance on the Force Concept Inventory (FCI).
Consequently, Hake defined hgi ¼ 0.30 as the cutoff
between “low” and “medium” levels of gain.
In this study, we again look at at students enrolled in

Astro 101 classes with at least 25 students. Like the
prior study by Prather et al., we divide these classes into
two groups: high-IAS (i.e., IAS ≥ 25%) and low-IAS
(IAS < 25%). Figures 6 and 7 show the pre- and post-
instruction ability distributions for students in high- and
low-IAS classes, respectively. Students in high-IAS classes
have preinstruction abilities that range from −1.9 logits to
0.92 logits with an average of −1.2 logits and a standard
deviation of 0.42 logits. Their postinstruction abilities
range from −1.9 logits to 2.4 logits with an average of
0.23 logits and a standard deviation of 0.88 logits. In
contrast, students in low-IAS classes have pre-instruction
abilities that range from −1.9 logits to 0.91 logits with an
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FIG. 4. The distribution of pre- and postinstruction abilities for
all 3205 students in the data set.
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average of −0.95 logits and a standard deviation of 0.56
logits. Their postinstruction abilities range from −1.8 logits
to 1.9 logits with an average of −0.45 logits and a standard
deviation of 0.69 logits. While the distributions of pre- and
postinstruction abilities for students in high- and low-IAS
classes cover approximately the same range, the post-
instruction averages are noticeably different. A one-tailed
t test for two independent samples revealed that the
difference in the postinstruction means was statistically
significant (p < 0.0001) and of large effect size (Cohen’s
d ¼ 0.80) [30]. Interestingly, and unexpectedly, a one-
tailed t test also revealed that the difference in the
preinstruction means was also statistically significant
(p < 0.0001) and of medium effect size (Cohen’s
d ¼ 0.49). These results show that even though the
population of students from high-IAS classes began with
a smaller average preinstruction ability, they had a higher
average postinstruction ability than their peers in low-IAS
classes. A significant number of students in high-IAS
classes moved into regions of ability space that were
unoccupied in the preinstruction distribution, and they
did so at a greater percentage than students in low-IAS
classes. This means a significant number of students in
high-IAS classes, compared to students in low-IAS classes,
acquired astronomical reasoning abilities and knowledge
that were not held by most students prior to instruction.
This important result is consistent with the CTT findings of
Prather et al. and with decades of research highlighting the
pedagogical effectiveness of interactive instruction [31].
The disparity in student achievement between high- and

low-IAS classes is also seen when we examine the
distributions of IRT-estimated learning gains (Δθ) (see
Fig. 8). Students in high-IAS classes have values of Δθ that
range from −1.2 logits to 4 logits with an average of 1.4
logits and a standard deviation of 0.90 logits. Students in
low-IAS classes have values of Δθ that range from −0.95
logits to 2.6 logits with an average of 0.49 logits and a
standard deviation of 0.66 logits. Once again, a one-tailed t
test revealed the difference in these averages to be sta-
tistically significant (p < 0.0001). This difference in aver-
ages also corresponds to a very large effect size (Cohen’s
d ¼ 1.2), according to the effect size classification scheme

proposed by Sawilowsky [32]. Surprisingly, students in
high-IAS classes averaged a pre-post improvement in their
abilities that was almost an entire logit greater than the
average pre-post ability improvement of students in low-
IAS classes. To get a sense of the meaning of a difference of
1 logit, consider the difficulty parameters of the seventeen
dichotomous items on the LSCI (Table II). These difficulty
parameters range from−0.75 logits to 2.09 logits. A student
whose ability increases by 1 logit will have a significantly
higher probability of correctly answering many of the
LSCI’s items. This same reasoning also applies to the three
polytomous items (Table III). For example, a student with
an ability of 0 logits has a 55% chance of answering item 6
correctly, but a student with an ability 1 logit greater has an
85% probability of answering this item correctly.
Many astronomy and physics education researchers

frequently use Hake’s average normalized gain hgi to make
inferences about the amount of learning experienced by
populations of students [14,29,33,34], including the earlier
study by Prather et al. [3]. In addition to calculating Δθ for
all 3205 students in the data set, we also calculated their
normalized gains g. Figure 9 shows a graph of Δθ versus g
for all 3205 students. There is a definite correlation
between the two measures (r ¼ 0.93). But note that each
value of g corresponds to a range of values of Δθ
approximately 1 logit or more wide. There are many
IRT-estimated gains associated with a single value of g.
Two students who have values of Δθ separated by 1 logit
have experienced significantly different improvements in
their underlying abilities, even if they possess the same
normalized gain. This result makes sense when one recalls
that IRT estimates a person’s ability based on the relative
difficulty of the questions she correctly answered, not just
the total number of correct answers. This result suggests
that while average normalized gains may be good at
summarizing the performance of a population of students,
g may not be as informative an indicator of the learning
gains of individual students.

0 

50 

100 

150 

200 

-2
 

-1
.6

 

-1
.2

 

-0
.8

 

-0
.4

 0 

0.
4 

0.
8 

1.
2 

1.
6 2 

2.
4 

2.
8 

3.
2 

3.
6 4 

nu
m

be
r 

of
 s

tu
de

nt
s 

 (logits) 

high-IAS 

low-IAS 

FIG. 8. The distribution of IRT-estimated gains (Δθ) for the
2178 students in high-IAS classes and the 363 students in low-
IAS classes.

-2 

-1 

0 

1 

2 

3 

4 

-1 -0.6 -0.2 0.2 0.6 1 

(l
og

its
) 

g

FIG. 9. Δθ versus g for all 3205 students in the LSCI national
data set.

ITEM RESPONSE THEORY EVALUATION OF … PHYS. REV. PHYS. EDUC. RES. 14, 010149 (2018)

010149-9



Of course, Fig. 9 also shows that there are also multiple
values ofΔθ for each value of g. Why then do we claim that
Δθ more robustly models changes in student understanding
than g? Recall that in order to obtain these values of Δθ we
had to perform numerous statistical tests to demonstrate
that the IRT models we used fit the data and satisfied the
underlying assumptions of local independence and unidi-
mensionality. When these conditions are satisfied, IRT
models provide estimates of students’ abilities that are
independent of the specific items they answered [7]. If one
wants to argue that g is a more accurate measure than Δθ of
learning gains, then one must justify why a raw test score is
a better measure than θ of the latent trait of student ability,
despite of the amount of statistical rigor required to produce
θ values. We believe that the statistical analysis underlying
Δθ makes it highly unlikely that g is a superior measure of
learning gain.

D. Effectiveness of different Astro 101 classes

Earlier investigations of the LSCI national data set
examined the relationships between the average normalized

learning gains of classes, the amount of time devoted to
active learning, and the quality of an instructor’s implemen-
tation of those strategies [3,4]. Consequently, we are inter-
ested in examining the average IRT-estimated learning gains
for classes in this data set, as well as the pre- and post-
instruction ability histograms for individual classes, in order
to determine howwell each class didwith regards to evolving
students’ underlying abilities over the course of the semester.
For each class with at least 25 students in the data set,

Table IV shows the type of institution at which the class
was taught, the number of enrolled students, the average
pre- and postinstruction scores on the LSCI, hgi, the
average pre- and postinstruction abilities, average Δθ,
and the instructor’s IAS. The classes are ordered from
largest to smallest average Δθ. Figure 10 plots these
average Δθ values versus hgi. There is a large correlation
between these two measures (r ¼ 0.99), which supports the
robustness of the results reported in Prather et al. [3],
Rudolph et al. [4], and Schlingman et al. [5]. Figure 11
shows average Δθ versus IAS. As expected, this reveals
that spending more time on active learning strategies is

TABLE IV. The institution type, number of enrolled students, average pre- and postinstruction LSCI scores, average normalized gain
hgi, average pre- and postinstruction abilities θ, average IRT learning gainΔθ, and IAS for each class in the national data set with at least
25 students.

Class Institution type Students
Average
prescore

Average
postscore hgi

Average
pre-θ

Average
post-θ Average Δθ IAS

1 Research University 96 5.79 15.26 0.47 −1.18 0.66 1.84 45.9
2 Research University 93 6.06 14.92 0.44 −1.16 0.68 1.84 45.9
3 Research University 63 6.35 14.68 0.42 −1.04 0.57 1.61 45.9
4 4-yr Masters and Bach. Univ. 33 6.94 15.00 0.42 −0.96 0.60 1.56 30.8
5 Research University 84 5.85 13.99 0.40 −1.15 0.48 1.63 45.9
6 Research University 65 5.17 13.58 0.40 −1.19 0.41 1.60 45.9
7 Research University 444 5.41 13.61 0.40 −1.21 0.37 1.58 45.9
8 4-yr Masters and Bach. Univ. 43 6.79 14.37 0.39 −0.98 0.40 1.38 26.1
9 Research University 344 5.21 13.20 0.38 −1.24 0.33 1.57 45.9
10 Research University 61 5.33 13.02 0.37 −1.26 0.27 1.53 45.9
11 Research University 402 5.94 12.27 0.32 −1.12 0.14 1.25 45.9
12 4-yr Masters and Bach. Univ. 36 6.53 12.50 0.31 −1.01 0.13 1.14 30.8
13 4-yr Masters and Bach. Univ. 28 7.89 13.14 0.29 −0.83 0.22 1.05 30.8
14 2-yr College 66 5.58 11.41 0.29 −1.16 −0.02 1.14 48.6
15 Research University 64 6.16 11.45 0.27 −1.04 −0.07 0.97 3.6
16 4-yr Masters and Bach. Univ. 40 5.65 10.43 0.23 −1.19 −0.19 0.99 34.3
17 4-yr Masters and Bach. Univ. 40 6.55 11.05 0.23 −1.06 −0.22 0.84 47.8
18 4-yr Masters and Bach. Univ. 65 6.23 10.38 0.21 −1.08 −0.22 0.86 21.6
19 Research University 47 6.62 10.62 0.21 −1.04 −0.18 0.86 34.5
20 4-yr Masters and Bach. Univ. 41 5.49 9.59 0.20 −1.25 −0.41 0.84 34.3
21 4-yr Bachelors College 33 5.24 8.91 0.18 −1.24 −0.48 0.76 36.9
22 Research University 28 5.93 9.36 0.17 −0.94 −0.36 0.58 2.1
23 4-yr Masters and Bach. Univ. 42 5.17 8.45 0.16 −1.27 −0.54 0.73 34.3
24 4-yr Masters and Bach. Univ. 77 5.21 7.88 0.13 −1.26 −0.59 0.67 47.3
25 2-yr College 27 5.37 7.41 0.10 −1.16 −0.83 0.33 22.1
26 4-yr Masters and Bach. Univ. 62 5.85 7.61 0.09 −1.13 −0.76 0.37 19.3
27 2-yr College 25 6.00 7.72 0.09 −1.19 −0.86 0.33 22.1
28 4-yr Bachelors College 27 5.26 6.74 0.07 −1.21 −1.05 0.16 9.7
29 4-yr Masters and Bach. Univ. 65 10.12 10.14 0.00 −0.28 −0.27 0.01 5.4
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necessary to move beyond small learning gains, supporting
the validity of the findings of prior CTT studies, which often
report measures of learning gain that are two times larger for
students taught interactively than students taught tradition-
ally [3,29]. A similar plot of hgi versus IAS in Prather et al.
[3] revealed that only instructors with an IAS greater than or
equal to 25% had classes with at least a medium gain
(hgi ¼ 0.3 according to Hake [29]). Comparing Fig. 11 with
the hgi versus IAS plot from Prather et al. [3] suggests
that an average Δθ ¼ 1 is approximately equivalent to
hgi ¼ 0.3. Figure 11 also suggests that an IAS of 25% is a
necessary, though not sufficient, condition to achieve
average Δθ > 1. This result strongly suggests that simply
making a class more interactive is not enough to maximize
student learning; the quality of an instructor’s ability to
create an effective active learning classroom plays a
significant role in student learning outcomes.
We created pre- and postinstruction ability histograms for

each of the twenty-nine classes with at least 25 students.
These histograms are located in the Appendix (Figs. 15–43).
We now move to investigate these histograms of student
abilities in order to gain deeper insights into the effectiveness

of instruction in different classes. We will focus our
investigation on the distributions from three classes that
represent dramatically different outcomes.
Class 29 (Fig. 12) has the lowest average Δθ value (0.01)

and the third lowest IAS in the data set. Note that Class 29
also has the highest average pre-instruction score on the
LSCI and the highest average preinstruction ability. Despite
the apparent advantages this class of students had at the
beginning of their Astro 101 course, the histogram graphi-
cally illustrates that very few students improved in ability
since the pre- and postinstruction distributions almost
completely overlap one another.
In contrast, the histogram for class 19 (Fig. 13) shows

that the preinstruction and postinstruction distributions
of student abilities have far less overlap than what we
observe for class 29. It is important to note that there are a
considerable number of students with postinstruction abil-
ities that none of the students had prior to instruction.
This is powerful and illustrative evidence for the assertion
that significant learning did occur in class 19. However,
Class 19 does not represent the upper limit of what we
observed with respect to student learning. While there is a
clear separation between the distributions of the pre- and
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FIG. 12. The pre- and postability histogram for class 29.
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FIG. 13. The pre- and postability histograms for class 19.
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postinstruction abilities, there is also a significant amount
of overlap in these ability values. This suggests that there
may be some students who did not experience any improve-
ment in their abilities as a result of the instruction from
class 19. Furthermore, the majority of postinstruction
abilities have values less than 0 logits. This means that
many students in class 19 still had postinstruction abilities
that were below the study postinstruction average. Given
the relatively low post instruction abilities of the students in
class 19, it is informative to examine data from a class with
very little overlap in the pre-post ability distributions, an
impressive average Δθ, and which has students who have
achieved high postinstruction abilities.
The most impressive shift in student abilities was

observed with class 1 (Fig. 14). There is astonishingly little
overlap between the distributions of students’ pre- and
postinstruction abilities for these classes. A careful inspec-
tion of the pre- and postinstruction distributions for class 1
also reveals that after instruction almost every student has an
ability that none of the students had prior to instruction—a
truly remarkable teaching and learning accomplishment.
Additionally, most students in class 1 have postinstruction
abilities greater than 0 logits, meaning they were above the
data set’s postinstruction average. Some students in class 1
achieved postinstruction abilities of 2.2 logits,which is at the
extreme high end of the distributions shown in Fig. 4—and
this in a class with one of the lower average pre-instruction
abilities. Overall, Class 1 serves as an example for how
transformative a single semester introductory astronomy
course can be with regards to improving students’ con-
ceptual and reasoning abilities on fundamental astrophysical
ideas. During our presentations, after sharing the results
fromclass 1with faculty,most are quick to switch to aspiring
for learning outcomes similar to class 1 over class 19.
Even though there is a large correlation between average

Δθ values and hgi, Fig. 10 and Table IValso show that it is
possible for two classes to have the same value for hgi but
very different average Δθ values, and vice versa. For
example, classes 3 and 8 have similar values of hgi

(0.42 and 0.39, respectively) but Δθ values that differ
by 0.23 logits (1.61 logits versus 1.38 logits, respectively).
We also suspect it is possible to have a class with a large
average Δθ value but a histogram of pre- and postinstruc-
tion ability distributions that is unimpressive in important
aspects (e.g., most students are still below average post-
instruction average θ). Such findings as these reinforce the
value of an IRT analysis for extracting information from
larger educational data sets. The above considerations,
plus our above analyses of class 1, 19, and 29, suggest that
instructors seeking a full understanding of the effectiveness
of their classroom instruction should compare a measure
of their classes’ average improvement (e.g., hgi and/or
average Δθ) with the distribution of students’ pre-
and postinstruction abilities, and the distribution of indi-
vidual student gains Δθ. By combining these multiple
perspectives on individual and classwide abilities and
gains, one can obtain a much more robust understanding
of the effects of instruction. Even so, the outcomes of one
class are much more meaningful when compared to the
outcomes of other classes; using a widely validated and
applied instrument such as the LSCI allows instructors to
understand the efficacy of their teaching in both local and
global contexts.

IV. SUMMARY AND CONCLUSIONS

We used IRT to analyze the responses of 3205 Astro 101
students from sixty-nine classes (representing all types of
colleges and universities) to the LSCI. As part of our
analysis, we removed two items from the LSCI: Item 21,
due to the fact that it is known to be a problematic item [5],
and item 25, since it is so difficult that students’ success
on it shows only a weak correlation with their underlying
abilities. In order to satisfy IRT’s assumption of local
independence, we removed a third item, item 23, and we
combined three pairs of items (items 7 and 8, items 18 and
19, and items 2 and 22) into three polytomous items. After
making these modifications, we were able to fit the 3PL
model to the remaining seventeen dichotomous items and
the graded response model to the three polytomous items,
while simultaneously satisfying IRT’s assumptions of
local independence and unidimensionality. By satisfying
these assumptions—and in contrast to classical test theory
(CTT)—we achieved parameter invariance, which means
our estimates of students’ underlying abilities and the
parameters of the items to which they responded do not
depend upon one another [7].
Our IRT analysis provided new insights into the func-

tioning of many of the LSCI’s items. Since the 3PL model
contains a “guessing parameter” (ci), the probability of
correctly answering an item with a large value of ci (e.g.,
Item 3) is influenced by many low-ability students guessing
the correct answer. Items with small values of ci (e.g.,
Item 1) must possess particularly powerful distractors that
limit the influence of guessing on the probability of
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FIG. 14. The pre- and postability histograms for class 1.
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students getting the right answer. This kind of analysis is
not possible with CTT.
When we look at specific categories of items on the

LSCI, we learned that items probing the properties of light
are the easiest for students to correctly answer. In contrast,
items that require students to reason using Wien’s law
and/or the luminosity-area-temperature relationship are
among the most difficult and discriminating items of the
LSCI, especially when these items require students to
interpret graphical or pictorial representations.
The results of our IRT analysis also support the robust-

ness of the research results from prior classical test theory
analyses of this data set [3–5]. We split all classes with at
least 25 students in the data set into two categories: classes
in which the instructor used active learning strategies for
25% of class time or more and classes in which the
instructor spent less than 25% of class time using active
learning strategies. Students in classes that used active
learning strategies for 25% of class time or more had higher
average postinstruction abilities and larger average IRT-
estimated learning gains (average Δθ) than students in
classes that spent less time on active learning strategies—
despite the fact that the higher IAS classes actually began
Astro 101 with lower preinstruction abilities. Students in
high IAS classes had an averageΔθ that was approximately
1 logit greater than their peers in low IAS classes. This
difference of 1 logit represents a significant fraction of
the range of the LSCI’s items’ difficulties and threshold
parameters, demonstrating that students in high active
learning classes have significantly higher probabilities of
correctly answering the LSCI’s items. This is further
supported by the fact that the average Δθ for high IAS
classes is more than twice as large as the average Δθ for
low IAS classes. When we plot the average Δθ versus the
average normalized gain hgi for all classes with at least 25
students, we find a high correlation (r ¼ 0.99) between
these two measures. A plot of Δθ versus the percentage of
class time spent on active learning reproduces the equiv-
alent plot from Prather et al. in which hgi was used as the
ordinate variable [3]. We make the empirical inference from
the data that instructors who want their classes to achieve
an average improvement in abilities of Δθ ¼ 1 logit must
spend at least 25% of class time on active learning
strategies. We believe this result supports the idea that
faculty who are adopting active learning methods need to
do more then simply add a few Peer Instruction or Think-
Pair-Share questions every now and then or have students
work on problems together in class every couple of weeks.
Instead, using proven active learning strategies needs to
become a significant and regular part of their teaching and
their formative assessment of learning. However, the wide
range in Δθ for high-IAS classes suggests that just using
these strategies often is not enough; one’s ability to create
an effective classroom environment that incorporates active
learning strategies is critical.

Our results also imply that for faculty and STEM
education researchers to gain a more complete under-
standing of the learning of individual students and the
effectiveness of a particular class requires more than just a
measure of a class’s average learning gain, such as hgi
or Δθ. We plotted the IRT-estimated gain Δθ versus the
normalized gain g for all 3205 students in the data set. Each
value of g corresponds to a range of values of Δθ. The size
of this range is typically at least 1 logit, which, as noted
earlier, represents a significant difference in the probability
of giving a correct response to any particular item. This
result suggests that while hgi may be good at summarizing
the average improvement of an entire class, g may not
adequately assess individual student learning.
In order to evaluate the effectiveness of different Astro

101 classes represented in the data set, we created histo-
grams of the pre- and postinstruction ability distributions
for each class with at least 25 students. Such histograms
provide information that is not captured by a single number
such as hgi or average Δθ. An examination of a class’s
histogram can reveal to what extent the pre- and post-
instruction distributions overlap one another; the smaller
the amount of overlap, the greater the fraction of students
in that class who actually experienced a change in their
abilities. Additionally, the histograms reveal how many
students are still below the average postinstruction ability,
even after a semester of instruction. In principle, it is
possible for a class to have a large averageΔθ and still have
a majority of its students with below average abilities
postinstruction. Educators and researchers who are inter-
ested in evaluating the overall effectiveness of a class
should look at all of these pieces of information in order to
obtain a more complete understanding of the class.
Item response theory has the power to help researchers

and instructors visualize and better understand whether
their classes are achieving the kinds of transformative
learning experiences they hope to provide for their students.
By sharing the results of IRTanalyses with faculty, we have
seen them become inspired and empowered to engage in
course transformation that they believe can substantially
improve the learning experiences for their students. IRT
analyses of student performance, such as the one described
in this paper, may be able to play an important role in
motivating instructors to adopt active learning methods that
have been developed and are supported by research into
astronomy and physics education.
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APPENDIX: CLASS HISTOGRAMS

Below are the histograms of pre- and postinstruction
ability distributions for all twenty-nine classes in the data
set with at least 25 students. The classes are ordered from
high to low average Δθ.
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FIG. 15. The pre- and postability histogram for class 1.
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FIG. 16. The pre- and postability histogram for class 2.
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FIG. 17. The pre- and postability histogram for class 3.
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FIG. 18. The pre- and postability histogram for class 4.
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FIG. 19. The pre- and postability histogram for class 5.
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FIG. 20. The pre- and postability histogram for class 6.
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FIG. 21. The pre- and postability histogram for class 7.
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FIG. 23. The pre- and postability histogram for class 9.
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FIG. 22. The pre- and postability histogram for class 8.
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FIG. 24. The pre- and postability histograms for class 10.

0 

20 

40 

60 

80 

100 

-2
.4

 

-1
.8

 

-1
.2

 

-0
.6

 0 

0.
6 

1.
2 

1.
8 

2.
4 

nu
m

be
r 

of
 s

tu
de

nt
s 

ability (logits) 

pre 

post 

FIG. 25. The pre- and postability histograms for class 11.
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FIG. 26. The pre- and postability histograms for class 12.
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FIG. 28. The pre- and postability histograms for class 14.
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FIG. 29. The pre- and postability histograms for class 15.
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FIG. 27. The pre- and postability histograms for class 13.
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FIG. 30. The pre- and postability histograms for class 16.
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FIG. 31. The pre- and postability histograms for class 17.
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FIG. 32. The pre- and postability histograms for class 18.
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FIG. 33. The pre- and postability histograms for class 19.
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FIG. 34. The pre- and postability histogram for class 20.
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FIG. 35. The pre- and postability histogram for class 21.
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FIG. 36. The pre- and postability histogram for class 22.
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FIG. 37. The pre- and postability histogram for class 23.
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FIG. 38. The pre- and postability histogram for class 24.
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FIG. 39. The pre- and postability histogram for class 25.
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FIG. 40. The pre- and postability histogram for class 26.
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FIG. 41. The pre- and postability histogram for class 27.
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FIG. 42. The pre- and postability histogram for class 28.
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FIG. 43. The pre- and postability histogram for class 29.
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