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We investigated physics students’ epistemological views on measurements and validity of experimental
results. The roles of experiments in physics have been underemphasized in previous research on students’
personal epistemology, and there is a need for a broader view of personal epistemology that incorporates
experiments. An epistemological framework incorporating the structure, methodology, and validity of
scientific knowledge guided the development of an open-ended survey. The survey was administered to
students in algebra-based and calculus-based introductory physics courses, upper-division physics labs, and
physics Ph.D. students. Within our sample, we identified several differences in students’ ideas about validity
and uncertainty in measurement. The majority of introductory students justified the validity of results through
agreement with theory or with results from others. Alternatively, Ph.D. students frequently justified the
validity of results based on the quality of the experimental process and repeatability of results. When asked
about the role of uncertainty analysis, introductory students tended to focus on the representational roles (e.g.,
describing imperfections, data variability, and human mistakes). However, advanced students focused on the
inferential roles of uncertainty analysis (e.g., quantifying reliability, making comparisons, and guiding
refinements). The findings suggest that lab courses could emphasize a variety of approaches to establish
validity, such as by valuing documentation of the experimental process when evaluating the quality of student
work. In order to emphasize the role of uncertainty in an authentic way, labs could provide opportunities to
iterate, make repeated comparisons, and make decisions based on those comparisons.
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I. INTRODUCTION

Epistemology is an area of philosophy concerned with
the nature and justification of human knowledge and
generally refers to the theory of knowledge, knowing,
and learning [1,2]. A growing area of interest for psychol-
ogists and education researchers is that of personal epis-
temological development and epistemological beliefs: how
individuals come to know, the theories and beliefs they hold
about knowing, and the manner in which such epistemo-
logical premises are a part of and an influence on the
cognitive processes of thinking and reasoning [1]. In the
past few decades, much research in educational psychol-
ogy, physics education, and science education has focused
on students’ attitudes and views about knowledge and
learning, which may shape and are shaped by their learning
experiences [3–6].
A number of validated survey instruments have been

developed to measure students’ beliefs and attitudes

towards science and learning science [7–9]. One focus is
students’ views about learning in physics lecture courses,
especially problem solving and conceptual understanding
in physics, which includes the Views About Science Survey
(VASS) [8], the Maryland Physics Expectations Survey
(MPEX) [9], and the Colorado Learning Attitudes about
Science Survey (CLASS) [5]. The other research focus is
students’ views about the nature of science, which includes
the suite of the Views of Nature of Science (VNOS) surveys
[6]. The third focus is students’ views about learning
physics in laboratory courses, which includes the
Colorado Learning Attitudes about Science Survey for
Experimental Physics (E-CLASS) [10,11]. Our goal is to
study students’ personal epistemology on the nature of
science with a specific focus on physics experiments.
Theory and experiment are twin pillars of physics

research, and they provide two sources of knowledge:
one in the form of model-based reasoning and the other
being observations and measurements from experiment.
Similarly, physics education has a tradition of emphasizing
theory and concepts in lecture and also providing exper-
imental opportunities for students in lab courses. Our study
investigated students’ views about physics with a specific
focus on experiments across a broad student population.
Halloun and Hestenes provide a helpful division of

personal epistemology in science into twomajor dimensions:
the scientific dimension and cognitive dimension [12].
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The scientific dimension consists of structure, methodology,
and validity of knowledge in the discipline. The cognitive
dimension consists of self-efficacy, reflective thinking,
and personal relevance. Within physics education, personal
epistemology includes students’ views about the nature of
knowledge and the nature of learning physics [4]. We
adapted the three subcategories from Halloun’s scientific
dimension of students’ personal epistemology [12] into our
study design: structure, methodology, and validity. We
developed, administered, and analyzed results from an open-
ended survey that were given to physics students ranging
from college freshmen to Ph.D. students. Although the
survey addresses all three subcategories (i.e., structure,
methodology, validity) to varying degrees, this article only
focuses on the validity dimension and the other two
dimensions were discussed in an earlier publication [13].
In Sec. II, we review previous epistemological surveys as

well as previous studies on the validity of measurements.
Then, in Sec. III we discuss the development and admin-
istration of our open-ended survey. Finally, in Sec. IV, we
present our main results and discuss the implications of
this study.

II. BACKGROUND

How individuals come to believe their knowledge is
valid or trustworthy, also known as justification for know-
ing, has been one of the four aspects (i.e., certainty of
knowledge, simplicity of knowledge, sources of knowl-
edge, and justification for knowing) in several existing
models of personal epistemology [14]. Justification for
knowing has been defined as “how individuals justify what
they know and how they evaluate their own knowledge
and that of others.” [1] How to establish the validity of
knowledge is a key question in scientific investigations.
In physics and astronomy, scientists need to establish
validity of any theoretical predictions, computational sim-
ulations [15], astronomical observations, and experimental
measurements [16]. In this section, we will review two
established areas of education research that relate to
validity of knowledge. The first area of research is on
students’ views regarding the validity of their knowledge of
science in general and the second area is about students’
understanding of measurement and uncertainty concepts in
statistics and science.

A. Prior surveys on the validity of knowledge in science

Previous epistemological surveys in physics and science
education research have explored various aspects of stu-
dents’ personal epistemology, including how students
justify knowledge that is learned in class and elsewhere.
Individuals may justify their beliefs in a number of ways,
such as on the basis of their past experiences, through their
own observations and assessments, or through knowledge
from an authority. Through a review of all the survey items

in several previous epistemological surveys [6–9,17], we
have found several common themes related to students’
views about the validity of knowledge in physics and
science. One theme addresses sources of authority that
establish validity of knowledge; such sources could reside
within the student or the student could defer to another
source such as a textbook, instructor, or government.
A second main theme relates to the appropriate use of
mathematical equations and derivations to establish knowl-
edge as valid. A third theme deals with the utilization
of prior knowledge, experiences, or expectations (either
qualitative or quantitative) to justify knowledge as valid.
The following examples from existing surveys address

either one or two of the themes. One item from MPEX-II
[17] said “Tamara just read something in her physics
textbook that seems to disagree with her own experiences.
But to learn physics well, Tamara shouldn’t think about her
own experiences; she should just focus on what the book
says.” This item investigated students’ views about knowl-
edge construction when two sources of knowledge pro-
vided different answers, one from authority and the other
from personal experiences. One Likert-scale question from
CLASS [5] was “In doing a physics problem, if my
calculation gives a result very different from what I’d
expect, I’d trust the calculation rather than going back
through the problem.” This item probed if students were in
favor of their own expectations or mathematical calcula-
tions when justifying the correctness of a result for a
problem. Another item from CLASS [7] was “When I am
solving a physics problem, I try to decide what would be a
reasonable value for the answer.” It involved the justifica-
tion of knowledge on the basis of what feels reasonable
although it is not clear how the student decides what value
is reasonable.
Those surveys adapted a relatively narrow view of

validity in scientific knowledge that mostly focused on
juxtaposing authority (e.g., textbooks or teachers) with
personal experience or mathematics as the justification for
validity. There are also a variety of methodologies used in
previous work to probe students’ epistemological views.
However, these previous works primarily focused on
problem solving or knowledge construction in a lecture
course instead of an experimental context that includes
various methodological approaches [16]. Hammer’s [18]
adapted case study interviews to investigate students’
beliefs about the structure of knowledge, content of knowl-
edge, and the learning of knowledge, primarily in lecture
courses, problem solving, and exams. Other work [19]
includes making inferences about college physics students’
epistemological beliefs about knowledge and learning from
their self-reflection through weekly report on how they
learned specific physics content. When reflected on how
they learned physics knowledge, students described a
variety of categories, including authority, logical reasoning,
practice, common sense, as well as experimental evidence.
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B. Students’ understanding of measurements
and uncertainty

Physics is an empirical science, the core of which is
experimentation and measurement. Experimentation,
observation, and measurement provide the evidence that
grounds scientific knowledge. However, one question that
arises for any experiment is, “How do we know exper-
imental results are valid?” The validity of experimental
results is influenced by almost every aspect of the experi-
ment procedure, including experimental design, use of
measurement tools, data collection techniques, documen-
tation of work, data analysis. When communicating find-
ings from an experiment, uncertainty analysis is critical for
justifying the validity of an experiment. Physicists typically
report uncertainty with measured values to justify the
quality of measurements and to facilitate meaningful
comparisons with other measurements or theoretical pre-
dictions. Every measured value has some degree of
uncertainty, and the idea of uncertainty is involved in
every phase of a physics experiment, including experimen-
tal design, data collection, data processing, and data
comparison. Each phase requires that students know what
it means to take a measurement and be able to apply this
knowledge along with an understanding of the associated
uncertainty. Making measurements and quantifying their
uncertainty are widely considered to be some of the most
fundamental and important components of a student’s
science education [20,21]. As John Taylor said in his
textbook on error analysis, “Because the whole structure
and application of science depends on measurements, the
ability to evaluate these uncertainties and keep them to a
minimum is crucially important” [21].
An understanding of measurement and uncertainty is

also critical for making informed decisions in many differ-
ent situations, such as making legal decisions depending on
the accuracy of scientific data [22]. Research studies in
statistics and mathematics education have given attention in
the development of statistical literacy and numerical skills
of all students and citizens [23]. According to Gal,
statistical literacy refers to people’s ability to interpret,
critically evaluate, and express their opinions regarding
statistical information, data-related arguments, or stochastic
phenomena [24]. In statistical education, reasoning about
uncertainty is defined as “understanding and using ideas of
randomness, chance, likelihood to make judgments about
uncertain events; knowing that not all outcomes are equally
likely; knowing how to determine the likelihood of differ-
ent events using an appropriate method [23].” Studies have
looked at students’ ability to use probability to make
justifications about specific events or situations, and they
found that even people who can correctly compute prob-
abilities tend to apply faulty reasoning when asked to make
an inference or judgment about an uncertain event, relying
on incorrect intuitions [25]. Although physics educators
rarely use the term “statistical literacy,” physics laboratory

courses are well suited to help students develop statistical
reasoning skills through measurements and data process-
ing, and it is often listed as a key learning goal for physics
labs [26–28].
Several prior studies in physics education research have

examined students’ perceptions ofmeasurements and uncer-
tainty in physics laboratory courses [22,29–31]. Those
studies focused on students’ conceptual understanding of
uncertainty in various levels of physics laboratory courses as
well as instructional strategies to improve their understand-
ing. They examined several of the broader issues related to
measurements: the reasons for repeated measurements,
concepts about accuracy and precision, random versus
systematic errors, assessing the quality of measured data
by the mean and spread, and the determination of uncer-
tainty. In a study conducted by Volkwyn, Allie, and Buffler
[32], after receiving the instructions from a conventional
laboratory course, most students were able to link repeating
measurements to “uncertainty” or “standard deviation” (i.e.,
focusing on the spread of data) for data collection and data
processing; however, many of those students still focused on
individual readings or means of several readings when
comparing data. In general, strategies used in conventional
introductory laboratory courses were unsuccessful in
improving students’ understanding of uncertainty beyond
the appropriation of the numerical routines [32,33]. Buffler,
Allie, and Lubben proposed the use of a probabilistic
approach to teach measurements and uncertainty and the
implementation of a carefully designed curriculum based on
this approach in freshman level showed the effectiveness in
improving students’ understanding [34,35].
In addition to the epistemological role of uncertainty in

establishing the validity of measurements, there has also
been education research related to uncertainty analysis as a
scientific ability. Day and Bonn probed students’ abilities
related to measurement, uncertainty, and handling data
through their Concise Data Processing Assessment
(CDPA), a ten question, multiple-choice diagnostic instru-
ment [36]. Those abilities included data fitting, error
propagation, and accounting for uncertainties arising from
a digital measurement display. Multiple questions asked
whether or not a model fits a data set given particular
measurement uncertainties. The instrument was adminis-
tered to first-year physics students, second-year, fourth-year,
graduate students, and faculty at the University of British
Columbia. The results showed that this instrument was able
to distinguish between populations in the novice-to-expert
spectrum in regards to their data-handling abilities.
More recently, Holmes, Wieman, and Bonn developed

instructional strategies and activities that targeted students’
quantitative critical thinking skills (i.e., making quantitative
comparisons between data sets and between data and
models) [37]. Students in the experimental condition
received explicit instructions about how to determine
uncertainties in measurements or fit parameters, how to
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use quantitative analysis tools (e.g., chi-square test), and
how to make decisions about the comparisons, including
devising and carrying out a plan to improve the quality of
measurements. Students in the experimental condition
showed significant improvement in making refinement
about experimental methods, as well as identifying and
explaining the limitations of a model using their data.
Those students also showed the ability to transfer those
skills to a subsequent course the following year.
Across those previous studies on measurement and

uncertainty, we gained a better understanding of how
students interpreted and utilized uncertainties, as well as
effective strategies to improve students’ abilities to deal
with measurements and uncertainty. More specifically,
those studies addressed the quantification and utilization
of uncertainty when making decisions about data collection
(e.g., the number of measurements to take), data processing
(e.g., data fitting), and data comparison. However, the
concept of uncertainty was not examined in relationship to
personal epistemology. In this study, we investigated
students’ attitudes and views about the justification of
validity. Thus, the key research questions in our study are as
follows: (i) How do students justify whether or not an
experimental result is acceptable or trustworthy? What
gives students confidence that the data is trustworthy?
(ii) How do students perceive the purpose of uncertainty
analysis? By asking about what makes data trustworthy, it
offers students a chance to discuss many possible
approaches to establishing validity of results, which may
include uncertainty evaluation. Because uncertainty analy-
sis has been a pervasive emphases in lab courses, though
evidence suggested students recognize it more as another
calculation than as a tool for establishing validity (as
experts do). By directly asking students about the role of
uncertainty analysis, we offer a modest amount of cuing to
see if students describe uncertainty analysis as primarily
about validity or if they provide other purposes for
conducting uncertainty analysis in a lab setting.

III. METHODOLOGY

A. Survey development and data collection

The scientific dimension with three subcategories of
students’ personal epistemology about the nature of science
(i.e., structure, methodology, and validity) guided the
design of our open-ended survey [8]. The main purpose
of this study is to probe students personal epistemology
when engaging in scientific practices and not merely
learning about science ideas through lecture courses.
Halloun’s framework perfectly captures students’ personal
epistemology about the nature of science through scientific
practices in the lab environment. The structure dimension is
explored through students’ views about the relationship
between theoretical knowledge and experimental knowl-
edge. The methodology dimension involves the use of

observations and experiments as tools to collect data or
evidence and form theoretical ideas. The validity dimension
requires students to use existing resources to make judg-
ments and decisions about the data, the experimental setup,
and the conclusion.
The development of the open-ended survey consisted of

several sequential steps. We first generated several themes
following the three subcategories of the scientific dimension,
including role of experiments, definition of theory, relation
between theory and experiment, and validity of experiment.
Based on those themes, we developed a semistructured
interview protocol. Next, we conducted 1 hr individual
interviews with eight students, two from an introductory
algebra-based physics course, two from an introductory
calculus-based physics course, two physics majors enrolled
in an upper division physics lab, and two physics Ph.D.
students. Results from the interviews were used to create an
open-ended survey which was then converted to an online
version hosted on the Qualtrics survey platform. The online
survey was tested again with a small sample of around 10
students. Based on their feedback as well as time consid-
erations, the survey was refined again and shortened to eight
questions as shown in Table I. Lastly, we disseminated the
survey through Qualtrics, which formed the set of data
collected and presented in this paper.
The survey was administered to four different populations

with various levels of physics laboratory experiences
described in Table II. All undergraduate students were from
a large private university. All introductory algebra-based
students were enrolled in the same course section, and this
course was taken primarily by life science, pre-med, and
engineering technology students. Students took two 110-min
workshop sessions aligned with a 110-min lecture each
week. Most of the workshop sessions involved problem-
solving or paper-pencil activities, and there was a lab activity
every other week. During the lab activities, students followed
an activity manual with step-by-step instructions and built-in
guiding questions. All calculus-based physics students were
from a single integrated lecture and lab class, and the
majority of them were majoring in engineering or computing
fields. The class met for six hours each week and about
15%–20% of the in-class time was spent on labs. Students
followed a lab manual to do measurements, calculations,
plotting, and occasional uncertainty analysis.
The modern physics lab course was for 3rd-year physics

majors. The course met each week for a 1-hr prelab to
develop a preliminary understanding of the experiment and
apparatus and then for a 3-hr period for the main experi-
ment. The course focused on developing proficiencies in
statistical uncertainty analysis, computing for data visuali-
zation and fitting, and using standard lab equipment such as
oscilloscopes and multimeters. Physics Ph.D. students were
from the same large public research university. All of them
finished their first-year coursework and were involved in
different stages of graduate research work.
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A survey link was sent to students via Email, and they
were asked to take the survey outside class within two
weeks of receiving the link. In introductory courses, the
instructors agreed to offer extra credit to students who
completed the survey. Upper-division undergraduate stu-
dents and Ph.D. students were provided with gift cards to
compensate for their time.

B. Coding process

All responses were imported into QSR International’s
NVivo 11 qualitative data analysis software. The coding
process took four steps: (i) Open coding—The primary coder
(i.e., the first author D. H.) highlighted key words and
grouped similar words and phrases, and then made initial
codes. (ii) Focused coding—Two coders (D. H. and the
second author B.M. Z.) identified emergent themes in the
initial codes and created a hierarchical structure of the coding
schema. (iii) Codebook refinement—A draft of the code
dictionary was used by the second coder (B.M. Z.), and
applied to all the data. Results were discussed with the
primary coder (D. H.); then, codes and code definitions were
renegotiated resulting in a revised coding dictionary.
(iv) Interrater reliability—the coding scheme was given to
a third coderwhowas not involved in the initial creation of the
coding dictionary, and coding results were comparedwith the
primary coder (D. H.). If therewas a major disagreement on a
specific code, the two coders went through the references and
coding criteria together and made modifications to their
coding or to the coding dictionary as necessary. The final
percentage agreement between the two coders for all codes
was above 90%.

IV. RESULTS

Our analysis focuses on survey questions 7 and 8, both of
which address the validity dimension of personal episte-
mology. We present major codes and code distributions by
student subgroup for each question, and then we discuss
the overall patterns of students’ epistemology through a
network analysis of codes from the two questions.

A. Students’ views about the validity
of experimental results

Question 7 asked, “How do you know if an experimental
result is acceptable or trustworthy?” The major codes
identified from student responses to question 7 are shown
below.

1. Code definitions for Q7: Validity

Comparison with theory—Experimental results are trust-
worthy when they match with theoretical or predicted
values. One introductory algebra-based students explained
a result was trustworthy “If it is close to what was
calculated in the prelab.”
Comparison with others—Experimental results are trust-

worthy if they match with those from another source, for
example, a published article, or a peer. A graduate student
described, “if someone can measure the value using a
completely different method and arrive at the same result,
taking into account error, this can add confidence.”
Repeatability—Experimental results are trustworthy

when similar results are achieved under multiple trials.
Students sometimes used phrases such as, “repeating the

TABLE I. Survey.

No. Survey questions

1 In your opinion, why are experiments a common part of physics classes?
Provide examples or any evidence to support your answer.

2 In your opinion, why do scientists do experiments for their research?
Provide examples or any evidence to support your answer.

3 In your opinion, what defines a scientific theory?
4 How do theory and experiment relate? Provide examples or any evidence to support your answer.
5 What kind of difficulty or difficulties do you typically encounter in a lab?
6 How do you try to resolve those difficulties?
7 How do you know if an experimental result is acceptable or trustworthy?

What gives you confidence that your data is trustworthy?
8 Why is uncertainty analysis a common part of physics labs and experiments?

How is uncertainty used in physics experiments?

TABLE II. Information of survey respondents.

Population Intro algebra Intro calculus Upper-level Ph.D.

Course Algebra-based physics Calculus-Based Physics Modern physics lab Physics research
Institution Large private university Large private university Large private university Large public research university
Number of responses 75 28 20 31
Administered during End of semester End of semester End of semester Beginning of summer
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same experiments multiple times” (often meaning the same
person doing the repetition) or “reproducibility” (by the
same or different experimenters). A graduate students
explained, “If you can repeatedly measure the same thing
and get reasonably close data, then you may conclude that
your data are trustworthy.”
Uncertainty evaluation—Measurement uncertainty is

calculated and the results are considered trustworthy if
the uncertainty is within a certain range. An introductory
student said, “If [the result] falls within a given error or set
value that is proven to be the constant, then I believe it is
acceptable and trustworthy.”
Quality work—The experimenter is confident about the

methodology, procedure of the lab, and clear documenta-
tion of the experiment. This code was mostly used by Ph.D.
students. For example, one graduate student explained that
“My own perception of how well I set up the experiment
and whether I understood everything I saw right up until the
taking of data plays a large role…”
Authority figures—Experimental results are trustworthy

when students receive confirmation from authority, such as
the instructor or teaching assistant (TA). An introductory
physics student explained, “We usually pass it by the
professor or TA, which gives us confidence in our
answers/data.”

2. Results and discussion for Q7: Validity

Although students at all levels of physics lab experience
described several criteria to justify the validity of exper-
imental results, three major categories emerged in their
reasoning: theory-based justification, experiment-based
justification, and authority-based justification as shown
in Fig. 1. Theory-based justification establishes the validity
of experimental results by demonstrating agreement with
theoretical predictions. Experiment-based justification
includes two subcategories—results-based justification
(i.e., the comparison of experimental results among
multiple trials by the same experimenter or different
experimenters) and process-based justification (i.e., the
justification of the experimental process). The final
category, authority-based justification, relies upon knowl-
edge from authority figures to establish the validity of
experimental results.
Figure 2 shows the frequency of occurrence of all major

codes that are defined in Sec. IVA 1. Looking down a single
column allows for identifying the most common codes
within a subpopulation. For example, the first column “Intro
algebra” shows the fraction of introductory algebra-based
students’ responses with each code. The two most frequent
codes are “comparison with theory” and “comparison with
others.” Looking across a row allows for identifying which
subpopulation most frequently used a particular type of
explanation. For example, the first row comparison with
theory shows the fraction of responses in each subpopulation
where that codewas applied. The two subpopulations where

this code most frequently occurred are introductory calcu-
lus-based students and Ph.D. students.
In Fig. 2, comparison with others and repeatability are

categorized as result-based justification because they both
rely upon a comparison of experimental results across
different trials, experiments, or researchers. Uncertainty
evaluation and quality work are categorized as process-
based justification because they base validity upon an
understanding of the experimental setup and the procedure
for making measurements. For example, uncertainty evalu-
ation includes the evaluation of the limitations of meas-
urement tools and uncertainty involved in the measurement
techniques.
Theory-based justification is one of the most frequently

occurring line of reasoning within introductory students’
responses, though it is common across all subpopulations.
One example from an introductory algebra-based student
was, “If [the results] correspond to the theory answers. This
is the best way to check if the results are acceptable.”

Criteria for 
validity

Theory-based

Experiment-
based

Results-based

Process-based
Authority-based

FIG. 1. Criteria for validity.

Criteria for validity Codes

Theory-based
Comparison 
with theory

0.39 0.68 0.35 0.50

Experiment
-based

Results
-based

Comparison 
with others

0.37 0.29 0.80 0.35

Repeatability 0.15 0.39 0.25 0.71

Process
-based

Uncertainty 
evaluation

0.17 0.25 0.55 0.32

Quality work 0.08 0.11 0.05 0.39

Authority-based
Authority 

figures
0.12 0.07 0.00 0.00

Q7: How do you know if an experimental result is acceptable or 
trustworthy?

FIG. 2. Fraction of student responses with a particular code in
the subpopulation (e.g., intro algebra-based physics). Students’
responses may be coded under several codes when appropriate so
fractions do not add up to 1.00. Five levels of gray scale shading
were applied based on the fraction, f (from lightest to darkest):
f < 10% (white); 10% ≤ f < 25%; 25% ≤ f < 50%; 50% ≤
f < 75%; f ≥ 75% (black).
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Another student said, “Compare it to the theoretically
calculated answer.” In these examples, experiments done
in class do not provide evidence to support theories. Rather,
theoretical predictions provide evidence that the experi-
ment worked correctly and yielded the correct result.
Although this view seems contrary to an expert view of
the nature of science that prioritizes observation and data
to establish the validity of theories, the role of theory-based
justification does have a useful place in constraining
possible outcomes. As one Ph.D. student said, “If the
experiment matches some theory prediction. It’s important
to have some idea of what the data should look like and that
the data is reproducible and not a result of some meas-
urement errors.”
The second major category is results-based justification.

Introductory algebra-based students most frequently relied
on the comparison of their own results with those of others,
especially their peers, to establish validity (p < 0.01 when
using a chi-square test to compare the codes comparison
with theory or comparison with others with all other codes).
One typical phrase from introductory algebra-based
students was “If data matches up with other data received
from other groups…” Another example of comparing with
others refers to the comparison with known or existing
results from other sources, such as online resources or
published results. One typical example was, “Normally,
after doing an experiment, you can check online for
published results and compare and see the differences
and similarities. If my results match up, I know I did
something right!” Upper-division physics majors also
mentioned a comparison with literature as well as the
results from other research groups as a way to justify the
trustworthiness of their experimental results. Ph.D. students
differed in their emphasis with over 70% graduate students
mentioned repeatability as the major criteria for justifying
the trustworthy of experimental results. An example from
Ph.D. students was “Repeating the experiment over multi-
ple days, with different equipment, etc., can all give
confidence in the results…” It is possible that time
constraints of lab courses limit the use of repeatability in
undergraduate lab courses, which leads to a reliance on
comparison with others.
The third category of justification, the process-based

justification, which includes uncertainty evaluation and
quality work, was much more common among Ph.D.
students and upper-division undergraduate students
(p < 0.05 when using a chi-square test to compare the
codes uncertainty evaluation and quality work across
different levels of students). Even though introductory
students are often asked to calculate uncertainty, prior
research shows that introductory students still have diffi-
culties with concepts of uncertainty and using uncertainty
for data comparison [27], meaning it is less likely that
uncertainty analysis will be used to establish validity of
results. However, the upper-division physics majors were

taking a junior-level advanced physics lab course that
involved the measurement of fundamental physical con-
stants, such as the electron charge to mass ratio e=m.
Almost all of these experiments required a calculation of
uncertainty and making conclusions based on uncertainty,
which explains the high percentage (55%) of upper-level
students who mentioned uncertainty evaluation. In addi-
tion, Ph.D. students also gained confidence by doing
quality work on procedural aspects of experiments, includ-
ing methodology, design, maintaining well-functioning
equipment, and keeping good documentation of the exper-
imental process. One typical phrase from graduate students
was “having an understanding of the effects of each knob
I can turn in my system makes me more confident in my
understanding of what I am seeing.” Ph.D. students are
often involved in complex experiments that require a good
understanding of the physical system, experimental design,
procedure, and data. Very often there are no existing results
that can be directly compared with, but the results can be
trustworthy through a systematic, detail-oriented, and care-
ful approach to their research.
In authority-based justification, there was a small frac-

tion of students (12% for introductory algebra-based
students) who mentioned relying upon confirmation from
authority figures, such as their professors or teaching
assistants, in order to trust their data. An intro algebra-
based physics student said, “I have confidence that my data
is trustworthy if my professor says it looks right.” None of
the upper-level and graduate students mentioned the use of
authority figures to justify the validity of their experimental
results.
In summary, there are distinct features among introduc-

tory students and advanced students in their criteria for the
validity of experimental results. Introductory algebra-based
students relied primarily upon comparison with theory and
comparison with others as the main criteria. Advanced
students tended to use multiple criteria, mainly based on the
experiment itself, to justify their results. We found that
more than 70% of Ph.D. students mentioned about repeat-
ability as a useful criterion, and they almost distinctively
used quality work for justifying results. Also, many upper-
level and Ph.D. students used the evaluation of uncertainty
to justify results.
These general trends are interesting though some-

what unsurprising based on our teaching experience.
Introductory students are typically asked to finish a lab
within three hours or less. It is challenging for some
students to finish one round of data collection within this
time limit, and it is very unlikely that an entire experiment
is repeated multiple times. The introductory labs done by
students in this sample were fairly procedural, and students
had little autonomy in designing and performing an experi-
ment. In upper-division and research labs, there are fewer
constraints and less rigid procedures, meaning students
may have had more flexibility and more responsibility for
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designing and conducting experiments. This may have led
to the use of a wider range of strategies for establishing
validity, such as repeatability, uncertainty evaluation, and
quality work.

B. Views on the role of uncertainty analysis

Question 8 asked “Why is uncertainty analysis a
common part of physics labs or experiments?” This
question explored how students perceived the role and
purpose of uncertainty analysis in physics labs. The major
codes that emerged from students’ responses towards
question 8 are shown below.

1. Code definitions for Q8: Uncertainty

Imperfection of experiment—Uncertainty characterizes
the imperfectness or nonideal aspects of an experiment.
One introductory algebra-based student explained that
uncertainty analysis was a part of labs “because uncertainty
is always present in experiments. It is because it is real
world testing in comparison to theory which is perfect.”
Data variability—Uncertainty describes or quantifies the

variations or fluctuations in data. An introductory algebra-
based student explained, “Uncertainty is common in
physics labs and experiments because it accounts for slight
variations between the experiments being performed,
allowing a range of ‘acceptable’ results. The uncertainty
is used in the experiment to account for variations in your
experimental setup.”
Human mistakes—Uncertainty characterizes the possible

mistakes in an experiment. One introductory student said, “it
is common because sometimes in a difficult experiment,
scientists could make lots of mistakes when measuring.”
Quantifying reliability—Uncertainty helps determine the

range of reliable data or to determine the “acceptable range
of results.” One introductory student said, “Uncertainty
analysis help show where the answer must fall in to be
acceptable.”
Making comparison—Uncertainty is used to make com-

parisons between experimental results and theory or to
compare results from different sources. One introductory
algebra-based student explained, “Uncertainty is necessary
when comparing the theoretical value to the experimental
value because in the experimental value there are typically
errors.”
Refinement—Uncertainty analysis is used to identify

mistakes or to guide improvements of an experiment.
One Ph.D. student said, “The uncertainty is a measure of
the confidence in our data and results. If we analyze the
uncertainty and find it to be quite high (relative to the
quantity we are measuring), then we might have a problem
with the apparatus or analysis (for example, might need
to average over many trials or remove a source of
measurement noise). In this way, the uncertainty analysis
can be used to improve the experimental design and
improve the resulting data.”

Inherent aspect—Uncertainty is inherent in any measure-
ment, and the uncertainty analysis emphasizes an important
aspect of teaching the empirical nature of science to students.
One Ph.D. student said, “Scientific labs are mainly about
measuring things in one form or another. Taking a ruler up to
nature does not always yield numbers with the utmost
certainty; therefore, when we study nature through labs,
we need uncertainties to have any meaningful numbers.”

2. Results and discussion for Q8: Uncertainty

When responding to question 8 regarding the role of
uncertainty analysis in physics labs, students’ reasoning can
be placed into three major categories as shown in the left
column of Fig. 3: Representational, Inferential, and
Teaching nature of science. The use of the terms “repre-
sentational” and “inferential” to describe the role of uncer-
tainty analysis is adapted from statistics education [38]. The
representational role refers to uncertainty and statistical
concepts that are used to describe the features of data. The
representational role of uncertainty is similar to the category
of descriptive statistics which provides descriptions of a
population or series of measurements (e.g., mean, standard
deviation). The inferential role refers to concepts that are
used to make inferences and conclusions about data (e.g.,
evaluate if a hypothesis is true or not). The inferential role of
uncertainty is similar to the category of inferential statistics.

Role of 
uncertainty

Codes

Representational

Imperfection of 
experiment

0.36 0.64 0.35 0.26

Data variability 0.41 0.21 0.45 0.42

Human mistakes 0.25 0.04 0.00 0.03

Inferential

Quantifying
reliability

0.25 0.32 0.65 0.58

Making 
comparison

0.16 0.21 0.50 0.39

Refinement 0.01 0.07 0.05 0.13

Teaching nature 
of science

Inherent aspect 0.01 0.21 0.15 0.52

Q8: Why is uncertainty analysis a common part of physics 
labs/experiments?

FIG. 3. Fraction of student responses with a particular code in
the subpopulation (e.g., intro algebra-based physics). Students’
responses may be coded under several codes when appropriate so
fractions do not add up to 1.00. Five levels of gray scale shading
were applied based on the fraction, f (from lightest to darkest):
f < 10% (white); 10% ≤ f < 25%; 25% ≤ f < 50%; 50% ≤
f < 75%; f ≥ 75% (black).
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In the specific context of students’ ideas about uncertainty
analysis, the representational role of uncertainty describes
features of the data or experiment (e.g., imperfections in the
experiment or variability of data), while the inferential role
focuses on how to use uncertainty to make inferences about
data or experiment in a decision-making process (e.g.,
justifying the reliability of data or guiding the refinement
of an experiment).
The representational role of uncertainty includes describ-

ing the imperfection or nonideal features of an experiment
(linked to code imperfection of experiment), variation in
the measured data (code data variability), as well as
accounting for any possible human mistakes in an experi-
ment. The inferential role of uncertainty includes quantify-
ing reliability to determine the quality of the data, making
comparison with theory or other measurements, and using
uncertainty analysis for the refinement of the experimental
design or process. The third category, teaching nature of
science, is considered as a separate category because it
emphasized that measurement uncertainty is an essential
and fundamental aspect of how science progresses. Thus,
these students felt it was important for them to appreciate
the empirical nature of science beyond any particular
representational or inferential roles.
The representational role of uncertainty was frequently

addressed by all students, although it was the dominant role
discussed among introductory students. In imperfection of
experiment, many introductory students simply mentioned
that the measurements or experiments are not perfect or
the real world is not ideal, and other introductory students
listed specific examples to illustrate the causes of the
imperfection of experiment, such as “errors from
machines” or “instrument error.” Those students realized
the existence of uncertainty in measurements, and many of
them pointed out that uncertainty was inherent in experi-
ments due to the difficulties in controlling real-world
situations. One introductory student said, “there is always
uncertainty because measurements won’t be perfect.” In
general, imperfection of experiment accounted for a range
of issues including the experimental design, insufficient
control of factors, limitations of apparatus, and error in
operations of apparatus.
Imperfection of experiment, which focused on the non-

ideal nature of the experiment, was distinguished from
human mistakes, which also appeared in several introduc-
tory algebra-based students’ responses. Human mistakes
included any possible user errors or mistakes made during
an experiment. Mistakes were typically avoidable when
experiments were performed in a careful and professional
manner. One introductory student said, “Humans make
errors, and any instruments has errors.” Another student
said, “We are not machines we can make a lot of error, that
can affect the results.” Accounting for human mistakes was
a rationale primarily provided by introductory students and
occurred only once among upper-level and Ph.D. students.

Finally, in the representational role category, data vari-
ability focused on uncertainty analysis as a way to describe
fluctuations or variations in results. One example from an
introductory algebra-based student was “There is error in
everything we do so the uncertainty allows the data to
fluctuate within a certain range and it still be accurate.”
The inferential role of uncertainty was more frequently

addressed by upper-level and Ph.D. students (p < 0.06
when using a chi-square test to compare the codes
quantifying reliability, making comparison, and refine-
ment, across different levels of students). In quantifying
reliability, students made an explicit connection between
uncertainty and the quality of results. Many upper-level
students associated uncertainty with the precision or
accuracy of results although sometimes responses did
not distinguish the two. One upper-division student said
that uncertainty analysis “tells us something meaningful
about the accuracy of our measurements. We use uncer-
tainty to tell us how accurate our lab equipment is, and
hence how accurate our final value is.” Other students
related uncertainty to the level of confidence they had in
their data. One Ph.D. student explained, “The uncertainty is
a measure of the confidence in our data/results. If we
analyze the uncertainty and find it to be quite high (relative
to the quantity we are measuring), then we might have a
problem with the apparatus or analysis…”
Making comparison was another main theme in the

inferential role of uncertainty analysis. Uncertainty is used
to justify if an experimental result agrees with results from
other sources and theoretical predictions or how well it fits
a model. One example from introductory students was
“uncertainty is necessary when comparing the theoretical
value to the experimental value because in the experimental
value there is typically errors.” An example from an upper-
level undergraduate student was “In our experiment uncer-
tainty gives us a better chance of being able to fit our data to
that of the accepted model, but is undeniably larger than
that of any respectable institution (e.g., NIST).”
A small portion of Ph.D. students mentioned that

uncertainty analysis can guide improvements or refine-
ments to the experimental design or measurement tech-
niques. One Ph.D. student said that uncertainty analysis
“…gives meaning to number. 5� 6 is meaningless in most
cases; 5� 1 is something. You need to know how well your
measurement is defining the number you seek. Large
uncertainty can tell you something isn’t working correctly
or that the measurement method is not appropriate
[emphasis added].” Although refinement was not a fre-
quently occurring code, it does demonstrate an additional
inferential role of uncertainty analysis that is distinct from
quantifying reliability or making comparisons.
Lastly, teaching the nature of science as a rationale for

uncertainty analysis was almost exclusively addressed by
Ph.D. students (p < 0.01 when using a chi-square test to
compare code teaching the nature of science across different
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levels of students). In addition to discussing the representa-
tional and inferential roles of uncertainty analysis, Ph.D.
students additionally explained that uncertainty was a
fundamental aspect of any measurement, and students
needed to appreciate this fact. Teaching uncertainty analysis
conveys fundamental lessons about measurement and how
scienceworks.Many Ph.D. students emphasized uncertainty
as “extremely important” or “as important as results.” For
example, one Ph.D. student said “An experiment is essen-
tially meaningless without an analysis of uncertainty…”
In students’ reasoning about the role of uncertainty

analysis, introductory students tended to focus more on
the representational roles of uncertainty (i.e., to describe the
imperfection of experiment, variations in data, or mistakes
made during experimental work). Students with more lab
experience were more likely to discuss the inferential roles
of uncertainty analysis in addition to the representational
roles, which includes evaluating the reliability or giving
confidence about the quality of data, making comparisons
and, guiding refinements to the experiment to improve the
quality of results.
Although uncertainty analysis is an important compo-

nent in many introductory laboratory courses and detailed
procedures are often provided for calculations of uncer-
tainty (e.g., standard deviation of repeated measurements or
uncertainty propagation), the ultimate purpose of those
calculations may be hidden from many students. Our data
indicate that students with less experience tended to
emphasize representational roles of uncertainty such as
describing imperfections and human error within an experi-
ment and are less aware of the inferential and decision-
making roles of uncertainty, such as justifying the quality of
data and making comparisons with other results or theo-
retical calculations.

C. Network analysis across questions

The analysis of students’ responses towards questions 7
and 8 gave us several insights into students’ views about the
criteria for establishing trustworthy results as well as the
rationale behind conducting uncertainty analysis in physics
labs. However, it was common for students to invoke
several different ideas within the same response, so wewere
curious to explore students’ overall reasoning patterns
within and across questions by investigating the co-
occurrence of the different reasoning categories regarding
their views toward justification of experimental results (Q7)
and their views about the role of uncertainty analysis (Q8).
The specific questions we addressed were as follows:
(i) How are the codes related within a particular subpopu-
lation? (ii) How do the relationships between codes differ
across subpopulations with varying levels of lab experi-
ences? In order to answer those questions, we conducted a
network analysis using the R programming language. We
first exported a coding matrix from QSR International’s
NVivo 11 qualitative analysis software, which shows

whether a code appears in a students response or not for
all codes in Q7 and Q8. Then this coding matrix was
imported and visualized in R as shown in Fig. 4.
A network plot enables the visualization of the structure

of reasoning for each subpopulation as well as comparisons
across subpopulations. The ideas and techniques are similar
to those used in social network analysis. Social network
analysis is primarily used to characterize social network
structures in terms of nodes (e.g., individual people) and
edges (i.e., links) that connect the nodes (e.g., relationships
or interactions between people). The network analysis
conducted here is similar to social network analysis
because both are used to explore the relationships among
objects. However, the primary difference is that the objects
in social network analysis are people, while the objects in
our network analysis are particular reasoning codes present
within students’ responses.
Figure 4 shows students’ reasoning patterns across

questions 7 (orange circles) and 8 (red circles). We plotted
all codes as well as edges (i.e., connections between codes)
for each subpopulation. The size of a node is proportional
to how often the code appeared. A link between nodes was
made whenever individual students displayed both codes
within their responses. The thickness and darkness of a link
is proportional to the fraction of students that mentioned
both codes in their responses. However, only links that
represented 10% or more of the subpopulation are shown in
the plots. The cutoff was chosen to minimize the visual
impact of a large number of very infrequent links between
codes. Also, only codes that occurred in 10% or more of the
subpopulation are labeled.
Network plot provides an alternative way to visualize the

main results from Figs. 2 and 3 by evaluating the nodes
within each subpopulation. Additionally, the links between
codes form clusters, which may serve as a practical tool for
exploring the structure of students’ epistemological beliefs.
In Fig. 4, we can easily observe the complexity of students’
reasoning in terms of the distribution of codes and their
connections. Students with more advanced lab experiences
demonstrated epistemological reasoning that was more
complex as evidenced by the larger number of nodes and
increased number of connections. Introductory algebra-
based students often provided only one single idea, while
Ph.D. students tended to recall multiple ideas together.
The average connectivity index (i.e., the average number
of links) for each subpopulation is 3.2 for introductory
algebra-based students, 5.4 for introductory calculus-based
students, 7.2 for upper-level physics majors, and 9.2 for
physics Ph.D. students.
When looking more closely at the connections between

codes from questions 7 and 8, there are a few additional
interesting results. First, introductory students’ responses
rarely made a connection between the purpose of uncer-
tainty and the validity of experimental results. The majority
of introductory students did not discuss using uncertainty

DEHUI HU and BENJAMIN M. ZWICKL PHYS. REV. PHYS. EDUC. RES. 14, 010121 (2018)

010121-10



to establish the validity of experimental results when
responding to Q7, and they also did not recognize that
one of the important goals of performing uncertainty
analysis was to quantify the reliability of data.
Second, introductory algebra-based and calculus-based

students rarely discussed the use of uncertainty analysis and
statistical tools to support their conclusions despite often
discussing the comparison of data to theory or the com-
parison of data to data from another source in order to
establish the trustworthiness of their experimental results.
The network plot shows there was rarely a connection
between this “comparison” type of reasoning for establish-
ing validity (from Q7) and the use of uncertainty analysis or

statistical tests to estimate reliability of the data and then
make comparisons (from Q8). Comparisons were then
being made without the use of formal quantitative statistical
tools, such as uncertainty analysis. Rather the data suggest
these introductory students tended to check how similar
their own experimental results were to others’ results or
theoretical predictions and then used uncertainty as a
justification of any disagreement because it characterizes
the nonideal feature of the physical world.
In contrast, both upper-level physics majors and Ph.D.

students recognized quantifying reliability as the most
important goal for uncertainty analysis. Additionally,
upper-level physics majors linked the quantitative role of

Comparison with theory

Comparison with others

Repeatability

Uncertainty evaluation

Quality work

Authority figures

Imperfection of experiment

Data variability

Human mistakes

Quantifying reliability Making comparison

Comparison with 
theory

Comparison
with others

Repeatability
Uncertainty evaluation

Quality work

Data variability

Teaching nature of science

Comparison with theory

Repeatability

Comparison with 
                others

Uncertainty evaluation

Quality work

Imperfection of experiment

Data variability

Teaching nature of science

Comparison
with theory

Comparison
with others

Repeatability

Imperfection of experiment

Data variability

Quantifying reliability Making comparison

Refinement

Teaching nature of science

Introductory algebra-based physics students Introductory calculus-based physics students

Upper-level physics majors Physics Ph.D. students

Imperfection of experiment

Quantifying reliability Making comparison

Quantifying reliability Making comparison

Uncertainty evaluation

Quality work

Codes for Q8

Codes for Q7

FIG. 4. Network analysis [Red circle represents codes for Q8, and yellow circle represents codes for Q7. The size of each circle is
proportional to the percentage of responses (i.e., the frequency of code divided by the size of the subpopulation). The thickness of the
edges is also normalized and proportional to the percentage of weights of edges (i.e., frequency of connections divided by the total
number in that population). In each of the network plots, the gray scales of edges vary linearly depending on the weights, and darker
lines correspond to greater weights].
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uncertainty (code quantifying reliability) to data comparison
in order to make conclusions about how similar their results
are. Ph.D. students’ responses also mentioned the quanti-
tative role of uncertainty together with the code repeatability
which often refers to checking the consistency of data
through multiple trials.

V. DISCUSSIONS AND IMPLICATIONS

In this study we developed an open-ended survey to
probe students’ personal epistemological views about the
validity of experiments. The survey was given to students
with various levels of physics laboratory experiences
ranging from introductory physics students to physics
Ph.D. students. We identified differences between intro-
ductory, upper-level, and Ph.D. students in the ways they
justified the validity of experimental results.
When asked about their criteria for establishing trust-

worthy experimental results, introductory students almost
exclusively discussed comparing their results with theo-
retical predictions or results of others. Ph.D. students in
research labs utilized a range of approaches to establish the
validity of experimental results (e.g., repeatability, com-
parison with theory, quality work, comparison with others,
and uncertainty evaluation). A view of validity that over-
emphasizes agreement with theory may distort the nature of
science by implying that experimental results are the
problem if they disagree with a highly idealized theory,
rather than questioning the assumptions in the theoretical
models as the problem. Further, a limited view of validity
also provides students with a limited toolbox to evaluate
their experimental results, especially if they encounter data
about complex phenomena where there is little prior
understanding. Implications for instruction could include
designing labs where a variety of approaches are used to
establish validity, including requiring careful documenta-
tion (e.g., having students hand off their work to another
student who builds on it), understanding of the measure-
ment tools (e.g., developing models of sensors and know-
ing their limitations), comparison with theory in limiting
test cases (but not as the only means), repeatability using
multiple trials or multiple approaches. Allowing students
some freedom to develop experimental designs may also
facilitate a discussion what makes the various approaches
more or less trustworthy.
Another significant finding was that students at the

introductory level rarely recognized uncertainty analysis
as a tool to establish validity of results. Rather, they
emphasized how it describes imperfections in the experi-
ment or variations in data. Network analysis also showed
few links between uncertainty analysis and validity. Some
curricular designs may obscure the role of uncertainty as
a means to quantify validity. Particularly, if the sole use
of uncertainty is to compare with theoretical predictions
(which are assumed to be true), it focuses students’
attention on uncertainty as a way to quantify the impacts

of imperfections in the real world. An implicit message is
that theory is perfect, while experiments are not. One way
to shift students’ attention from comparing data with
existing theory is to develop experimental activities that
go beyond known theoretical models (or at least known to
students). For example, an exercise focused on experimen-
tally exploring phenomena could ask students to find
patterns or trends from data. In that kind of exploratory
activities, uncertainty could be used as an effective tool to
establish whether apparent trends are a result of random
variation or more likely due to a real physical change in
the behavior of the system. Uncertainty also be linked to
validity in labs that require comparing sets of data in the
absence of theory (e.g., which battery brand has the highest
capacity) or to make decisions (e.g., which battery should
be chosen to minimize the likelihood of a battery running
out in a particular usage scenario).
Regarding Q8, we found that uncertainty plays several

roles in physics labs: representational, inferential, and for
teaching the nature of science. However, introductory
students tended to ignore inferential roles, especially the
use of uncertainty as a tool to quantify confidence in
results, independent of theory. When teaching physics
laboratory courses, uncertainty analysis could be used
for more than answering a simple question about whether
or not theory and experiment agree, although making
such comparisons is an important role. Labs could instead
provide opportunities to iterate, make repeated compar-
isons, and engage in decision making based on those
comparisons. Uncertainty analysis is a means to establish
and quantify a scientist’s confidence in their experimental
results, and it is part of a larger scientific process.
Uncertainty analysis could be used as a tool for guiding
the experimental process, which could include identifying
when more data is needed, identifying sources of largest
uncertainty that should be improved, and distinguishing
between systematic discrepancies and random errors. One
example by Holmes and others [37] uses an iterative cycle
to help students engage in activities of making and acting
on comparisons of their data (i.e., make a comparison,
reflect on the comparison, and act on the comparison).
Regarding future research, we envision expanding our

data set beyond cross-sectional snapshots of students
involved in various stages of physics laboratory experi-
ences to include longitudinal tracking and a larger span of
lab course formats with larger sample size. This will likely
require a modified survey format that is easier to analyze
across a much larger population.
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