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In 1995, Huffman and Heller used exploratory factor analysis to draw into question the factors of the
Force Concept Inventory (FCI). Since then several papers have been published examining the factors of the
FCI on larger sets of student responses and understandable factors were extracted as a result. However,
none of these proposed factor models have been verified to not be unique to their original sample through
the use of independent sets of data. This paper seeks to confirm the factor models proposed by Scott et al. in
2012, and Hestenes et al. in 1992, as well as another expert model proposed within this study through the
use of confirmatory factor analysis (CFA) and a sample of 20 822 postinstruction student responses to the
FCI. Upon application of CFA using the full sample, all three models were found to fit the data with
acceptable global fit statistics. However, when CFAwas performed using these models on smaller sample
sizes the models proposed by Scott et al. and Eaton and Willoughby were found to be far more stable than
the model proposed by Hestenes et al. The goodness of fit of these models to the data suggests that the FCI
can be scored on factors that are not unique to a single class. These scores could then be used to comment
on how instruction methods effect the performance of students along a single factor and more in-depth
analyses of curriculum changes may be possible as a result.
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I. INTRODUCTION

Expertly constructed assessments are used in classrooms
to measure conceptual changes of the students or class
compared to other students or classes compared to other
students and classes. As a result, it is of great importance to
understand what the assessments are actually measuring.
For instance, from an expert’s point of view, the Force
Concept Inventory [1] is a test of Newton’s laws and the
kinematics related to those physical laws. Issues related to
what the FCI actually measures have been raised and
discussed previously [2–4].
Recent thrusts of research have investigated this topic

using techniques such as exploratory factor analysis (EFA)
[5–7] andmultitrait item response theory [8]. However, none
of these papers have confirmed that either the creator’s
factors nor the factors that they found in their data exists in
other students’ responses. In a series of papers,Huffman and
Heller [2,4] claimed that the factors as laid out by the
creators in Ref. [1] do not exist in student responses and that
the FCI does notmeasurewhat has been claimed. In contrast,
this paper uses confirmatory factor analysis (opposed to

exploratory) to supply evidence that themeasurementmodel
proposed in Ref. [1] fits student data in a satisfactory way.
A measurement model, otherwise known as a factor

structure, is a description of how items (e.g., questions of an
assessment) load onto an associated factor. Exploratory
factor analysis is a tool that attempts to extract the best
model for the data that groups the correlations among the
student responses. EFA does not attempt to confirm or deny
the presence of prespecified models. Since most students
think about Newtonianmechanics in amixture of novicelike
and expertlike ways, it is not surprising that EFA does not
return a completely expertlikemeasurementmodel. Because
of this, confirmatory factor analysis (CFA) should be used—
and not EFA—to test if the models as suggested in Refs. [1]
or [5] actually describe the correlations amongst the ques-
tions on the FCI.
Using CFA on a sample of 20 822 student responses, this

paper offers evidence that the expertlike model proposed by
the creators of the FCI actually models the responses of
students in a satisfactory way. Further, the EFA driven
model found by Scott et al. [5] was also [be] tested against
this set of data. The data used in Ref. [5] have been further
analyzed in Ref. [6] for primary misconceptions students
had postinstruction. The potential fit of Scott et al.’s model
onto this alternate data set could lend a suggestion for the
primary misconceptions held by postinstruction students in
general. Lastly, another expertlike model (created by Eaton
and Willoughby) was to be compared to the model
proposed in Ref. [1] to see which one better describes
student responses. The research questions this paper seeks
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to answer are how well do the models tested in this study fit
a larger sample, and smaller subsamples, and through the
use of CFA, what can be concluded about the factor
structure of the FCI and the misconceptions of the students
as a result?
In Sec. II a brief explanation of how the datawere obtained

will be detailed, followed by an explanation of confirmatory
factor analysis, the meaning of model-fit statistics, and a
description of how the stability of the models were tested in
this paper. The model specifications can be found in Sec. III.
The results of the application of the CFA and the stability
analysis are presented and discussed in Sec. IV. The con-
clusion of the paper follows in Sec. V.

II. METHODOLOGY

A. Data collection

The data used in this study came from the PhysPort
database [9]. With IRB approval, 22 028 postinstruction
student responses for the 1995 FCI were obtained. The
students that make up this data set come from both algebra-
and calculus-based classes, and from potentially all levels
of active learning classes, from traditional lecture to flipped
classes. The data submitted to PhysPort is self-submitted
but has many checks that it must go through before it is
admitted into the actual database; details on this process
can be found in Ref. [9]. After getting the data, it was
cleaned by removing all surveys with any blank responses
and further by removing any submissions that were all A’s,
B’s, …, E’s. After this cleaning process the final data set
contained 20 822 student responses.

B. Explanation of CFA

Confirmatory factor analysis is a subdiscipline of a larger
latent variable analysis theory known as structural equation
modeling. The purpose of CFA is to confirm that a model
proposed by a researcher fits, or sufficiently describes the
correlational groupings of items within a given data sample.
This is fundamentally different than exploratory factor
analysis, the purpose of which is identifying the measure-
ment model that best describes a specific set of data. As an
example, suppose two different sections of an introductory
physics course with the same lecturer, teaching style,
semester, etc., were given the FCI. When EFA is applied
to the response data for these sections, slightly different
factors could be found. The differences in the factor
structures between these hypothetical sections would be
expected to be small; however, significant differences are
not impossible. This can happen because EFA is entirely
data driven in a way that CFA is not. CFA, however, could
be used to compare the fit of the factor model generated by
one of the classes onto the other class in an effort to confirm
that the correlation structure of the classes is similar. This
kind of comparison is not possible with EFA. So, when
attempting to verify whether or not a factor structure is

present within a set of data EFA is not capable of supplying
an answer whereas CFA can provide verification.
EFA and CFA are commonly used tools in psychology

research, as well as in economy, sociology, etc. [10]. When
developing an assessment, EFA can be used to get a
structure for the assessment when no guesses about the
factor structure can be made based on expert opinion. This
structure found with EFA is used as a model (perhaps with
minor modifications) and is tested for validation using CFA
on a separate set of data. EFA does not need to be used if
the structure of the instrument can be inferred by an expert
or is built in, as was attempted by the creators of the FCI.
CFA can be broken up into a four-stage process: (i) model

development, (ii) estimation of the model’s free parameters,
(iii) calculation of the model-fit statistics, and (iv) model
refinement. Because of the current absence of papers dealing
with the application of CFA on conceptual assessments, the
steps of CFA will be discussed in detail here; an in-depth
discussion can be found in Ref. [10] and many other text-
books on the subject. If the reader is aware of CFA and how it
is done, they canmovebeyond the remainder of this section as
well [as] the description of the fit statistics in Sec. II C.
The specifications of the measurement model can come

from a number of sources. The twomost common sources of
model specification are a previous application of EFA on
another set of data, or theoretical or expert motivation. In
both cases themodel is a prescription of the number of latent
variables (otherwise known as factors), a specification of
how latent variables are measured by the items that make up
the assessment (item-factor loadings), correlations amongst
errors in the residuals, and other considerations. The residual
correlation matrix, often called the residuals, is the differ-
ence between the true sample correlation matrix and the
model generated correlation matrix. For a model with no
correlated errors identified, the only parameters that are
freely estimated are the loadings of the questions onto their
respective factors and the covariance matrix between the
latent variables. All other parameters are set to zero in an
effort to make the model as parsimonious as possible.
Once the model has been specified, meaning all of the

parameters that need to be estimated have been identified,
parameter estimation techniques can be used to estimate or
calculate the following values: the loading values of the
items onto a factor, the reproduced covariance (or corre-
lation) matrices for the items and latent variables, and the
residuals. There are a number of standard parameter
estimation techniques that are used in practice, such as
maximum likelihood, weighted least squares, and Bayesian
estimation techniques.
Model fit statistics can be calculated once the model

parameters have been estimated. These model fit statistics
allow for one to judge the goodness-of-model fit, and they
also allow for a comparison of how different models fit the
data. A discussion of the specific fit statistics used in this
study can be found after this overview of CFA in Sec. II C.
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Models can be refined to improve fit onto a set of data
through the use of modification indices and the residuals.
Modification indices are a measure of approximately how
much the χ2 of the model’s fit will decrease if the parameter
identified were allowed to be freely estimated within the
model, rather than set to zero. Modification indices can
suggest two kinds of changes to models being fit: (i) include
correlations between the items, or more specifically
between the sources of error for the two items, and
(ii) change the loading of questions onto different factors.
The first suggestion of the modification indices can arise

when two questions are very similar in content and could
cause a student to get both questions wrong for related
reasons. This correlation can be encapsulated within the
model as an added residual correlation parameter. The second
suggestion emerges when questions also correlate well with
another group of questions other than the factor to which it is
currently assigned (i.e., a suggested cross-loading). Within
this study, these kinds of suggestions were not heeded in
an effort to keep the factor structures unchanged. This is
consistent with the goals of this study, in which we seek to
validate specific factor structures; altering the loadings of
questions onto factors would change the structures and thus
could invalidate the conclusions being made.
Further use of the residuals can guide an expert in making

modifications to models by identifying correlations that are
poorly estimated and include inserting those correlation
parameters directly into the model. A detailed description of
these statistics, and their uses, can be found in Ref. [10].
With guidance from the modification indices and an

expert’s decision, modifications can be made to models.
Following these modifications, the model parameters can
be estimated, fit statistics calculated, and modification
indices and residuals analyzed again in an effort to produce
a better fitting model. This iterative process can be repeated
until a desired model fit has been achieved. In this study,
since the sample was made up of post-test responses,
novicelike suggestions from the modification indices occa-
sionally were the most favored change to the models. These
kinds of modifications were avoided in favor for expertlike
suggestions to get a better fit to the data while retaining the
expertlike nature of a model. For example, when questions
6 and 7 on the FCI are considered, it can be seen that they
ask about related concepts. In both questions the students
are asked to identify the path a ball will take after losing
either a normal force or a tension force that was causing the
ball to travel along a circular path. From an expert’s
perspective it should be expected that if a student gets
one of these questions right then they will likely get the
other one correct as well, and vice versa. Therefore, we
added a residual correlation between questions 6 and 7 in
each of the three models.
For this study the open-source R software “lavaan” [11]

was used to help in the estimation of the model parameters
using maximum likelihood estimation, calculation of the

standard errors of approximation, modification indices,
model-fit statistics, and many other useful statistics. In some
software packages the covariance between the latent vari-
ables is not freely estimated, leaving only the variances to be
estimated; lavaan’s default in this regard is to freely estimate
the covariance between all of the latent variables unless
otherwise specified.

C. Model fit statistics

Fit statistics used in CFA can be broken up into three
categories: absolute fit, parsimony correction, and compara-
tive fit [10]. The statistics that are generally calculated in CFA
do not necessarily uniquely fit into one of these categories, but
each category can be better described by one statistic over
another. It should be noted that there is debate on what is
considered a goodmodel fit for all of the fit statistics presented
here; for some papers that have helped guide the debate, see
Refs. [12–14]. The categories of the fit statistics and the
statistics themselves are briefly described below.

1. Absolute fit

Absolute fit indices describe how well the model fits the
data in an overall sense. This fit does not take into account
the fit of the chosen model compared to another model, but
is based only on how well the chosen model is able to
recreate the correlation matrix of the data. For example, the
χ2 statistic is the difference of the natural logarithms of the
determinants of the observed and model generated vari-
ance-covariance matrices multiplied by the number of
responses minus 1 [χ2 ¼ ðln jSj − ln jΣjÞðN − 1Þ]. This is
a measure of absolute fit of a single model since it makes no
reference to another model when it is calculated. The
standardized root mean square residual (SRMR) is another
fit statistics that describes the absolute fit of the model to
the data. The SRMR can be calculated using

SRMR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a

Xn
i¼1
j<i

r2ij

vuut ;

wherea is the number of elements on and below the diagonal
of the correlation matrix, rij are the elements of the residual
correlation matrix, n is the number of items, and the
summation is on and below the diagonal of the residual
matrix. The SRMR statistic has values between 0.0 and 1.0,
with 0.0 being a perfect model fit and farther away from 0.0
indicating a poorer model fit. For the SRMR, values close to
0.08 and below are considered in line with good model fit.

2. Parsimony correction

Statistics that fall into this category are different from
others in the sense that they introduce penalties for a
model having poor parsimony. A model has poor parsi-
mony, or is not parsimonious, if it contains more freely
estimated parameters than needed to achieve good model
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fit. For example, two models could fit a set of data with the
same absolute fit statistics, but one model may be more
parsimonious than the other. So, there needs be a way to
differentiate between these two models so that the better
of the two models can be identified based on fit statistics
alone. The parsimony correction index can be used to
select the preferred model from the ones with the same, or
similar, absolute fit statistics, thereby meeting the goal of
using factor analysis to find the most parsimonious model
which fits the data. Some very common indices that are
used for this category are the root mean square error of
approximation (RMSEA), the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC). Each
of these three statistics uniquely introduces a penalty for a
model being nonparsimonious. For example, to calculate
the RMSEA the following can be used

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2T − dfT
NdfT

s
;

where dfT is the degree of freedom, χ2T is the chi-squared
statistic of the model being tested, and N is the number of
observations or students. The values for the RMSEA begins
at 0 and is unbounded above. An acceptable value for this
statistic are values close to 0.06 and below, where a value of
0.0 is said to be a perfect model fit.
The other two statistics that take model parsimony into

account are the AIC and the BIC, which can be calculated
with

AIC ¼ 2bT − 2 lnðLTÞ;

BIC ¼ bT lnðNÞ − 2 lnðLTÞ;

where bT is the number of freely estimated parameters,N is
the number of observations in the sample, and LT is the
likelihood of the model being tested. As can be seen from
their equations, the AIC and the BIC are very similar
statistics in that they both reward goodness of fit through
the likelihood and penalize for increasing the number of
estimated parameters. Thus, smaller AIC and BIC values
are indicative of the preferred model in terms of compari-
son to fit and parsimony. This enables the comparison of
models which have differing numbers of factors and items,
as is the case in this study. When comparing multiple
models to each other, the one with the smallest AIC and
BIC values is taken to be the preferred model.

3. Comparative fit

The last category of fit indices are ones that compare
the fit of the model being tested to a baseline model. The
baseline model takes the covariance between all of the
items to be zero, and the variances are freely estimated. As
one would expect, since the model being tested is being
compared to one that makes no assumption about the

relationship between the items, the comparative fit indices
often look far more favorable than other fit indices
presented. However, in comparative studies some of these
indices are found to be some of the best behaved amongst
all of the indices presented [10]. The two best behaved
statistics are the comparative fit index (CFI) and the
Tucker-Lewis index (TLI). These can be found using

CFI ¼ 1 −
max½χ2T − dfT; 0�

max½χ2T − dfT; χ2B − dfB; 0�
;

TLI ¼ χ2B − ðχ2T=dfTÞdfB
χ2B − dfB

;

where χ2T and χ2B is the model being tested and the baseline
model’s χ2 value, respectively, and dfT and dfB are the
degrees of freedom of the test model and the baselinemodel,
respectively. The CFI values range from 0 to 1, with 0
indicating no fit, and 1 indicating a good fit for the model
compared to the baseline. The TLI calculation can yield
values outside of the 0 to 1 range; values less than 0 are
rounded up to 0 and values greater than 1 are generally
rounded down to 1 [10]. This means the TLI can be
interpreted in the same way as the CFI. Accepted fit values
for both of these statistics are around 0.90 up to the
maximum values of 1 for each statistic. Some sources state
that roughly 0.95 and above is indicative of a goodmodel fit,
however, there is still debate overwhat dictates a goodmodel
fit, and there is no strict agreement as of yet [10].

4. Local strain

The statistics discussed above describe the model’s fit to
the data in a global sense, meaning they do not look at the
residuals individually but all at the same time. Sometimes
all of the residuals but one will be within acceptable
bounds. These locations of misfit are referred to as a local
strain within the model-data fit. Local strain can be found
by visual inspection of the modification indices and the
residuals, and can be reduced by including residual
correlation parameters within the model specifications. It
is important to note that the size of the residuals depends on
the sample size of the data since the size of the standard
error decreases with larger sample sizes. Some methodol-
ogists recommend using larger cutoff values for the max
allowed residual error as a result [10]. Since the total
sample size used for part of this study contained more than
20 000 student responses, the typical bounds for acceptable
residuals may be too constraining. When the conventional
cutoffs for local strain were enforced for these models, it
resulted in models with perfect model fit, and an abundance
of residual correlations being added to the models (>20 in
total for all three models). As a result of this, and in an
effort to keep the models as parsimonious as possible, the
demand for no local strain was not enforced.
Additionally, two of the models being examined are

expertlike models, making the complete removal of local
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strains difficult. Since the sample of students in this data set
is not totally expertlike, the expectation that they will fit
these models with absolutely no local strain is unreason-
able. This was tested for each of the three models by
introducing residual correlations into the models until a fit
on half of the total student sample (≈10 000 students) that
contained no local strain was found. These “no strain”
models, which actually had perfect fits to the data accord-
ing to most of the fit statistics, were then fitted to the other
half of the student data. After inspecting the resulting
residuals, it was found that local strain reappeared. Thus,
the local strain was found to depend on the composition of
the class being considered. Upon investigation of the local
strains that developed in the new fit, they were all found to
be linked to non-expert-like correlations. As a result, some
of the local strains within these models were a result of
the unique misfits that manifested from the novicelike
nature of the students under investigation. A future study
that attempts to construct a model that alleviates all local
strain or one that looks at the information the local strains
about the students is recommended. This local strain issue
does not detract from the conclusions made in this paper
about the goodness of fit for the models tested since the four
fit statistics used were found to all be within acceptable
bounds.

D. Random class generation

For the first part of this study the models were fit to the
entire 20 822 student sample. The fit statistics for the
models are presented in the results section in Table IV.
Another goal of this study was to test whether these models
could consistently fit smaller sample sizes. The fit, or
misfit, of the models when the number of the students in the
classes were made smaller will be referred to as the stability
of the model within this study.
A model may fit a large set of data, but as the number of

students in the sample decreases the individual misconcep-
tions of each student become more prominent within the
correlation structure. Because of the desire to retain the
expertlike nature of the models being examined the fit of
smaller sample sizes is not guaranteed. If an instructorwanted
to investigate how well their class matched an expertlike
model they may be unable to use one, or both, of the expert
models presenteddue to the potential instability of themodels.
To test the stability of the models, sample classes

comprised of 4000, 2000, and 1000 students were uni-
formly drawn from the ranked 20 822 sample population.
This results in smaller samples that have similar means and
standard deviations as the sample population they were
pulled from. For each of these class sizes 2000 classes were
drawn with no duplications in classes, meaning no two
classes had the exact same students. The global fit statistics
were calculated for each of these classes and the means and
standard deviations were calculated for each of the fit
statistics. Using the rate of misfit, the stability of each of the

models can be determined, with a larger misfit rate
indicating a less stable model.

III. MEASUREMENT MODEL SPECIFICATIONS

This study focused on testing three models. The develop-
ment for two of the models is left to the papers in which they
were created. One of these models was found by Scott et al.
[5] through the use of EFA on a sample of 2109 post-
instruction student responses. This model is called SSG5
(Scott-Schumayer-Gray, 5 factors). The measurement
model for SSG5 can be found in Table I. Within Tables I,
II, and III the numbers in each column represent the question
numbers from the 1995 FCI, the columns are the factors that

TABLE I. The factor model found by Scott et al. [5] for 2109
students postinstruction. The added residual correlations were
due to suggested modification indices and from expert consid-
eration of the questions themselves. The numbers in the table
indicate the question numbers from the 1995 FCI, and the double
headed arrow and the∼ symbol represent an estimated correlation
for those two questions within the model.

TABLE II. The factor model suggested by Hestenes et al. [1]
with modifications made due to questions not fitting with the
data. The added residual correlations were due to suggested
modification indices and from expert consideration of the
questions themselves. Questions from the FCI are represented
as a number in the table, and the double headed arrow and the ∼
symbol have the same meaning as in Table I.

CONFIRMATORY FACTOR ANALYSIS APPLIED … PHYS. REV. PHYS. EDUC. RES. 14, 010124 (2018)

010124-5



the models used, and the double-headed arrows and the
∼ indicate correlations that were included in the model.
The other two models considered in this study were

developed through expert considerations of the questions
on the FCI. In Ref. [1] the creators of the FCI proposed a
measurement model for the questions on the assessment.
This model left alone was found to have many cross
loadings and was reduced through the use of model fit
statistics and modification indices to make the model more
parsimonious. This process resulted in the removal of
question 29 from the model due to poor performance.
Table II shows the measurement model that came as a result
of reducing the original model in Ref. [1]. This model is
called HWS6 (Hestenes-Wells-Swackhamer, 6 factors).
The (Eaton-Willoughby, 5 factors) EW5 model breaks

the questions up into a mixture of the factors identified in
Refs. [5,1] in an effort to create an expertlike model that is
capable of fitting smaller sample sizes, which HWS6 had a
hard time doing (as discussed in the results section). Instead
of treating Newton’s first and second laws and kinematics
as completely different latent variables, they were combined,
resulting in the following two factors: Newton’s first law
with kinematics and Newton’s second law with kinematics.
Thus, the EW5 model uses the following factors: each of
Newton’s three laws and their associated kinematics, force
identification, and mixed concepts. This model can be found
in Table III. Discussion of these factors follows.
The first two factors of the EW5model are Newton’s first

and second laws plus the kinematics that result from these
laws. In these factors kinematics pertains to path identi-
fication and describing how the speed of an object changes
for systems that have zero and nonzero net forces, respec-
tively. The questions that were placed into these factors can
be found in Table III. When comparing the Newton’s first
law factors between the expert models they can be seen to
be the same with the exception of one question, question
20. In HWS6 question 20 is put into the kinematics factor

of the model, however since EW5 combines Newton’s laws
and their associated kinematics, question 20 appears in a
different factor when the two models are compared.
Similarly, questions 12, 14, 19, and 21 (all of the remaining
question on HWS5’s kinematics factor) moved to the factor
in EW5 that combined Newton’s second law and its
associated kinematics.
The factors classified as Newton’s third law in each of

the models all have a set of core questions (4, 15, and 28).
Question 16 does not appear in the SSG5 model because it
did not load in the original EFA analysis done Scott et al. In
fact, this question was found by Scott et al. to probe both
Newton’s first law and not the third law. In this question, a
car pushes a truck while coasting at a constant speed, and
from an expert’s point of view is probing Newton’s third
law. This question was found by Scott et al. to challenge
student understanding of Newton’s third law [5].
The factor in EW5 identified as force identification is

shared in SSG5, also called force identification. These
questions all appear together in the HWS6 model in the
forces factor. These questions have been found to create a
strong grouping among student responses, and upon
inspection all of these questions can be found to be about
identifying the forces acting on objects that are stationary or
moving at a constant velocity.
The last factor in the EW5model, called mixed concepts,

appears identically in the HWS6 model as the factor
superposition principle. Instead of calling it the same name
as HWS5, the name mixed concepts was chosen since these
questions deal with multiple concepts simultaneously, and
not just with superposition of forces. As an example,
question 17 is about an elevator being pulled up at a
constant speed by a cable. The question asks how the forces
acting on the elevator compare to one another. This requires
the students to understand how tension works, create a free-
body diagram, and then apply Newton’s first law to realize
that the net force is equal to zero since the system is not
accelerating. The other two questions on this factor,
questions 25 and 26, are similar to 17 but require an
understanding of kinetic friction at an introductory level.
There were some questions in the EW5 model that were

left out: 1, 2, 3, and 29. These questions were left out on
this expert model due to consideration of the Scott et al.
model. They found that these questions did not fit into the
EFA factors in a satisfactory way. Therefore, these ques-
tions were removed from the expertlike EW5 model in
order to avoid poor fit using smaller student data samples.
The residual correlations applied to each of the models

were found using modification indices from the fits of the
models to the random subsamples. These correlations had
the largest modification indices, were the most common,
and were expertlike for the subsample fits. Correlations
were added to the models until a nonexpertlike correlation
was the largest suggested correction to the models. The
procedure resulted in the addition of 9, 10, and 8 residual

TABLE III. The factor model developed by Eaton and Wil-
loughby. The added residual correlations were due to suggested
modification indices and from expert consideration of the
questions themselves. The numbers in the table indicate the
question numbers from the 1995 FCI, and the double headed
arrow and the ∼ symbol represent an estimated correlation for
those two questions within the model.
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correlations for the SSG5, HWS6, and EW5 models
respectively. Other correlations could be added to improve
the fits of the models, but this was not needed as the
resulting fits were all within acceptable ranges.
Because of this model’s consideration of the results in

Scott et. al.’s resulting EFA factors, particularly the
exclusion of questions 1, 2, 3, and 29, this model could
be thought of as a hybrid model between expertlike and
novicelike. The removal of those four questions was done
in an effort to remove poorly performing questions from the
model in an attempt to generate an expert model with better
fits to the data. The reorganization of the questions from
there was done through expert rationale with the intent of
not recreating the HWS6 model. The resulting factors as
prescribed by EW5 are reasonable from an expert’s
perspective, and as a result this model will continue to
be referred to as an expertlike model.

IV. RESULTS

This section is broken up into two parts, the fit of the
models onto the entire sample set, followed by the fit of the
models on randomly drawn subsamples of the full sample.
The first section shows that each of the models does a good
job fitting the entire sample and the second section shows
that some of the models have difficulty fitting smaller
sample sizes, and are thus referred to as unstable.

A. Entire sample

The fit statistics for each model, with no added residual
correlations, when fit to the entire data set can be found in
Table IV. All of the models had acceptable fit statistics with
no added residual correlations [CFI > 0.9, TLI > 0.9,
SRMR < 0.08, RMSEA (Upper CI)< 0.06]. This suggests
that the models adequately place questions onto factors in
a manner that agrees with the data. Taking parsimony
corrections into account, it can be seen that the HWS6
model performs poorly according to the AIC and BIC
statistics.
Of all three models analyzed, SSG5 performed the best

with the lowest AIC and BIC values of all the models. The
goodness-of-fit for SSG5, as well as the other three models,

indicates that classes come out of introductory physics with
correlation structures that are similar to each other. Suppose
the fit for SSG5 had been poor, that would mean that the
model generated through EFA performed by Scott et al. was
not the best way to represent the correlational groupings of
the questions for this large sample. If this were the case
then the stability of this model would be called into
question, and it could be inferred that classes after
instruction potentially have unique factor structures.
This would imply that postinstruction, student responses
in different classes would be correlated with different
topics compared to students from another class. However,
since SSG5 did have a good fit to the data, that appears
to not be the case, and classes after instruction seem to
have the same topical understanding of the questions, as
measured by the FCI.
The SSG5 model having the best fit of all the models is

not surprising since it is a non-expert-like model that was
derived from another student sample, so it inherently
models some of the main misconceptions held by students
postinstruction. Whereas, HWS6 and EW5 are expertlike
models, and the differences in the fits between these
expertlike models and SSG5 may be due to the presence
of nonexpert thinking. Further it can be inferred [6] that the
primary non-Newtonian world view that students have after
instruction is probably the impetus world view.
Of the expert models tested, the AIC and BIC statistics

suggest that EW5 fits the student data better than HWS6,
that is the correlational structure of the EW5 model more
accurately reflects student responses. This may be because
HWS6 is too expertlike, and any presence of novicelike
correlations causes the fit to be reduced more for this model
than the other expertlike model. Ultimately, all of these
models do a satisfactory job at describing the relationships
between students’ responses to the FCI. An obvious
problem with this particular analysis is that classes are
not generally in the 20 000-student range. Investigations
into whether these models do a good job at fitting smaller
samples was performed.
The results of the models with their residual correlations

in place can be found in Table IV. As expected, the fit
statistics for all of the models improved, either increasing or

TABLE IV. Fit statistics for the three models applied to the full sample, N ¼ 20 822, without and with residual correlations (Res. Cor.
in the table).

No. of Factors No. of Res. Cor. CFI TLI SRMR RMSEA (Upper CI) AIC BIC

Without residual correlations
SSG5 5 0 0.922 0.911 0.032 0.041 (0.042) 538 207 538 675
HWS6 6 0 0.911 0.900 0.037 0.040 (0.041) 654 026 654 622
EW5 5 0 0.915 0.904 0.038 0.042 (0.043) 585 590 586 082

With some residual correlations
SSG5 5 9 0.973 0.968 0.021 0.025 (0.025) 532 708 533 248
HWS6 6 10 0.949 0.941 0.033 0.031 (0.032) 648 887 649 554
EW5 5 8 0.955 0.948 0.032 0.031 (0.032) 580 544 581 100
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decreasing where appropriate. These results are supplied so
that other models can be compared to the three analyzed in
this study.

B. Subsamples of the entire sample set

The 2000 subsamples of 4000, 2000, and 1000 student
classes, respectively, were generated by randomly drawing,
without replacement, students from the entire 20 822
sample. The fit statistics were calculated for each of these
classes for each model, and the results are presented in
Tables V, VI, and VII for the SSG5, HWS6, and EW5
models, respectively. We will go through each model’s
performance one by one, after first describing the meaning
of misfit in more detail.
A misfit results when the maximum likelihood algorithm

converges to a nonacceptable solution. Occasionally errors
such as variances for questions will come out greater than 1
or negative, correlation matrices for the latent variables
may be nonpositive definite, correlation between questions
may be greater than 1 or negative, etc. These kinds of errors
indicate a model is ill specified for the data that it is being
fit to, otherwise known as a misfit. When the models were
being fit to the randomly sampled classes all instances that
resulted in a misfit of the model to a class were counted.
After all of the classes had been fit to the models the
percentage of the classes that misfit the models were
calculated. A cutoff percentage of 15% was used as an
indication that a model had fundamental issues when trying
to fit the smaller sample sizes. As a result, none of the fit

statistics were presented for any model that had a misfit rate
above 15% due to the instability of the model at that
sample size.
The actual value used for the cutoff, 15%, was chosen in

the spirit of the most lenient p-value commonly used in
hypothesis testing of p < 0.15. The p value is the prob-
ability of finding the observed data when the null hypoth-
esis is true. Generally, the null hypothesis is that the model
being tested is stable, so the 15% cutoff for the misfit rate
carries a similar meaning to testing the null hypothesis.
Ultimately, this cutoff rate is arbitrary and could be increased
or decreased to change the rigor of the stability testing.
Table V shows the performance for the SSG5 model. As

can be seen there were no misfits for any of the sample sizes
(which is not the case for the other models) and the fit
statistics were satisfactory to claim good model-data fit. In
fact, the fit statistics can be seen to change little from the
4000 student classes to the 1000. This indicates that this
model is stable for the smaller sample sizes, and that using
this model to fit individual classes may be possible. Since
Scott et al. [6] found the most prominent misconceptions
contained in their data, an instructor may want to check the
fit of this model to their students to verify if they potentially
possess similar misconceptions.
TheHWS6model had a relatively large number of misfits

using the smaller sample sizes. In fact, for the samples of
2000 and 1000 students this model misfit the classes more
that 15% of the time. However, when themodel did not have
a misfit it retained a good fit with the data. Because of the
large misfit rate this model can be concluded to be unstable

TABLE V. Fit statistics’ mean and standard deviations of 2000 samples of size 4000, 2000, and 1000 students for
the SSG5 model. None of the smaller samples tested had any misfits, which is an indication that this model is
considered stable within this study. As the sample sizes get smaller the fit statics get worse, but never get to the point
of representing a poor model fit.

Scott-Schumayer-Gray 5 factors—SSG5

Without residual correlations
Mean St. Dev. Mean St. Dev. Mean St. Dev

4000 students 2000 students 1000 students
CFI 0.921 0.0043 CFI 0.920 0.0065 CFI 0.918 0.0097
TLI 0.910 0.0049 TLI 0.908 0.0074 TLI 0.906 0.0112
SRMR 0.034 0.0009 SRMR 0.036 0.0013 SRMS 0.039 0.0018
RMSEA 0.041 0.0011 RMSEA 0.042 0.0017 RMSEA 0.042 0.0026
RMSEA upper CI 0.043 0.0011 RMSEA upper CI 0.044 0.0017 RMSEA upper CI 0.046 0.0025
AIC 103 440 528 AIC 51 737 391 AIC 25 878 284
BIC 103 812 528 BIC 52 067 391 BIC 26 168 284

With residual correlations
4000 students 2000 students 1000 students
CFI 0.972 0.0024 CFI 0.971 0.0039 CFI 0.969 0.0064
TLI 0.967 0.0029 TLI 0.966 0.0046 TLI 0.963 0.0076
SRMR 0.023 0.0008 SRMR 0.026 0.0012 SRMS 0.031 0.0016
RMSEA 0.025 0.0011 RMSEA 0.025 0.0017 RMSEA 0.026 0.0028
RMSEA upper CI 0.027 0.0011 RMSEA upper CI 0.028 0.0017 RMSEA upper CI 0.026 0.0026
AIC 102 372 531 AIC 51 217 385 AIC 25 620 289
BIC 102 800 531 BIC 51 598 385 BIC 25 953 289
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for small sample sizes. This instability at smaller sample
sizes may be due to the fact that this model is too expert-like,
asmentioned previously. As the sample sizes get smaller and
smaller, misconceptions of an individual student become
more prominent within the correlation matrix. As a result

even subtle differences in response patterns from a handful
of students could be enough to cause a misfit between this
model and the data. This is conjecture, and more analysis
should be done in a future study to address the specifics for
why this model does so poorly at smaller sample sizes.

TABLE VI. Fit statistics’ mean and standard deviations of 2000 samples of size 4000, 2000, and 1000 students for the HWS6 model.
Many of the smaller samples tested misfit with the model, which is an indication that this model is not a good representation of smaller
samples.

Hestenes-Wells-Swackhamer 6 factors—HWS6

Without residual correlations
Mean St. Dev. Mean St. Dev. Mean St. Dev

4000 students Misfit rate ¼ 5.05% 2000 students 1000 students
CFI 0.910 0.0039 CFI CFI
TLI 0.899 0.0044 TLI TLI
SRMR 0.039 0.0010 SRMR SRMS
RMSEA 0.040 0.0009 RMSEA Misfit rate >15% RMSEA Misfit rate >15%
RMSEA upper CI 0.042 0.0009 RMSEA upper CI RMSEA upper CI
AIC 125664 585 AIC AIC
BIC 126136 585 BIC BIC

With residual correlations
4000 students Misfit rate ¼ 3.10% 2000 students 1000 students
CFI 0.950 0.0028 CFI CFI
TLI 0.942 0.0033 TLI TLI
SRMR 0.034 0.0011 SRMR SRMS
RMSEA 0.031 0.0009 RMSEA Misfit rate >15% RMSEA Misfit rate >15%
RMSEA upper CI 0.032 0.0009 RMSEA upper CI RMSEA upper CI
AIC 124655 580 AIC AIC
BIC 125190 580 BIC BIC

TABLE VII. Fit statistics’ mean and standard deviations of 2000 samples of size 4000, 2000, and 1000 students for the EW5 model.
Some of the smaller samples tested misfit with the model, but the rate of misfits was never above 3% for the model with correlations in
place. This suggests that for samples smaller than 1000 students the model without correlation should be fitted to the data first and then
correlation can be added after model-data fit has been established. As the sample sizes get smaller the fit statics get worse, but never get
to the point of representing a poor model fit.

Eaton-Willoughby 5 factors—EW5

Without residual correlations
Mean St. Dev. Mean St. Dev. Mean St. Dev

4000 students 2000 students 1000 students
CFI 0.914 0.0039 CFI 0.913 0.0061 CFI 0.911 0.0094
TLI 0.903 0.0044 TLI 0.902 0.0068 TLI 0.899 0.0106
SRMR 0.040 0.0011 SRMR 0.041 0.0015 SRMS 0.045 0.0022
RMSEA 0.042 0.0010 RMSEA 0.043 0.0015 RMSEA 0.043 0.0024
RMSEA upper CI 0.044 0.0010 RMSEA upper CI 0.045 0.0016 RMSEA upper CI 0.047 0.0023
AIC 112 521 516 AIC 56 271 395 AIC 28 170 284
BIC 112 912 516 BIC 56 618 395 BIC 28 474 284

With residual correlations
4000 students 2000 students Misfit rate ¼ 0.30% 1000 students Misfit rate ¼ 2.85%
CFI 0.954 0.0028 CFI 0.953 0.0046 CFI 0.951 0.0069
TLI 0.947 0.0032 TLI 0.946 0.0053 TLI 0.943 0.0080
SRMR 0.034 0.0011 SRMR 0.036 0.0017 SRMS 0.039 0.0022
RMSEA 0.031 0.0010 RMSEA 0.032 0.0016 RMSEA 0.033 0.0024
RMSEA upper CI 0.033 0.0010 RMSEA upper CI 0.034 0.0016 RMSEA upper CI 0.036 0.0023
AIC 111 564 539 AIC 55 788 409 AIC 27 925 297
BIC 112 005 539 BIC 56 180 409 BIC 28 269 297
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The results of the other expert model, EW5, can be found
in Table VII. This model appears to be a better representa-
tion of how the questions fit together as the misfit rate is
drastically lower compared to the HWS6 model. The fit
statistics are good for all of the categories and change very
little as the class size decreases. Comparing the AIC and
BIC for this model and HWS6 for 4000 students in a class,
it can be seen that this model is better at describing the data
with and without residual correlations in place. Between
the expert models, EW5 appears to do a better job in
general at fitting the data to latent variables.
For the EW5model there were a few cases of misfit at the

lower sample sizes with residual correlations in place. This
makes sense since the residual correlations that were
included were only expertlike. This means the model with
the residual correlations in place can be considered to be
more expertlike compared to the measurement model
without correlations in place. As a result, classes with
more novicelike correlations will potentially have a harder
time fitting this model and thus the misfit rate increases.
This can be seen to be the case in Table VII for the 2000 and
1000 sample sizes comparing the misfit rates with and
without the residual correlations. As a result, if an instructor
wanted to try to fit this model to their own class’s results
they should consider starting with the correlation free
model to initially see how well their class fits the expertlike
EW5 model.

V. CONCLUSIONS

Confirmatory factor analysis was applied to three models
using a set of data with 20 822 postinstruction student
responses to the Force Concept Inventory. Of the models,
one was found through the use of exploratory factor
analysis applied to 2109 students by Scott et al. [5]. The
other two models were expert created models without the
use of EFA, described in the model specification section.
All of these models were found to fit the full sample with
satisfactory fit values. This means that all three of these
models could be used to describe the correlations between
students’ responses to the FCI after instruction.
Further analysis of the SSG5 data by Scott et al. [6]

revealed that the impetus world view was the primary
misconception held by the students whose response data
generated the SSG5 model. Because of the good model fit
of SSG5 with this larger data set it could suggest that the
impetus world view is the chief issue students still have
after instruction.
The fact that the HWS6 model has an acceptable fit with

the full sample (N ¼ 20 822) suggests that this factor
structure accurately represents postinstruction student
responses on the FCI. Through the use of CFA (instead
of EFA) this study finds that it agrees with Halloun and
Hestenes in that the factor structure presented in Ref. [1] is
an acceptable way to categorize the questions of the FCI.

This conclusion disagrees with the conclusions of
Huffman and Heller presented and discussed in Refs. [2,4].
The disagreement between these studies could primarily be a
result of the statistical tools chosen to answer the research
question. EFA as [a] tool is not capable of confirming or
denying the existence of a given factor structure within a set
of data. This is not to say that the validity of a model cannot
be inferred through the use of EFA on alternate sets of data,
which is a common application. That no consistent model
was found through the application ofEFAondifferent sets of
data may imply that the factors of the FCI are sensitive to the
sample being analyzed. This study demonstrates that the FCI
does measure what it was design to measure as described by
Hestenes et al. from a factor perspective. Given the results
seen herein, we hope to end the air of caution carried by
researchers about the factor structure of the FCI and to end
the debate that began in 1995.
Because these expert factor models have been confirmed

for the FCI, instructors can now look at graded “chunks” of
the FCI. For instance, using the EW5 model, the FCI can be
thought of as testing the 5 factors indicated in the model
specifications. Thinking specifically about Newton’s third
law, an instructor can inspect how a student (or the whole
class) answered questions 4, 15, 16, and 28 and determine
the extent to which Newton’s third law is understood after
instruction. This is a simple example of what can be done,
but the power this gives instructors for targeting concepts
their students are struggling with could help in assessing
instruction methods for specific sections of the material.
After examining the fits of these models to smaller

samples constructed from the larger data set, it was
found that the SSG5 and the EW5 models did a good job
fitting with little or no misfits. HWS6, however, had a hard
time fitting these smaller samples. This seems to indicate
that when students have conceptual issues with Newton’s
first or second laws they may also have difficulties with
their associated kinematics. This is opposed to viewing
Newton’s laws and kinematics as being entirely separate
factors and thus give the impressions that one could grasp
one topic without fully understanding the other.

VI. FUTURE WORK

Further research into why the HWS6 model has a hard
time fitting the smaller sample sizes is suggested. Also,
investigating how these models fit data that is only from an
algebra- or calculus-based class and a comparison of these
results is currently being pursued. Other affects, like gender
or different teaching styles, on the fit of these models is
also being considered.
An investigation into what the suggested modification

indices can reveal about classwide postinstruction mis-
conceptions in an exploratory or confirmatory factor
analysis style of analysis is being investigated as well.
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