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Research on the test structure of the Force Concept Inventory (FCI) has largely been performed with
exploratory methods such as factor analysis and cluster analysis. Multidimensional Item Response Theory
(MIRT) provides an alternative to traditional exploratory factor analysis which allows statistical testing to
identify the optimal number of factors. Application of MIRT to a sample of N ¼ 4716 FCI post-tests
identified a 9-factor solution as optimal. Additional analysis showed that a substantial part of the identified
factor structure resulted from the practice of using problem blocks and from pairs of similar questions.
Applying MIRT to a reduced set of FCI items removing blocked items and repeated items produced
a 6-factor solution; however, the factors still had little relation the general structure of Newtonian
mechanics. A theoretical model of the FCI was constructed from expert solutions and fit to the FCI by
constraining the MIRT parameter matrix to the theoretical model. Variations on the theoretical model were
then explored to identify an optimal model. The optimal model supported the differentiation of Newton’s
1st and 2nd law; of one-dimensional and three-dimensional kinematics; and of the principle of the addition
of forces from Newton’s 2nd law. The model suggested by the authors of the FCI was also fit; the optimal
MIRT model was statistically superior.
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I. INTRODUCTION

The Force Concept Inventory (FCI) was introduced
25 years ago and has become one of the most used and
most studied instruments in physics education research
(PER) [1]. Measurements using the instrument have been
important in the recognition that traditional instruction was
not sufficient for students to develop a conceptual under-
standing of Newton’s laws [2]. Its success was followed by
the development of numerous other conceptual instruments
some of which found wide-spread use including the Force
and Motion Conceptual Evaluation [3], the Conceptual
Survey of Electricity and Magnetism [4], and the Brief
Electricity and Magnetism Assessment [5]. These four
instruments have in turn been used to help understand
the effect of pedagogical innovations, the challenges of
learning physics, and issues of inclusion in physics. The
impact of these instruments has been immense; they have
been used in a substantial subset of the studies done in PER.
For a broad overview of PER including the role of
conceptual inventories in PER, see Docktor and Mestre’s
recent synthesis [6].

A substantial number of studies have attempted to
understand the overall structure of the FCI. These have
included purely exploratory or descriptive methods such as
factor analysis [7–9], module analysis [10], cluster analysis
[11,12], item response theory [13–16], and item response
curves [17,18]. The structure of student reasoning on the
FCI has also been investigated by methods such as model
analysis that require the input of a partial model of the
concepts measured by the FCI [19]. Model analysis was
later shown to be exact only in certain limiting cases [12].
For a summary of these exploratory and nonexploratory
methods, see the review by Ding and Beichner [20].
The reliability and validity of the FCI have also been

tested. The internal consistency of the FCI measured by
Cronbach’s alpha is quite strong [16,21]. The instrument
has also demonstrated good test-retest reliability [22].
While some validity issues have been identified [16], these
are minor compared to those reported for some other
instruments [23].
The current study explored the factor structure of the FCI

using Multidimensional Item Response Theory (MIRT).
This method has previously been applied to the FCI [24] by
Scott and Schumayer. MIRT, described in detail in Sec. II,
provides statistical criteria for determining the optimal
number of factors unlike traditional exploratory factor
analysis (EFA). The current study applied MIRT to the
FCI using a larger data set than the previous study collected
under conditions where correct answering was more
strongly incentivized, thus allowing a finer resolution of
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the details of student thinking. MIRT also allows models to
be constrained to eliminate factor loadings that should not
theoretically occur. As such, it allows a more detailed
exploration of the structure of an instrument than tradi-
tional EFA.

A. Factor analysis and the FCI

The authors of the FCI provided a detailed description of
the physical concepts each item in the original instrument
was designed to measure [1]. Soon after its publication,
attempts to extract the suggested structure with EFA were
unsuccessful leading to debate about what the instrument
actually measured [7,25,26]. Huffman and Heller reported
that, for a sample of 145 high school students, principle
component analysis identified two factors: Newton’s 3rd
law and kinds of forces. For 750 university students, only
one factor was identified: kinds of forces. This study
selected the number of factors by requiring that each
new factor explain at least 5%–10% additional variance.
The difference in the number of factors identified between
the Huffman and Heller study and other studies of the FCI
may have resulted from the use of different criteria to
identify the optimal number of factors. Methods to identify
the optimal number of factors are discussed in Sec. II E.
Scott, Schumayer, and Gray applied EFA to the FCI

post-test scores of a sample of 2150 students in a college
algebra-based physics course [8]. The FCI was delivered
electronically and students were given no special incentive
for completion. They found a single factor explained a
substantial portion of the variance, but concluded a five-
factor model was optimal. Parallel analysis was used to
select the optimal number of factors. The “knee” of their
Scree plot suggested that two or three factors could also be
considered optimal. In examining the loadings on the single
factor, they discuss the possibility of very difficult items not
being strongly correlated with the single-factor solution.
The variance explained by the addition of each new factor is
not reported, and, therefore, the number of factors selected
cannot be comparedwith Huffman andHeller’s solution [7].
Semak et al. explored the evolution of the structure of

student thinking on the FCI using factor analysis [9] for 427
algebra- and calculus-based introductory physics students.
They found the optimal solution had 5 factors on the pretest
and 6 factors on the post-test. Parallel analysis was used to
select the optimal number of factors; however, examination
of the Scree plots from their study suggests one could have
also identified one or two factors as optimal for both the
pretest and post-test. This would have provided support for
Huffman and Heller’s model. We provide a comparison of
the four reported factor structures in Sec. V.
Factor analysis has also been used to investigate other

sets of physics problems. Ramlo [27] calculated the factor
structure of the FMCE [3] finding 3 factors for the pretest;
however, these factors contained a mixture of concepts
and Ramlo concluded the pretest factor structure was

undefined. Three factors were also found for the post-test
with items covering similar conceptual topics largely
loading onto the same factor. Ramlo used a Scree plot
to identify an eigenvalue cutoff of 2.5 to determine the
optimal number of factors.

B. Item Response Theory and the FCI

Item Response Theory (IRT) contains a broad set of
statisticalmodelswhich calculate the probability of a student
with some overall proficiency or ability to answer individual
items on a test correctly. Many different IRT models have
been used to investigate the FCI including the Rasch model,
the 2-parameter logistic (2PL) model, the 3PL model, and
MIRT. These models are reviewed in Sec. II.
Many studies have investigated the FCI with IRT using a

single ability parameter (unidimensional IRT). Wang and
Bao employed the 3PL IRT model to investigate the FCI
pretest for 2802 college students taking calculus-based
physics [13]. They reported excellent model fit with all
items showing reasonable difficulty parameters and no
items with negative discrimination parameters. The 3PL
model adds a parameter to the 2PL model to account for
random guessing. The majority of the guessing parameters
were less than the 20% random guessing would produce.
The use of the 3PL model for distractor-driven instruments
has been questioned [18].
Planinic, Ivanjek, and Susac performed a Rasch analysis

of 1676 Croatian high school students who had completed
an algebra-based physics class [14]. The Rasch model
difficulty parameters were largely in agreement with the
overall item average. This study is difficult to generalize
because the overall score on the instrument (27.7%) was so
low and the measurement was performed two and one-half
years after instruction.
Osborn Popp, Meltzer, and Megowan-Romanowicz also

used Rasch model IRT for a sample of 4775 high school
students to investigate item fairness; all students had been
taught using Modeling Instruction [15]. IRT using the
Rasch model was used to determine if items within the FCI
were of equal difficulty for men and women. They found
that a number of items were significantly easier for male
students and some for female students.
Traxler et al. [16] also investigated item fairness in the

FCI with IRT using the 2PL model. They found that eight
items were substantially biased toward men and and two
toward women; they proposed a reduced 19-item instru-
ment to eliminate all biased and poorly functioning items.
Han et al. used the 3PL IRT model as part of the process

of evaluating the equivalence of two shorter versions of the
FCI [28]. Traxler et al. [16] cautions that the gender unfair
items were not evenly distributed between the shortened
tests, and, therefore, the two shorter tests might have
different performance results for men and women.
Scott and Schumayer [24] attempted to replicate the

work of Scott, Schumayer, and Gray [8] on a related data
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set using MIRT. They confirmed the 5-factor solution.
Comparing the factor models of the two studies showed
very good, but not perfect, agreement suggesting MIRTand
EFA are complementary techniques. To select the optimal
number of factors, AIC and BIC (described in Sec. II) were
minimized.
IRT has also been used to explore other sets of physics

problems. Lee et al. [29] used 2PL IRT to examine how the
skill of physics students using an online homework system
changedbetween their first and second attempts at a problem.
Whether feedbackwas given on the first attempt and the type
of feedback strongly influenced the change in student skill
(IRT ability) between the first and second attempt.
Morris et al. [17] introduced an alternative to IRT

(bearing a very similar name), item response curves
(IRC), which was used to analyze the FCI. IRC analysis
simplifies IRT analysis by using the overall test score as a
surrogate for student ability, greatly reducing computa-
tional demands and allowing intuitive exploration of the
effect of distractors. Using a sample of over 4500 students
drawn from multiple institutions, a later study by Morris
et al. [18] compared IRC analysis to the IRT analysis of
Wang and Bao [13] and found excellent correlation
between the difficulty parameters of the models.

C. The structure of knowledge

Most explorations of the structure of the FCI have focused
on determining a general structure that represents the entire
instrument in terms of a small number of factors or clusters.
This reductionism is at odds with a large body of research
suggesting students’ knowledge of physics is complex and
that students (novices) do not possess the strongly integrated
view of physics of expert practitioners. Experts and novices
categorize problems differently; novices by surface features
and experts by deeper conceptual divisions [30,31]. One
commonly accepted difference in the knowledge structure of
experts is the hierarchical nature of the structure, with the
most fundamental principles at the top and less fundamental
concepts branching out from there [32–34]. This more
deliberate structuring of knowledge allows experts to engage
more efficiently in chunking of knowledge [35–37] for more
expedient application of the correct physics principles when
engaging in problem solving.
Conversely, novices lack this deliberate knowledge

structure leading to less deliberate methods of problem
solving. This reviewwill follow the categorization of expert-
novice research presented inDocktor andMestre’s extensive
synthesis of PER [6]. One view regarding some of the novel
ways that novices approach problems differently from
experts is the “misconceptions” view. This view argues that
students, through their life experiences, have developed
theories regarding how theworldworks and that using these,
often incorrect, theories leads to some of the common
difficulties in physics problem solving [38–40]. Research
into these misconceptions has shown that they are very

difficult to overcome due in part to the time students have
spent believing them to be true [41,42]. Another method of
explaining the differences is the “ontological categories”
view, which posits that students miscategorize their knowl-
edge, storing it in incorrect broad categories (i.e., thinking of
force as a thing that can be used up) [43–45]. Another
popular theoretical framework is the “knowledge in pieces”
view [46–48] wherein student understanding consists of a
number of granular facts that are activated, either individu-
ally or in small groups, to synthesize a solution. Regardless
of the theoretical framework used to describe it, novice
knowledge and the associated problem solving techniques
have been shown to be highly sensitive to the context of the
problem and how it relates to problems they have seen in the
past [49–51]. As such, the knowledge state of students may
be better described by models of a granular knowledge
structure instead of the integrated models implied by factor
analysis or cluster analysis.
The current work will produce a fine-grainedmodel of the

information needed to solve FCI problems. This model is
very similar to models produced by a paradigm of cognitive
research into complex problem solving pioneered by Simon
and Newell [52]. This paradigm and its history, which
dominated research into problem solving for over 30 years,
were summarized by Ohlsson [53]. The paradigm con-
structed computational models that replicated the problem
solving sequence of human solvers; the sequence of the
human solverwas identified by coding extensive think-aloud
transcripts. This method was applied to examine expert-
novice differences in problem solving in kinematics and
dynamics, as well as other fields [54,55]. Reif and Heller
offered a related detailed model of problem solving in
mechanics [35]; this model did not meet the test of being
computationally functional, but was meant to be a complete
model that could serve as a prescription of expert behavior.
The model wewill propose for the FCI shares many features
with the computational models of Larkin et al. [55] and the
model ofReif andHeller [35]. Thework on complexproblem
solving focused primarily on quantitative solutions; how-
ever, the framework presented by Reif and Heller acknowl-
edged the role of qualitative decisions in the solution process
and suggested extensions to model qualitative reasoning.

D. Research questions

This study seeks to answer the following research
questions.

RQ1: What factor structure is extracted for the FCI by
MIRT? Is this structure consistent with the results
of other factor analysis?

RQ2: Can parts of this factor structure be explained by
factors other than the structure of student knowl-
edge of Newtonian mechanics?

RQ3: If blocked items and repeated reasoning groups are
removed, is the resulting factor structure consistent
with Newtonian mechanics?
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RQ4: Can theoretically constrained MIRT produce a
model of the physical constructs measured by the
FCI? If so, what is the optimal model of the FCI
for this student population?

RQ5: Does the structure proposed by the FCI’s authors
provide a superior description of the instrument to
the optimal model identified by MIRT?

This work leaves two important areas of analysis for
future research: the role of misconceptions and bias. The
FCI was constructed so that the distractors represented
common misconceptions. In the analysis in this paper, only
the correctness of the responses was analyzed. MIRT could
be extended to include factors representing common mis-
conceptions to determine how the models presented in this
work would be modified.
There is a substantial body of research indicating that

some problems within the FCI are unfair to women, with a
few unfair to men. These problems have often factored
together in previous analysis [8,9] leading to the possibility
that some factors are identified because of biases in the
problems. Many biased problems were removed in the
analysis in this study to remove spurious correlations;
however, future research should investigate whether the
factor structure identified is independent of gender. While
this study will not focus on gender fairness, the reduced fair
19-itemFCI proposed byTraxler et al. [16]will be examined
using the optimal theoretical FCImodel identified byMIRT.
For a review of research into FCI item bias, see Traxler et al.
[16]. For a review of the issue of gender disparities in
conceptual inventories see Madsen, McKagan, and Sayre
[56] or Henderson et al. [57]. For a general review of gender
in physics see Traxler et al. [58].

II. METHODS

A. Force Concept Inventory

The FCI is a 30-item multiple-choice instrument that
includes conceptual questions about Newton’s laws, kin-
ematics, and forces [1]. Each item has five possible
responses. The incorrect responses were developed to
include common misconceptions. The FCI contains some
individual items and some items that are grouped into
blocks which share a common stem. The FCI was revised
after its introduction; this work will use the revised FCI
published with Mazur’s Peer Instruction [59] and available
at PhysPort [60].

B. Sample

The sample of FCI post-test results was collected from a
large, southern land-grant university with an enrollment of
approximately 25 000 students. This university held a
Carnegie Classification of “Highest Research Activity”
for the period studied. The sample is comprised of 4716
complete post-test responses collected from the Spring 2002
semester to Fall 2012 semester (23.1% women). The

demographics of the university in 2012 were 79% White,
5%African American, 6%Hispanic, and 3% or less of other
groups. The 25th to 75th percentile range of the general
student population’s ACT scores was 23–29 [61]. This
sample was also used in the analysis of Traxler et al. [16].
The sample was collected in the introductory calculus-

based mechanics course serving future physical scientists
and engineers. Students in the course were required to
attend two 50-minute lectures and two 2-hour laboratories
each week. The lectures were largely traditional with
attendance monitored by a quiz given at the beginning
and end of each session. The lab sessions featured a mixture
of activities including teaching assistant (TA) led inter-
active demonstrations, small group problem solving,
inquiry-based hands-on activities, and traditional experi-
ments. The class had been revised previous to the beginning
of data collection and was presented with few changes over
the period studied. The class was managed by the same lead
instructor for the period studied; this instructor taught 75%
of the lecture sections and oversaw the instruction of the
remaining sections.

C. Item Response Theory

Many IRT probability models have been constructed to
model student responses to different test structures and
testing situations [62]. One of the most intuitive and widely
used is the two-parameter logistic (2PL) model. The 2PL
model uses unidimensional IRT, which explicitly models
the effect of the single latent trait of ability, θi, on the
probability of a student, i, successfully answering a
question. The 2PL model assumes that each item j has a
difficulty bj and discrimination aj. The probability, πij, that
student i will successfully answer item j is given by the
logistic function

πij ¼
exp½ajðθi − bjÞ�

1þ exp½ajðθi − bjÞ�
: ð1Þ

The 2PL model can be expanded to the 3PL model by
including an additional parameter for each item to model
random guessing. The 3PL model has been used in some
studies of the FCI. A simplification of the 2PL model,
called the Rasch model, has also been used to study the
FCI; the Rasch model sets the discrimination of each item
to 1, aj ¼ 1.
The assumption of unidimensional IRT, that a single

ability parameter captures the students’ facility with the test
material, may be correct for some instruments but it seems
unlikely for the FCI, which measures a number of different
facets of Newton’s laws and kinematics. Multidimensional
IRT (MIRT) extends unidimensional IRT by estimating
multiple ability traits for each student. Mathematically, the
student ability θi, which is a scalar in unidimensional IRT
becomes a vector, θi, in MIRT. If k ability traits are
estimated for each item, each trait is associated with its
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own item discrimination ajk, making the discrimination a
vector, aj.
Multiple MIRT models exist; the most common MIRT

model is called the compensatory model where the prob-
ability of a particular response is determined by a linear
combination of θi components where large components of
θi will compensate for the smaller components of θi. This
model is

πij ¼
exp½aj · θi þ dj�

1þ exp½aj · θi þ dj�
; ð2Þ

where dj would be the product −ajbj in the 2PL model and
the product aj · θi is a dot product of two vectors. The
parameter dj is related to the difficulty of the item. While
this MIRT model estimates multiple discrimination param-
eters for each item, it estimates only one dj parameter. This
is not optimal; it would be beneficial to know the difficulty
of the item by individual trait. Noncompensatory MIRT
would extract the difficulty of each item; however, this
doubles the number of parameters estimated. We attempted
to apply noncompensatory MIRT to the FCI but the models
did not converge.

D. Model fit statistics

Unlike traditional factor analysis which identifies factors
as eigenvectors of the correlation matrix, IRT introduces a
statistical model, which is then fit to the observations. The
model is used to calculate the likelihood function L, which
represents the probability the observation occurred given
the probability model. Maximum likelihood estimation
techniques are used to search the parameter space to select
a set of parameters which maximize L, the set of parameters
which make the observed results most likely. This form of
estimation can be used for a wide set of models and a
number of general model fit statistics have been developed.
We will report the Akaike information criterion (AIC),
AIC ¼ 2k − 2 lnðLÞ, and the Bayesian information cri-
terion (BIC), BIC ¼ k lnðnÞ − 2 lnðLÞ, where n is the
sample size and k the number of parameters estimated.
The optimal model minimizes both quantities. AIC esti-
mates the relative information lost when using a model to
approximate the “true” model for a random sample drawn
from the same population as the sample to which the model
was fit, the out-of-sample information loss [63,64]. The
second term in AIC is the in-sample information loss; the
first term corrects for overfitting as the number of param-
eters increases. BIC has a similar interpretation but more
strongly penalizes the addition of parameters. Smaller AIC
or BIC represent less lost information.
Effect size standards for differences in AIC and BIC have

not been formalized, but the magnitude of differences can
be understood through the relation with L. A difference
between the AIC or BIC of two models 1 and 2 with the

same n and k is Δ12 ¼ AIC1 − AIC2 ¼ BIC1 − BIC2 ¼
−2½lnðL1Þ − lnðL2Þ� ¼ −2 lnðL1=L2Þ. As such, the like-
lihood ratio between the two models follows L1=L2 ¼
e−Δ12=2. A two point decrease in either AIC or BIC then
results in a model that is e times more likely. According to
Burnham and Anderson, if the difference in AIC between
two models is greater than 2, then there is little evidence
that the two models are the same and, therefore, the one
with lower AIC should be selected [63]. BIC follows a
similar rule to AIC with a difference of 2 or more between
the BIC of two models indicating a significant difference
between them [65]. Raftery further classified differences in
BIC as Δ12 ≤ 2 as “weak,” 2 < Δ12 ≤ 6 as “positive,” 6 <
Δ12 ≤ 10 as “strong,” and Δ12 > 10 as “very strong” [65].
Because of the similarity of the statistics, we will also adopt
these conventions for AIC. A very strong change of 10 in
AIC or BIC results in a model that is e5 ¼ 148 times more
probable.
A substantial number of additional fit statistics have been

developed for maximum likelihood models. We report the
root mean square error of approximation (RMSEA), the
comparative fit index (CFI), and the Tucker-Lewis index
(TLI). Hu and Bentler suggest using multiple indices to
evaluate model fit [66]. Acceptable model fit is characterized
by RMSEA < 0.05 and CFI > 0.96 or TLI > 0.96. For a
summary of fit statistics, see Eaton and Willoughby [67].
Nested models were compared using a likelihood ratio

test. If two models with likelihood functions L1 and L2

differ by k parameters where model 1 has fewer parameters,
then the test statistic χ2 ¼ −2 lnðL1=L2Þ has a chi-squared
distribution with k degrees of freedom and can be used to
test whether the models are significantly different [68].

E. Additional analyses

While MIRT allows statistical selection of the optimal
number of factors, traditional EFA uses a number of
nonstatistical criteria. Factor selection often begins by an
examination of the “Scree” plot which plots the eigenvalue
of the correlation or covariance matrix corresponding to the
factor against the factor number; the eigenvalue is related to
the variance explained by the factor. An example of a Scree
plot is shown in the Supplemental Material [69]. One then
identifies the “knee” of the Scree plot, the point of greatest
curvature. The number of factors corresponding to the knee
is the optimal number of factors. For factor numbers greater
than the location of the knee, each additional factor
explains substantially less variance than the factors already
extracted.
Many additional methods have been developed and often

yield contradictory results. The sum of the eigenvalues of
the correlation or covariance matrix is equal to the trace of
the matrix; therefore, an eigenvalue that is less than the
mean correlation or covariance represents a factor that
explains less variance than an individual item. The optimal
number of factors can then be extracted as the last factor
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with eigenvalue above the mean. Parallel analysis computes
the eigenvalues of a random correlation matrix; the optimal
factor number is the last factor with eigenvalue greater than
the parallel analysis eigenvalue.
Partial correlation matrices will be reported. The partial

correlation matrix for the dichotomous scores on individual
FCI items was calculated by regressing the total FCI score
on the individual item score using a general linear model.
The correlations of the residuals of these regressions form
the partial correlation matrix.
The mean and standard deviation of MIRT parameters,

aj and dj, were calculated by bootstrapping. Bootstrapping
is a statistical technique that allows the calculation of the
average, standard deviation, and confidence interval for a
data set without assuming a statistical model. This is done
by forming sub-samples of the data with replacement and
recalculating the desired parameter for each sub-sample.
For this work, 200 subsamples were used; this calculation
required one week of computational time on a modern
personal computer.
All statistical analyses were carried out in the R software

package [70]. MIRT was performed with the “mirt” pack-
age [71]. Nested MIRT models were compared using the
anova function which performs a likelihood ratio test. This
work used correlation analysis to investigate the origin of
the factor structures extracted. The correlation matrix was
presented in a visualization rendered by the “qgraph”
package [72]. Partial correlation matrices were constructed
by using the “glm” function to regress the total FCI
score on the dichotomous scores of the individual items.
Factor analysis was carried out with the “factanal” function
in the “stats” package. The “nFactors” package was
used to generate the Scree plot and to perform parallel
analysis. Bootstrapping was performed with the “boot”
package [73,74].

F. Supplemental Material

See Supplemental Material [69] for traditional factor
analysis including the Scree plot, 3- and 5-factor MIRT
models, and the constrainedMIRT model without the factor
loading on all items [69].

III. RESULTS—EXPLORATORY ANALYSES

The FCI was first examined with MIRTwithout employ-
ing a theoretical model, thus performing an exploratory
factor analysis (EFA). Exploratory methods extract models
from data without the constraints of an imposed model.
Correlation analysis was then used to understand the
resulting factor structure. Expert solutions of the FCI were
then used to construct a theoretical model of mechanics
which allowed further exploration of the correlation struc-
ture. In Sec. IV, the work shifts to a confirmatory analysis
using MIRT to explore how the theoretical model mapped
onto student responses to the FCI. Finally, the model

proposed by the FCI authors was fit and compared to
the optimal model identified in this work.

A. Exploratory factor analysis

MIRTwas used to perform EFA on the FCI. Models with
progressively more factors were fit and compared using a
likelihood ratio test which computes a chi-squared statistic.
A 9-factor model improved model fit over an 8-factor
model [χ2ð22Þ ¼ 53.44, p < 0.001] and explained 56% of
the variance in the item scores. The last factor added
explained 3.6% additional variance. The 10-factor model
did not significantly improve model fit. The 9-factor model
showed a very strong improvement in AIC and BIC on both
the 8-factor and 10-factor model using Raftery’s classi-
fication [65]. The 9-factor model (varimax rotation) is
shown in Table I. Factors are reported as columns and
labeled “FC.” The table also identifies the FCI problem

TABLE I. Factor loadings for exploratory factor analysis with
Multidimensional IRT (varimax rotation). Loadings greater than
0.7 are highlighted in dark gray. Loadings between 0.5 and 0.7
are highlighted in light gray.

# FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 d
1 0.78 8.08
2 0.42 0.90
3 -0.54 3.36
4 0.88 1.38

Block 5-6
5 -0.71 0.63
6 487.0 .81
7 246.0 .81

Block 8-11
8 353.065.0- .38
9 -0.63 2.18
10 423.0-35.0- .14
11 -0.58 1.81

344.0-33.021 .40
13 -0.63 -0.41 3.40

174.0-53.0-41 .01
Block 15-16

15 -0.52 0.64 0.91
334.0-53.093.0-61 .89

17 047.0- .37
18 -0.81 0.70
19 -0.58 2.73
20 0.79

Block 21-24
21 -0.74 −0.18
22 -0.84 0.83
23 -0.48 0.37 -0.40 2.10
24 -0.39 -0.50 3.96

Block 25-27
25 068.0- .57
26 -0.39 -0.61 −1.34
27 -0.36 1.52
28 0.74 1.91
29 1.63
30 0.67
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blocks. The table reports d; d is related to the overall
difficulty of the item [Eq. (2)]. Easier items have larger d.
Loadings greater the 0.7 are highlighted in dark gray.
Loadings between 0.5 and 0.7 are highlighted in light gray.
While the 9-factor model was statistically superior, the

model fit statistics shown in Table II did not provide a clear
identification of the number of factors. While the 9-factor
model is statistically significantly better than all other
models, there was not a significant improvement from
the 6-factor model to the 7-factor model [χ2ð24Þ ¼ 32.79,
p ¼ 0.109]. The 9-factor model was a significant improve-
ment over the 6-factor model [χ2ð69Þ ¼ 196, p < 0.001].
The 5-factor model had superior RMSEA, CFI, and TLI
statistics. While the 9-factor model minimized AIC, the
6-factor model minimized BIC. The knee in the Scree
plot calculated using traditional EFA, presented in the
Supplemental Material [69], suggests 3 to 4 factors. As
such, after 3 factors are extracted, it is difficult to make a
definitive case for the number of factors. We selected the
9-factor model because it was the model identified as
optimal using the likelihood ratio test, minimized AIC, and
provided the greatest resolution of the structure of the
instrument. Three- and 5-factor MIRTmodels are presented
in the Supplemental Material [69].
Traditional EFAwas also performed. For this analysis, the

criterion that the eigenvalue be greater than the mean
eigenvalue suggested a 7-factor solution, parallel analysis
suggested a 6-factor solution, while an examination of the
knee in the Scree plot suggested 3–4 factors. Like other
published Scree plots, there was a rapid decline from 1 to 3
factors followed by a long tail where additional factors each
explained 2%–4% additional variance. If Huffman and
Heller’s criteria for the retained factors, whichwere required
to explain 5%–10% of the variance, was used [7], only two
factors would have been retained. The 5-factor EFA solution
is presented in the Supplemental Material [69]. The 5-factor
solution was very similar to other published solutions with
many items loading on the first two factors as was also
observed by Scott, Schumayer, and Gray [8]. Exploratory
methods, such as factor analysis or cluster analysis, can
identify structures correlated by unexpected features. The

items in the first two factors in either the 5-factor EFAmodel
in the Supplemental Material [69] or in Scott, Schumayer,
and Gray do not seem strongly related by the physical
principles they test, which opens the possibility that some
other feature is causing the correlations which cause groups
of items to be identified as factors.

B. Correlation analysis

Factor analysis accomplished either traditionally or
through MIRT identifies combinations of items which vary
together. Covariation of individual items can also be
examined through correlation analysis. The full FCI corre-
lation matrix contains 900 entries making it difficult to
interpret; however, numerous visualizations of the corre-
lation matrix have been created. Figure 1 presents one such
visualization of the FCI correlation matrix created with the
R qgraph package. Solid lines (green) represent positive
correlations and dashed lines (red) represent negative
correlations. Only correlations greater than 0.3 (Cohen’s
criteria for medium effect size) are shown. No pair of
questions was negatively correlated with jrj > 0.3 where r

TABLE II. MIRT fit statistics.

Factors AIC BIC RMSEA TLI CFI

1 132 042 132 430 0.071 0.83 0.84
2 128 805 129 379 0.047 0.92 0.94
3 127 863 128 619 0.042 0.94 0.95
4 127 223 128 153 0.038 0.95 0.96
5 126 553 127 651 0.032 0.97 0.98
6 126 239 127 498 0.066 0.85 0.91
7 126 254 127 668 0.071 0.83 0.91
8 126 192 127 755 0.067 0.85 0.92
9 126 180 127 885 0.060 0.88 0.94
10 126 214 128 055 0.066 0.86 0.94
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FIG. 1. Correlation matrix for all FCI items. Lines represent
correlations with jrj > 0.3. Line thickness represents the size of
the correlation. Solid (green) lines represent positive correlations;
dashed (red) lines negative correlations. No negative correlations
were present.
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is the correlation coefficient and, therefore, there are no
dashed lines in the figure. The placement of nodes is
calculated to be visually appealing and does not convey
additional information; only the connections between
nodes are important. Other visualizations are also useful;
an alternate visualization created with the corrplot package
is provided in the Supplemental Material [69].
There are many potential sources of the correlations

shown in Fig. 1. Groups of highly correlated items often
form the elements of a factor with the highest loading; in
some sense they “nucleate” the factor. Some correlations
may arise because two items require similar physical
principles for their solution or that they elicit the same
misconception. In previous factor analysis, only these
explanations of the factor structure have been considered.
The FCI contains 4 groups of problems where each item

in the group shares a common stem; we will call these
groups “problem blocks.” The problem blocks have been
identified in Table I. One additional group of items 25–27
does not share the same stem, but items 26 and 27 explicitly
refer to item 25. While blocking the problems may shorten
the reading time for the student, it can also generate
correlations between items that are not the result of the
physical properties required for their solution. If a student
misinterprets the stem, then this error will affect the
solution of each problem in the block. An error in an
earlier item in a block can cause errors in later items.

Examination of Table I shows that many of the largest
factor loadings in individual factors occur for problems in
the same block; likewise, in Fig. 1 many of the most
strongly correlated item pairs are part of problem blocks.
An examination of the physical principles required to solve
the strongly correlated blocked problems does not suggest
the level of commonality demonstrated by the factor or
correlation structure. As such, it seems likely that at least
some of the factor and correlation structure results for the
decision to use groups of problems with a common stem.
A second possible source of correlations not related to

underlying physical principles is correlation through total
test score. The FCI has repeatedly been shown to be an
instrument with high internal consistency as measured by
Cronbach’s alpha [16,21]. All correlations with jrj > 0.3
are positive in Fig. 1. Two problems could be correlated
because either only the strongest students answer them
correctly or only the weakest students answer them
incorrectly; they are correlated through the total test score.
To remove this effect, a partial correlation matrix control-
ling for total test score was calculated as shown in Fig. 2.
Examination of Fig. 2 shows that the problem blocks
f8; 9g, f21; 22; 23; 24g, and f25; 26g still stand out as
highly correlated. Four other groups of questions emerge as
correlated f5; 18g, f6; 7g, f17; 25g, and f4; 15; 28g. To
understand these groups, we construct a model of the
solution to the FCI in the next section.
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FIG. 2. Partial correlation matrix for all FCI problems correcting for total FCI score (only jrj > 0.1 shown). Line thickness represents
the size of the correlation. Solid (green) lines represent positive correlations; dashed (red) lines negative correlations.
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C. A theoretical framework

Hundreds of physicists have offered models of the
structure of introductory mechanics either through the
production of textbooks, scientific papers, or in their
solution of introductory mechanics problems. We sought
to produce one such model that synthesized the structure of

introductory mechanics commonly presented in textbooks
with the statements found in expert solutions of FCI
problems. This resulted in a set of statements about
introductory mechanics shown in Table III; the statements
will be called “principles” following Larkin et al. [55].
The principles were classified as definitions (DF), laws (L),

TABLE III. Theoretical model of Newtonian mechanics as tested by the FCI. Principles in bold were included in the optimal
model 3 fitting the reduced FCI.

Label Derived from FCI No. Principle

Kinematics
DF1 19, 20 Definition of velocity (v⃗ ¼ dr⃗=dt).
DF2 Definition of acceleration (a⃗ ¼ dv⃗=dt).
R1 Trajectory a⃗ ¼ constant (r⃗ðtÞ ¼ r⃗0 þ v⃗0tþ 1

2
a⃗t2).

R2 Velocity a⃗ ¼ constant (v⃗ðtÞ ¼ v⃗0tþ a⃗t).
C1 DF1 6, 7 Instantaneous velocity is tangent to the trajectory.
C2 DF2 5, 18 Objects moving in a curved trajectory will experience centripetal

acceleration.
C3 R1 1D trajectory a ¼ constant, (xðtÞ ¼ x0 þ v0tþ 1

2
at2).

C4 R2 1D velocity a ¼ constant, (vðtÞ ¼ v0 þ at).
LM1 DF1 14 If two objects move together, they have the same initial velocity when

separated.
LM2 R1 2 Motion may be separated along orthogonal axes.
LM3 C3 2 If motion is one-dimensional and a ¼ 0, then d ¼ vt.
LM4 R2 3, 22, 26 Objects under constant acceleration with a⃗ parallel to v⃗ speed up.
LM5 R2 27 Objects under constant acceleration with a⃗ opposite to v⃗ slow down.
LM6 R1 12, 14, 21 Objects under constant acceleration with some initial velocity perpendicular

to the acceleration travel in a parabolic arc.
LM7 DF2 20 If velocity is constant, then acceleration is zero.
LM11 C3 1, 2 If the accelerations and initial velocities are equal, objects travel the same

distance in the same time.

Dynamics
DF3 26 The net force is the vector sum of the forces (forces add as vectors).
L1 6, 7, 8, 10, 17, 23, 24, 25 Newton’s 1st law.
L2 5, 18, 26, 27 Newton’s 2nd law.
L3 4, 15, 16, 28 Newton’s 3rd law.
LM8 L2 21 Constant force produces constant acceleration.
LM9 L2 8, 21 If the force only has one component, an object accelerates in that direction.
LM10 DF3 17, 25 If the net force is zero and only two forces are exerted on the object, they

must be equal but opposite.

Properties of forces
L4 1, 2, 3, 5, 11, 12, 13,

14, 17, 18, 29, 30
Objects near the earth’s surface experience a constant downward force/
acceleration of gravity.

F1 11, 29 An object in contact with a surface experiences a normal force.
F2 11, 13, 18, 30 An object does not necessarily experience a force in the direction of motion.
F3 3, 29 Air pressure does not exert a net downward force.
F4 30 The wind can exert a force on an object.
F5 1, 3 Air resistance is negligible for a compact object moving a short distance.
F6 3 The force of gravity is approximately constant near the earth’s surface.
F7 27 Objects that slide across a surface experience a force of friction opposite

motion.

Other
DF4 Magnitude of vector

�
jA⃗j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
x þ A2

y þ A2
z

q �

C5 DF4 9 Triangle inequality
RS1 19 If one quantity is constant and another quantity is smaller at one time and

larger at another time, then the two quantities must be equal at some time.
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corollaries (C), results (R), facts (F), lemmas (LM), and
reasoning (RS). Corollaries could be derived from laws,
results, and definitions but required some nontrivial rea-
soning. A result, such as the constant acceleration kin-
ematic equations, was derived as a special case of the laws
and definitions. Knowledge of how the universe worked
that did not raise to the level of a law were called facts.
Expert solutions often contained specializations of the
physical laws and definitions to the individual problem;
these special cases were called lemmas. The FCI contains
one item (item 19) which required a unique piece of
reasoning (RS1) in multiple expert solutions. To solve
the problem, one must argue if one quantity is constant and
another begins smaller than the first quantity and ends
larger than that quantity, then the quantities must be equal
at some point. Many of the principles in Table III are
consistent with principles used in models of physics
problem solving proposed by Larkin et al. [55] and Reif
and Heller [35]. The principles can be divided into two
broad classes: core principles including the definitions,
laws, facts, corollaries, and results and supplementary
principles including the lemmas and reasoning. Without
the core principles, the description of Newtonian mechan-
ics is incomplete; supplementary principles specialize core
principles to specific situations or provide specific patterns
of reasoning.
To map out the subset of Newtonian mechanics tested by

the FCI, a careful solution of the FCI was collected from
the lead instructor who oversaw the course studied.
Solutions were also collected from faculty and graduate
students in the research team. These solutions were
decomposed to the sentence level and each sentence
classified. These statements did not contain many of the
core principles shown in Table III. Many lemmas, however,
provided specializations of more general core principles
not found in the expert solutions. The core principles were
introduced based on the project team’s understanding of
Newtonian physics. For example, the expert solutions
contained lemma LM7 (“If velocity is constant, then
acceleration is zero”), but did not contain the more general
definition DF2 (“a⃗ ¼ dv⃗=dt”), so DF2 was added to the
model. A core principle was introduced for each lemma;
often many lemmas were derived from a single core
principle. With only a small sample, it became obvious
that a complete set of supplementary principles would be
very long and not particularly useful, but that the existing
lemmas fit well into a well-established structure of
Newtonian mechanics involving the core principles. The
model of Newtonian mechanics as measured by the FCI
produced by this process is shown in Table III. The table
also shows the core principle from which a supplementary
principle can be derived and the FCI items whose solution
requires the principle.
The model in Table III represents a preliminary model

for understanding solutions of the FCI. It does not contain

any representation of student misconceptions. The set of
lemmas would almost certainly change somewhat if a
different set of expert solutions were used. Some parts
of the core model would be agreed upon by most experts:
DF1, DF2, L2, and L3, for example. However, it is doubtful
that a group of experts would agree on all elements. For
example, it might be argued that Newton’s 1st law is
unnecessary because it can be derived from Newton’s 2nd
law and kinematics. Also, it might be argued that separate
principles for one-dimensional kinematics (C3 and C4) and
three-dimensional kinematics (R1 and R2) are unnecessary.
In Sec. IV, MIRT is used to explore possible changes to the
model and identify the model which most strongly captures
the Newtonian thinking of this student population.
We note that the fact F2 might be considered to

specifically address the motion-implies-force misconcep-
tion. It was present in most expert solutions to eliminate
specific distractors. We will find that its inclusion improves
the model and future work may identify other facts that
allow common misconceptions to be added to FCI models.
There were some additional minor decisions made to

produce the model in Table III. Item 17 has a distractor that
requires the application of F3 (net downward force of the
air); no expert solution included this principle and it was not
included in the model of item 18. LM4 and LM5 were
written for general three-dimensional motion and are
marked as derived from R2. Items 26 and 27, which use
these lemmas, are one-dimensional problems. As the lem-
mas are folded into the principles they are derived from to
produce model 3, the items using these lemmas will be
appropriately distributed to one- or three-dimensional kin-
ematic principles. Item 18 was coded with a centripetal
acceleration implying a force in the direction of the tension
force; this item could have also been coded by introducing
the tension force as an additional fact. The correlation with
item 5 and the lack of any additional items using a tension
force caused the selection of this coding. LawL4 and fact F6
both involve a constant force of gravity near Earth’s surface.
Fact F6 was introduced because FCI item 3 seems to require
the student to explicitly reason that the force of gravity does
not change much over the height of a single-story building.

D. Reduced exploratory factor analysis

The theoretical model in Table III provides an explan-
ation for some of the remaining strong correlations in Fig. 2
which were not explained by the block structure of the FCI.
Items 4, 15, and 28 all require only L3 (Newton’s 3rd law)
for their solution. Items 17 and 25 share both L1 and LM10,
items 5 and 18 share L2, L4, and C2, and items 6 and 7
share C1 and L1. Item 16 also only requires Newton’s 3rd
law; however, this item was not as strongly correlated with
the other Newton’s 3rd law items in Fig. 2. While Newton’s
3rd law plays a central role in Newtonian mechanics and,
therefore, one would expect it to be repeated multiple times
in the FCI, the repetition of the other combinations of
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principles is difficult to support theoretically as combina-
tions somehow central to mechanics and thus deserving
special focus. The FCI authors did not discuss the choice to
include the problem pairs f5; 18g, f6; 7g, and f17; 25g
and, therefore, it seems likely the inclusion of these pairs of
very similar problems was accidental. The inclusion of
these problems does not affect the ability of the instrument
to measure an overall force concept beyond the reduction of
the breadth of the instrument; however, the repetition of
these problems does impact the correlation and exploratory
factor structure. Figure 2 shows the scores on these pairs of
problems are highly correlated and these pairs make up the
strongest loading in factors FC4, FC5, and FC6 in Table I.
It seems likely that the strong correlations of the pairs was
part of the reason these factors were extracted and that the
factor structure could be significantly modified by remov-
ing one problem of each pair and inserting problems that
repeated a different set of principles. As such, any general
conclusion drawn from the existence factors FC4, FC5, or
FC6 about the structure of knowledge of Newtonian
mechanics is suspect.
These factors based largely on pairs of questions also

serve to explain the relatively universal structure of the
Scree plots reported in this and other works. The Scree
plots reported all decreased strongly from 1 to 3 factors and
then the amount of variance explained by additional factors
diminishes rapidly. If a factor is mostly capturing the
covariance of two items, the amount of variance it can
explain will be small.
With these observations, much of the original factor

structure identified by EFA appears to be a result either
of the block structure of the FCI or of repeated problemswith
very similar solution structure. Removing all but the first
problem in each problem block and the second of the
repeated problem pairs produces a reduced 18-item instru-
ment. Because item 6 was removed due to blocking, item 7
was retained. TheNewton’s 3rd law itemswere also retained
because of the centrality of this principle to Newtonian
physics. The optimalMIRTmodel for this set of problems is
shown in Table IV; 6 factors were optimal.
Examination of Table IV shows some factors that map

onto the theoretical model of mechanics. The problems
have been placed in a Venn diagram in Fig. 3 based on the
general classification in Table III. All FCI items have been
included in the diagram. Items removed to eliminate
blocking are bolded. Unfair items identified by Traxler
et al. [16] are underlined; these will be discussed later. Few
factors contain loadings that are localized to individual
regions of the Venn diagram. There are also loadings that
cannot be supported theoretically. Factor FC3 contains the
Newton’s 3rd law items, but it also loads on items 1 and 8
which have nothing to do with Newton’s 3rd law. Likewise,
item 15, which requires only Newton’s 3rd law for its
solution, also loads strongly on FC2. It is also difficult to
understand why item 17 (force in elevator) and item 20

(blocks moving at different speeds) form factor FC1. It is
unclear if correlations through the overall difficulty of the
item could explain some of the unexpected structure.

IV. RESULTS—CONFIRMATORY ANALYSES

The exploratory analysis of the previous section failed to
extract a factor structure that was understandable within a
theoretical model of Newtonian mechanics (Table III). For
over 50 years, social scientists have argued that research
should not rely purely on exploratory techniques but rather
that having a robust theoretical framework is paramount to
the determination of model validity [75]. According to

TABLE IV. Exploratory factor analysis for the reduced FCI
(varimax rotation). Only loadings greater than 0.3 are shown.
Loadings greater than 0.7 are highlighted in dark gray. Loadings
between 0.5 and 0.7 are highlighted in light gray.

Kinematics Dynamics

Forces

19, 20, 22

1, 2, 3
12, 14

6, 7, 21 
   26

5, 18

4, 8, 10, 15
16, 23, 24
   25, 28

17

11, 13, 29, 30

9, 19

Other

27

FIG. 3. Venn diagram of the distribution of problems in the FCI.
Items in bold are the blocked items removed from the analysis.
Underlined items are items identified as unfair to men or women
by Traxler et al. [16] (Item 29was identified as fair but unreliable).
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Cronbach and Meele, there is no validity without an
articulated theory and it is, therefore, inappropriate to
use only exploratory techniques, such as EFA, on an
instrument. Furthermore, EFA results provide only infor-
mation about the data itself and should not be construed as
providing genuine answers or solutions without a theoreti-
cal core [76]. Exploratory methods generally identify some
structure, and without a framework that structure may
simply be the result of random fluctuations in the data.
Confirmatory analysis instead proceeds from the pre-

viously articulated theoretical model and explores how that
model can be used to understand the data. Often confirma-
tory analysis starts with fitting the full theoretical model
and then examines a small number of theoretically moti-
vated modifications to the model. The theoretical model of
Newtonian mechanics presented in Table III was used as
the starting point for a confirmatory analysis of the FCI.
MIRT allows the exploration of this model by constraining
the MIRT parameter matrix to the model. This is analogous
to a confirmatory factor analysis (CFA), where the analysis
proceeds from the theoretical model and determines how
well the data fit the model. Constrained MIRT is not fully
equivalent to CFA because they proceed from different
underlying statistical models, but the method of exploring
related models is equivalent.

A. Constrained MIRT

MIRT allows the exploration of student thinking about
Newtonian mechanics by constraining the parameter matrix
to a model. The aj parameter matrix can be constrained so
that parameters that should not theoretically affect a factor
are zero. For example, if the model of Newtonian mechan-
ics in Table III was used as the basis for a constrained
MIRT model, then the factor representing DF1, aDF1, could
be constrained to be zero except for items 19 and 20.
For this analysis, only the first problem in a problem
block was retained as before; groups of similar problems
f5; 18g, f6; 7g, f17; 25g, and f4; 15; 28g were also
retained. Because constrained MIRT is not exploratory,

the correlations of these items will not unduly influence the
analysis. The 20-item problem set analyzed in this section
was then the following: 1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 15, 17,
18, 19, 20, 21, 25, 28, 29, and 30.
The starting model for the confirmatory analysis included

all the principles introduced in Table III which were not
eliminated by removing blocked items. F7 and C5 were
eliminated when blocked items were removed. The FCI has
strong internal consistency and most items are positively
correlated. To separate a general facility with Newtonian
mechanics from a specific facility with one of the principles,
an additional factorwas added that loaded on all items. The fit
statistics of this model, model 1, are shown in Table V.
Because the parameter matrix was so sparse, fit parameters
such as CFI, RMSEA, and TLI could not be calculated. Fit
statistics in Table Vapply to the transformed model number,
as such, model 1 is transformed model 1. While some model
fit measures were not available,model fit can be examined by
the amount of AIC and BIC changes between models and
ultimately from bootstrapping, which will showmost param-
eters in the best fitting model have standard deviations that
suggest the parameters are significantly different from zero.
After the full model is fit, confirmatory analysis examines

theoretically motivated simplifications of the full model.
Each transformation in Table V modified the original model
to the transformed model. A likelihood ratio test determined
whether the models were statistically different. Model 4 did
not change the number of degrees of freedom from model 3;
therefore, a chi-squared test could not be performed;
however, AIC and BIC could be compared. Some trans-
formations removed a principle from a previous model;
other transformations combined two principles. For exam-
ple, in model 5 all items that loaded on either L1 or L2 were
set to load on only L2. These models do not exhaust the set
of available models, but represented a set of models where a
theoretical case could be made for each change.
Model 2 tested a fundamental question about the granu-

larity of student knowledge of the FCI. The set of possible
supplementary principles (reasoning and lemmas) is quite

TABLE V. Hierarchical MIRT modeling. The χ2 test determines whether the models are statistically different; if so, it measures the
improvement of the superior model over the inferior model.

Transformed
model Transformation

Original
model AIC BIC Chi-squared test

Superior
model

1 91 067 91 668
2 Remove all lemmas. 1 90 943 91 518 χ2ð4Þ ¼ 116, p < 0.001 2
3 Remove RS1. 2 90 920 91 488 χ2ð1Þ ¼ 21, p < 0.001 3
4 Combine DF3 with L2. 3 90 942 91 510 3
5 Combine L1 with L2. 3 90 929 91 491 χ2ð1Þ ¼ 11, p ¼ 0.001 3
6 Combine C3 with R1; C4 with R2. 3 90 991 91 553 χ2ð1Þ ¼ 73, p < 0.001 3
7 Remove F2. 3 90 941 91 490 χ2ð3Þ ¼ 27, p < 0.001 3
8 Remove F5. 3 90 944 91 499 χ2ð2Þ ¼ 28, p < 0.001 3
9 Remove F6. 3 90 929 91 491 χ2ð1Þ ¼ 11, p ¼ 0.001 3
10 Replace L1 with L2 and DF2. 3 90 933 91 521 χ2ð3Þ ¼ 7.5, p ¼ 0.058 3
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large while the set more general core principles (laws, facts,
definitions, corollaries, and results) are substantially
smaller. Each lemma represented a qualitative interpretation
or a special case of a core principle. To determine if the
lemmas were important to the understanding of the pattern
of answers, model 2 was constructed which removed all
lemmas and replaced them with the core principle from
which they were derived. Model 2 was a significant
improvement over model 1 with very strong changes in
AIC and BIC and, therefore, the answering pattern for this
sample could be understood without the lemmas. Student
thinking about the FCI is better understood in terms of a
short list of core principles rather than the extensive lists of
qualitative lemmas derived from the core principle. This
provides important insight into the number of principles
needed to understand studentNewtonian thinkingwhile also
substantially simplifying the research effort. The model
without the lemmas could have been produced by any
physics graduate student and should bemuch less dependent
on the experts providing the solutions.
Confirmatory exploration continued by testing a

sequence of models either motivated by questions that
arose about what part of the core principles the FCI
measured or questions about relations between the core
principles. For each step, the difference in AIC and BIC
between the better fitting model and the less well fitting
model are reported. Model 3 removed the crossing reason-
ing step RS1 from model 2; this improved model fit (very
strong change in AIC, strong change in BIC). RS1 was
used only in a subset of expert responses; other experts
simply observed that two of the interval lengths were
comparable. Model 4 explored whether the vector addition
of forces could be viewed as a part of Newton’s 2nd law by
combining L2 and DF3; model 3 was a significant improve-
ment over model 4 (very strong change in AIC and BIC).
These students answer Newton’s 2nd law questions and
addition of forces questions with different facility.
Combining Newton’s 1st law (L1) and Newton’s 2nd
law (L2) to form model 5 from model 3 also did not
improve model fit over model 3 (strong change in AIC,
very strong change in BIC). A second model that elimi-
nated Newton’s 1st law from model 3, model 10, replaced
L1 with L2 (Newton’s 2nd law) and DF2 (the definition of
acceleration). This model was not statistically superior to
model 3 and the model increased both AIC (very strong)
and BIC (very strong). As such, L1 was retained as a
separate entity. Combining C3 and C4 representing one-
dimensional kinematics into R1 and R2 representing three-
dimensional kinematics to form model 6 did not improve
model fit over model 3 (very strong change in AIC and
BIC). Fact F2 (there is not necessarily a force in the
direction of motion) addresses a common misconception;
removing F2 from model 3 to form model 7 did not
improve model fit (very strong change in AIC and BIC).
Finally, facts F5 (air resistance is negligible) and F6

(gravity is approximately constant) are additional pieces
of information about mechanics; however, their use was
only required to eliminate distractors and they were not
used by some experts who solved the problem without
considering the distractors. Neither model 8 which elim-
inated F5 from model 3 (very strong change in AIC and
BIC) nor model 9 (strong change in AIC, very strong
change in BIC) which eliminated F6 from model 3
improved model fit. As such, model 3, which contains
only core principles, all of Newton’s 3 laws with a separate
definition of the addition of forces, leaves 1D and 3D
kinematics separate, and contains facts 1–6, represented the
best model of students’ responses to the FCI. Interestingly,
model 3 is probably closest to the model presented in
traditional textbooks. Model 3 was also the model which
minimized both AIC and BIC.
Model 3 with the transformations applied is presented in

Table VI. The discrimination parameters for model 3 are
presented in Table VII. For this model, the a0 coefficient
represents the factor that was loaded on all items representing
the overall discrimination of the item. To allow comparison
with the more intuitive 2PL model, an effective difficulty, bj,

TABLE VI. Principles included in the optimal model of the
FCI, model 3. Items in bold are the blocked items removed from
the analysis. Underlined items are items identified as unfair to
men or women by Traxler et al. [16] (Item 29 was identified as
fair but unreliable).

Principle Derived from FCI No.

Kinematics
DF1 14, 19, 20
DF2 20
R1 2, 12, 14, 21
R2 3, 22
C1 DF1 6, 7
C2 DF2 5, 18
C3 R1 1, 2
C4 R2 26; 27

Dynamics
DF3 17, 25, 26
L1 6, 7, 8, 10, 17, 23, 24, 25
L2 5, 8, 18, 21, 26; 27
L3 4, 15, 16, 28

Properties of forces
L4 1, 2, 3, 5, 11, 12, 13,

14, 17, 18, 29, 30
F1 11, 29
F2 11, 13, 18, 30
F3 3, 29
F4 30
F5 1, 3
F6 3
F7 27

Other
C5 9
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is calculated bj ¼ −dj=a0j. The larger bj the lower the
probability the students will answer the item correctly; the
2PL probability function is shown in Eq. (1). The mirt
package does not report normalized latent variables; the
standard deviation of each latent variable has been absorbed
into the aj coefficient. Therefore, the aj coefficient represents
the change in log odds if the latent trait increases by1 standard
deviation.
Table VII presents the discrimination of each principle

on each FCI item as well as the standard deviation of each
item. For example, the discrimination of FCI item 4 on
Newton’s 3rd law (L3) is 2.37� 0.29; a higher discrimi-
nation than the other Newton’s 3rd law items. The analysis
also allows the determination of the relative discrimination
of items that test multiple principles. For example, item 21
provides much better discrimination of student knowledge
of three-dimensional motion (R1) than Newton’s 2nd law
(L2). As such, Table VII provides an exceptionally detailed
model of what each FCI item measures.
Some alternate forms of the constrained analysis were

also performed. The optimal model in Table VII included
one factor that loaded on all problems; a factor capturing a
student’s overall facility with conceptual Newtonian
mechanics. The model with this factor (AIC ¼ 90 920,
BIC ¼ 91 488) was a significant improvement over the
model without this overall factor (AIC ¼ 94 442, BIC ¼
94 881) [χ2ð20Þ ¼ 3562, p < 0.001] with a very strong
change in AIC and BIC. The model with this factor also had
superior behavior in tests that compared model 3 to models
where additional principles that damaged the model
had been introduced. For example, the addition of L3

(Newton’s 3rd law) to item 1 produced a significantly less
well fitting model with the overall factor, but not without it.
The model without this overall factor is presented in the
Supplemental Material [69].
MIRT can also be used to estimate the ability of each

student to answer each item. The correlations of these
abilities are presented in Fig. 4. Because one factor was
loaded onto all items, these abilities represent that differ-
ence between the student’s general ability to solve a
conceptual mechanics question and his or her ability to
apply a specific principle. For students with a fully
developed expert understanding of mechanics, we would
expect their ability to apply each principle to be equal, and
therefore their difference in ability to be zero. Figure 4
shows multiple principles with large correlations and large
differences in the strength of the correlation between
different items. From this diagram, we can infer that the
students studied have differing but correlated abilities with
concepts of velocity and acceleration (DF1, DF2), with
Newton’s 1st law (L1) and the addition of forces (DF3), and
with Newton’s 2nd law (L2) and the law of gravitation (L4).
Additional instruction may be required to allow students to
fully integrate these concepts. MIRT, then, may also
represent a tool which can be used to probe the structure
of knowledge and to quantitatively characterize expert and
novice differences and to localize where additional inte-
gration of knowledge is needed.

B. Comparison with the original FCI model

The FCI authors suggested a detailed structure for
the FCI dividing the test into 6 general categories and

DF1

DF2

R1

R2

C1

C2

C3
DF3

L1

L2

L3

L4

F1

F2
F3

F4

F5

F6

FIG. 4. Correlation matrix of student ability using model 3. Lines represent correlations with jrj > 0.15. Line thickness represents the
size of the correlation. Solid (green) lines represent positive correlations; dashed (red) lines negative correlations.

MULTIDIMENSIONAL ITEM RESPONSE THEORY … PHYS. REV. PHYS. EDUC. RES. 14, 010137 (2018)

010137-15



23 fine-grained principles (see Table I in Ref. [1]). The fine-
grained principles play the same role as the principles in the
theoretical model in Table III. The FCI was revised in 1995;
the revised test included 3 new problems which were not
categorized. These items, revised FCI items 5, 18, and 30,
will not be included in this analysis.
Fitting a model implementing the structure suggested in

the original FCI paper on the set of items 1, 2, 3, 4, 7, 8, 12,
13, 14, 15, 17, 19, 20, 21, 25, 28, and 29 from the revised
FCI produced a model with AIC ¼ 75260 and BIC ¼
75453. Using the constrained MIRT model of the previous
section on the more restricted problem set produced a
model with substantially better model fit [AIC ¼ 74812;
BIC ¼ 75277], a very strong change in AIC and BIC.
A likelihood ratio test showed that the constrained MIRT
model had significantly better model fit [χ2ð13Þ ¼ 474,
p < 0.001]. As such, while the model proposed by the FCI
authors captured their motivation as the creators of the
instrument, model 3 produced a better fit for this student
population.

V. DISCUSSION

This study investigated five research questions; they will
be discussed in the order proposed.
RQ1: What factor structure is extracted for the FCI by

MIRT? Is this structure consistent with the results of other
factor analysis? MIRT identified a 9-factor solutions as
optimal for the full 30-item FCI. Other studies have
identified 5-factor [8] and 6-factor [9] post-test models
as optimal. It is possible that the larger sample used in the
present study combined with the strong incentives given for
correctly answering the items allowed this study to resolve
more detailed structure in the FCI. The 9-factor model,
while the best statistically based on likelihood ratio tests,
was not the best model on all fit statistics (Table II). The fit
statistics could also support the identification of either a
5-factor or 6-factor model. All three of these studies
identified more factors than Huffman and Heller [7];
however, this may have resulted from the differing size
and quality of the samples as well as the different criteria
used to select the optimal number of factors.
The factors extracted can also be compared. If the

9-factor solution found in this study resulted because of
superior resolution of the factors, we would expect some of
the factors in the previously reported models to split to form
the additional factors in this study. Some commonality can
be found between the 5-factor [8], 6-factor [9], and our
9-factor model. The groups of physically similar items
f5; 18g, f6; 7g, f17; 25g, and f4; 15; 16; 28g do factor
together in all models, except that item 16 often does not
factor with the Newton’s 3rd law group. The 5-factor model
shows the same tendency of blocked items to factor
together that we saw in the 9-factor model; this effect
was less pronounced in the 6-factor model. All the factor
models are difficult to support in terms of the actual

structure of the physical principles needed to solve the
problems shown in Table III. As such, it is difficult to
support the proposition that EFA is providing fundamental
insights into the knowledge structure of physics students as
measured by the FCI.
RQ2: Can parts of this factor structure be explained by

factors other than the structure of student knowledge of
Newtonian mechanics?
Correlation analysis identified two nonphysical sources

of relations between FCI items which could affect the factor
structures: correlations through the blocking of items into
groups and correlations through total score. The effect of
blocking was clear in Table I with most blocked questions
sharing the same factor with the exception of items 5–6.
The strong correlation of many blocked items can also be
seen in the overall correlation matrix (Fig. 1). Further
analysis retained only the first item in each group; the
nonphysical correlations created by blocking could not be
corrected statistically. While the possible correlation of
blocked items seems relatively uncontroversial, we know
of no previous research that identifies it as a possible source
of a nonphysical perturbation on the factor structure or
other analysis. The possible correlation between total score
could be deduced through the studies showing the FCI as a
very internally consistent instrument [16,21] as well as
Huffman and Heller’s identification of the FCI as a single-
factor instrument [7]. This internal consistency is clearly
demonstrated in Fig. 1 showing all correlations are positive.
The possibility of the difficulty of an item impacting the
factor structure was discussed briefly by Scott, Schumayer,
and Gray [8].
The correlations through overall test score were removed

by calculating a partial correlation matrix (Fig. 2) which
continued to show the effect of problem blocking and
revealed a third source of correlation. Therewere four groups
of items in the FCI which are answerable using very similar
physical principles.Onegroup, items requiringNewton’s 3rd
law for their solution, was expected. This group forms one of
the factors in each published analysis [8,9,24] except
Huffman and Heller [7]. The other three groups do not seem
to represent special combinations of reasoning particularly
important to understanding mechanics and the repetition of
these principles seems likely to be accidental. These groups
f5; 18g, f6; 7g, and f17; 25g had large factor loadings in the
same factor in all published models. It seems likely that the
repetition of these blocks artificially influenced the factor
structure; many other equally important combinations of
physical reasoning could have been repeated.
RQ3: If blocked items and repeated reasoning groups

are removed, is the resulting factor structure consistent
with Newtonian mechanics?An EFAwas also presented for
a reduced set of FCI items which removed all but the first
item in each problem block and removed the second item of
the f5; 18g and f17; 25g groups and the first item of the
f6; 7g group. This EFA found a 6-factor solution
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(Table IV); however, the factors make little physical sense.
Factor 1 mixed a Newton’s 1st law problem involving an
elevator with the analysis of two plots with zero accel-
eration. Factor 2 contains a mixture of items including
Newton’s 3rd law, one-dimensional constant acceleration,
and a position vs time plot involving objects of constant
velocity and acceleration. Factor 3 includes three Newton’s
3rd law items but also two-dimensional zero acceleration
motion and one-dimensional motion under gravity. As
such, factor analysis, once nonphysical or accidental
correlations are removed, does not extract a factor structure
consistent with Newtonian mechanics. As the designers
intended, the FCI is a single-factor instrument [25]. The
reason for the coherence can be seen in Fig. 3 where many
items test multiple general domains.
RQ4: Can theoretically constrained MIRT produce a

model of the physical constructs measured by the FCI? If
so, what is the optimal model of the FCI for this student
population?
ConstrainedMIRTallowed a confirmatory exploration of

a set of related models grounded in the traditional theo-
retical framework of Newtonian mechanics. This explora-
tion showed, while expert solutions to the FCI were cast in
a number of lemmas which converted the mathematical
framework of mechanics to language-based principles, that
these were not needed to understand the structure of student
understanding. This implies student thinking can be pro-
ductively understood by a set of core principles grounded in
the model of Table VI.
The optimal model 3 supported the differentiation in

student thought between Newton’s 1st law and Newton’s
2nd law as well as the difference between one-dimensional
and three-dimensional constant acceleration kinematics.
Facility with the vector addition of forces was also shown
to be distinct from facility with Newton’s 2nd law.
Table VII shows the optimal MIRT model 3. The number

in parenthesis next to the principle label is the discrimi-
nation for the principle. Because an overall factor loading
on all items was included, a0, the discrimination, aj>0, of
the individual principles represents the additional effect of
the specific ability over the student’s general ability with
Newtonian mechanics. Some of the discrimination param-
eters are very small indicating that the item does not require
additional facility with the principle over the student’s
general ability to answer FCI questions correctly. Some
discriminations are negative which may be a sign of a
problematic item. Items with only one strongly discrimi-
nating principle might be claimed to be good marker items
for the skill represented by the principle. Items 1, 2, 12, 14,
and 21 require multiple principles but discriminate on one
principle more strongly than the others. These questions
might be used to characterize students’ knowledge on the
high discrimination principle. Items 4, 15, 19, and 28
require only one principle, and therefore could be used as a
measure ability to perform this principle; however, three of

the four represent Newton’s 3rd law. Items 5, 17, 18, and 25
require multiple principles with commensurate and large
discriminations. These items measure multiple abilities at
the same time, but do not differentiate between the abilities.
Finally, a number of items have small discrimination values
for all principles: items 3, 7, 13, 29, and 30. These items do
not contribute additional information about specific abil-
ities. Item 8 had negative discrimination; this may indicate
the item is not functioning correctly.
MIRT provides a new lens for examining physics

evaluations. If this lens proves valuable, it will suggest
certain desirable properties in future evaluations. First, the
structure and number of items should allow noncompensa-
tory MIRT models to be fit to extract item or principle-level
difficulty parameters. Second, each item should provide
additional information about some ability. Third, the instru-
ment should be invertible so that a linear combination of the
scores on a subset of items provides an estimate of the
ability for a each principle, thus giving practitioners a
detailed characterization of their learning outcomes.
RQ5: Does the structure proposed by the FCI’s authors

provide a superior description of the instrument to the
optimal model identified by MIRT? The structure suggested
by the authors of the FCI [1] was also fit to the data set and
the result compared to the optimal model 3 identified by
MIRT. Model 3 outperformed the model suggested with the
publication of the FCI. As such, part of the reason the
published structure has not been recovered may be that
other models fit the FCI better. This seems unlikely to be
the primary reason for the mismatch between the proposed
model and model 3. Table VII and Fig. 3 as well as
Hestenes and Halloun’s insistence that the FCI measures a
single Newtonian force concept [25] show that the instru-
ment simply was not constructed to factor well. There are
very few items that use a single principle and only
Newton’s 3rd law, not Newton’s 1st or 2nd law, is used
independently and is repeated multiple times in the
unblocked model (Table VII). Most FCI items measure
multiple physical principles at once.
This work identified the blocking of items in the FCI as a

source of correlations not related to the student’s ability to
answer conceptual physics questions. To eliminate these
correlations, only the first item in a problem block should be
retained; as such, items 6, 9, 10, 11, 16, 22, 23, 24, 26, and 27
were removed from the FCI producing a 20-item version of
the FCI. Themodel in TableVI can be used to understand the
effect of this reduction. The blocked items to be removed are
shown in bold in both Table VI and Fig. 3. Removing these
items eliminated principles F7 and C5 while reducing
coverage of R2 and C4. In general, these reductions still
leave the coverage of the FCI intact although the elimination
of an explicit use of friction is a loss.
Traxler et al. [16] also suggested a reduced 19-item

instrument (including FCI questions: 1, 2, 3, 4, 5, 7, 8, 10,
11, 13, 16, 17, 18, 19, 20, 25, 26, 28, and 30) to remove
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items with reliability problems and to remove items unfair
to either men or women. The items removed to produce the
19-item instrument are underlined in Table VI and Fig. 3.
While this reduction removes seven items from both
kinematics and dynamics in Table VI, the coverage of
kinematics required more principles than that of dynamics.
The removal of unfair items from R1, R2, and C4 may
substantially change the coverage of the instrument.
Removing both blocked and unfair items further reduces
the coverage.
To produce a fair instrument while maintaining cover-

age, it may be necessary to retain some blocked and unfair
items but to balance the degree and number of unfair items
for both men and women. Traxler et al. [16] reported that
two of the removed items were unfair to men, items 9 and
15. If these two items are retained as well as items 14 and
27, which were unfair to women with similar differential
item functioning statistics, the overall score should be
gender fair. Blocked items 11 and 26 could also be retained
to maintain coverage. Retaining these items would increase
coverage of some kinematic principles while providing
coverage of F7 and C5. This would leave a reduced 21-item
FCI instrument containing items 1, 2, 3, 4, 5, 7, 8, 9, 11, 13,
14, 15, 17, 18, 19, 20, 25, 26, 27, 28, and 30. Blocked items
10 and 16 were removed because there was sufficient
coverage of the principles required for their solution.

VI. LIMITATIONS

This work was performed with a single sample drawn
from a single institution. Additional studies are necessary
to determine if the conclusions are general. The sample was
analyzed in aggregate; additional analysis is needed to
determine if the results apply to all student subgroups. The
analysis did not consider the role of misconceptions; an
extended theoretical model including misconceptions
should also be tested.
This work began with a model constructed from a sample

of expert solutions at a single institution. Alternate models
certainly can and should be constructed; MIRT provides the
tool needed to determine which model best fits student
thinking. The model presented in this work should not be
considered the end point, but thebeginningof amore detailed
exploration of conceptual Newtonian mechanics that will
take many years to complete. For researchers wishing to test
alternate models or compare models between institutions,
contact the corresponding author to request the data.

VII. IMPLICATIONS

This worked showed a theoretical model of introductory
mechanics could be useful in understanding the results of
conceptual inventories. Such models can be constructed for
other conceptual areas of physics and could form a basic tool
for understanding the detailed results of PER instructional
innovations. The constrained MIRT analysis technique

allowed the fine-grained exploration of the constructs
measured by the FCI and may be a powerful tool for
improving our understanding of student knowledge. EFA
did not produce a factor structure that was useful in under-
standing the FCI and it is likely that purely exploratory tools
may not yield generalizable results. Part of the reason for the
failure of EFA was correlations produced by the blocks of
questions in the FCI. The practice of using blocks of
questions with the same stem may make PER instruments
difficult to interpret statistically and should be discontinued.
This work showed that if all blocked items identified as

problematic because of correlations produced by blocking
and all items identified as unfair or unreliable by Traxler
et al. [16] are removed that the coverage of kinematics of
the modified FCI is reduced. This work proposed a 21-item
reduced FCI to maintain coverage while balancing unfair
items; to have to decide between coverage and fairness is
unacceptable. While this 21-item instrument could be used
for the near future, the identification of unfair items and
blocked items as problematic in addition to the lack of
coherent sub-scales suggest that it is time to revisit the
construction of the FCI and to modernize it to remove some
of the difficulties identified in recent research.

VIII. FUTURE WORK

This work will be extended to analyze other conceptual
instruments popular in PER including the FMCE [3] and
the CSEM [4]. The work will also be extended to determine
if the results are consistent between men and women and to
determine if this method can help in understanding the
differences observed in men’s and women’s performance
on conceptual evaluations.

IX. CONCLUSIONS

The work examined the structure of the FCI with
Multidimensional Item Response Theory; first as an
exploratory method and then as a confirmatory method
using constrained MIRT with a theoretical model of
Newtonian mechanics. The exploratory analysis identified
a 9-factor solution that showed some similarities to pre-
viously published solutions. Further analysis showed many
of the factors in the 9-factor solution and the previously
published solutions could have resulted from the use of
multiple problem blocks and the repetition of physically
similar items. Exploratory factor analysis was repeated,
removing these correlated items; the resulting 6-factor
solution could not be reconciled with the theoretical
structure of Newtonian mechanics. Constrained MIRT was
then employed to determine the optimal model of the FCI
for the student population studied within the framework of
a theoretical model. The optimal model contained only core
principles of mechanics and did not contain subsidiary
principles derived from these core principles. The optimal
model differentiated between Newton’s 1st and 2nd law;
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between Newton’s 2nd law and the principle of vector
addition of forces; and between one-dimensional and three-
dimensional kinematics. The optimal model identified by
MIRTwas substantially statistically superior to the original
model proposed by the authors of the FCI.
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