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In the context of a generic harmonic oscillator, we investigated students’ accuracy in determining the
period, frequency, and angular frequency from mathematical and graphical representations. In a series of
studies including interviews, free response tests, and multiple choice tests developed in an iterative process,
we assessed students in both algebra-based and calculus-based, traditionally instructed university-level
introductory physics courses. Using the results, we categorized nine skills necessary for proficiency in
determining period, frequency, and angular frequency. Overall results reveal that, postinstruction,
proficiency is quite low: only about 20%–40% of students mastered most of the nine skills. Next, we
used a semiquantitative, intuitive method to investigate the hierarchical structure of the nine skills. We also
employed the more formal item tree analysis method to verify this structure and found that the skills form a
multilevel, nonlinear hierarchy, with mastery of some skills being prerequisite for mastery in other skills.
Finally, we implemented a targeted, 30-min group-work activity to improve proficiency in these skills and
found a 1 standard deviation gain in accuracy. Overall, the results suggest that many students currently lack
these essential skills, targeted practice may lead to required mastery, and that the observed hierarchical
structure in the skills suggests that instruction should especially attend to the skills lower in the hierarchy.
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I. INTRODUCTION

Period, frequency, and angular frequency are three basic
and commonly used quantities in physics, appearing in
many contexts such as oscillations, waves, rotations, ac
circuits, motors, and generators. A perusal of introductory
physics textbooks (e.g., Ref. [1–3]) reveals that these three
quantities are represented either explicitly or implicitly in
both equation and graphic representations and are as
fundamental to the topics of oscillations and rotations
as, say, the quantity velocity is to the topic of kinematics.
Yet, while student understanding of velocity in kinematics
has been studied for decades (e.g., Refs. [4,5]), overall,
there remain large gaps in documentation and analysis of
student proficiency and difficulties with making calcula-
tions and using graphs and equations to determine period,
frequency, and angular frequency. In fact, we know of only
of two studies directly investigating aspects of student
understanding of period, frequency, and angular frequency.
Specifically, Wan et al. [6] have found that students confuse
period and angular frequency when interpreting periodic
functions, including functions for waves, and Turner, Ellis,
and Beichner [7] found that students perform much better

on a validated test for understanding linear kinematics
graphs than on an equivalent test on rotational kinematics
graphs. A few less relevant studies have investigated
student understanding of concepts that implicitly include
some of these three quantities, such as in the study of
simple harmonic motion and oscillations [8,9], wave
phenomena [10–12], and rotations [13].
Therefore, this study has three main goals. The first goal

is to determine student proficiency in and difficulties with
using graphs and equations to determine period, frequency,
and angular frequency in generic simple harmonic oscil-
lator tasks. Achievement of the first goal provides the
context for the second goal: Because the period, frequency,
and angular frequency of a system are so closely related,
one might reasonably expect that student proficiencies or
difficulties in determining each quantity are also closely
related. Therefore, our second goal is to investigate whether
there are any hierarchies in student proficiencies in deter-
mining these quantities. That is, can we establish that being
proficient in determining one specific quantity is necessary
for being proficient in determining another? We will use
both formal and more intuitive methods to demonstrate a
hierarchy.
The third goal is to determine the extent to which a short

group-work activity can significantly improve student
proficiencies with these skills. The determination of period,
frequency, and angular frequency is such a fundamental,
critical set of skills for several areas of science that we
consider them “essential skills” in the sense discussed by
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Mikula and Heckler [14]. That is, these skills are relatively
simple procedural skills, these skills are necessary for
completing more complex problems commonly found in
the curriculum, and these skills are largely automated in
experts. Given the relatively simple nature of these pro-
cedural skills, it is possible that only brief, targeted
instruction is needed for significant improvements in
proficiency (e.g., see Refs. [14,15]).

II. STUDENT PROFICIENCIES AND
DIFFICULTIES WITH PERIOD,

FREQUENCY, AND ANGULAR FREQUENCY

The goal of the first portion of the study is to determine
student proficiencies and characterize difficulties with
determining the period, frequency, and angular frequency
from various mathematical and graphical representations.
We began this investigation by conducting small pilot

studies with introductory calculus-based physics students.
The students were asked to identify the period, frequency,
and angular frequency from various representations and to
match graphical representations with their corresponding
equational representations. These pilot studies were per-
formed using free response paper tests and student inter-
views. Multiple choice items and distractors used in the
main study were derived from the student responses in the
pilot studies.
Using the results of the pilot studies and with the

essential skills practice framework in mind, we also
categorized the skills for determining the period, frequency,
and angular frequency from graphical and mathematical
representations into nine skills, shown in Fig. 1. Two of
these skills, determining the period from a graphical
representation and determining the angular frequency from
a mathematical representation, xðtÞ ¼ cosðωtÞ, can be
inferred (read off) directly from the representation with
no need for calculation. The next four skills require two
steps: first reading off the period from a graph or the
angular frequency ω from an equation, and second using
the standard relations (T ¼ 1=f, ω ¼ 2π=T, ω ¼ 2πf) to
calculate a different quantity (such as frequency). The final
three skills require using one of the standard relations
(T ¼ 1=f, ω ¼ 2π=T, ω ¼ 2πf) to determine a quantity
(such as frequency) when another is given (such as period).

A. Participants

The participants in this portion of the study were students
enrolled in either the first semester, introductory algebra-
based physics course, the first semester introductory
calculus-based physics course, or the second semester
introductory calculus-based physics course at Ohio State
University, a large public research university. The algebra-
based course is primarily taken by life science and pre-med
students while the calculus-based course is primarily taken
by physical science and engineering students. These were

traditionally instructed, large enrollment courses, consist-
ing of 2–3 lectures per week, 1 recitation per week, and 1
laboratory session per week.
Our data were collected via two methods. Data from the

students in the calculus-based course were collected from
in-person sessions with students in our physics education
research laboratory. Students signed up for a 1 h session
during the course of the semester and received participation
credit worth roughly one homework assignment. During
the session, the students completed a variety of physics
education tasks, including the ones described in this study.
Tasks not part of this study were focused on different
physics topics. Overall, approximately 90% of the students
agreed to participate in our studies but only those who
participated after relevant instruction on period, frequency,
and angular frequency were included in this study. During
the 1 h session, students answered physics questions on
paper in a proctored test room at their own pace. Students
were asked to give an honest effort and through our
observations, it appears that they did.
Data from the algebra-based course were collected via an

online, multiple-choice test administered through the online
learning management system for the course. The test was
assigned the last week of the semester before final exams
and students were given one week to complete the test.
Students who completed the test received credit worth
approximately one homework assignment. Before starting
the test, students were asked if their data could be used for
research purposes. If a student declined, they were still able
to complete the test for course credit. Approximately 80%
of the students agreed to participate in the study.

B. Materials

Students in the calculus-based physics course were
administered an assessment during their in-person session.
Example items are shown in Fig. 1. The assessment
consisted of 36 items, assessed students on all nine skills,
and was administered after the unit on harmonic oscillators.
Questions designed to test the calculation skills were
presented as free response questions while the questions
featuring graphical representations were only presented in
multiple-choice format. The questions featuring equational
representations were presented in both free response and
multiple-choice format. For example, for the free response
questions, students were presented with an equation of the
form xðtÞ ¼ cosðωtÞ (where ωwas replaced with a numeri-
cal value) and asked to determine either the period,
frequency, or angular frequency. In the pilot studies, we
studied small variations in the “direction” the question was
posed: for example, we provided the equation xðtÞ ¼
cosðωtÞ and asked for, say the period, or the reverse, we
provide the period and asked for the correct equation
xðtÞ ¼ cosðωtÞ (where all cases ω was replaced with a
numerical value). We found no significant differences in
response pattern between these two forms, so for the
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assessments used in this paper, we included items of
both types.
Students in the algebra-based physics course were

administered an online, 30-item test, covering all nine

skills. The test was administered after the unit on harmonic
oscillators. Because of limitations in the learning manage-
ment system and the number of students in the course, the
entire test was made multiple choice. Since the number of

FIG. 1. The nine skill categories needed to determine the period, frequency, and angular frequency from graphical and mathematical
representations.
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questions on the online test needed to be limited, the
calculate questions were combined into a single item. For
example, if presented with a question asking for the
corresponding frequency and angular frequency for a
period of T ¼ 3 s, the student would have to select the
response with both f ¼ 1=3 Hz and ω ¼ 2π=3 rad=s.
For all of these tests, students who did not answer at

least half of the items or who had participated in this study
from a previous semester were excluded from the data
analysis. Since at least half of each of the assessments was
multiple-choice questions and none of the students in the
study had their session end before turning in their assess-
ment, we believe that requiring at least of the half questions
to be answered serves as a proxy for the students putting in
an honest effort, and their data are thus representative of a
typical student. Through this process, less than 10% of the
students were removed.

C. Overall results

The proportions of correct responses by skill are shown
in Fig. 2. There are a few important general observations
about the data in Fig. 2. First and most importantly, students
from both populations were far from mastery on these

fundamental skills: the average percentage correct for most
skills ranged from about 30% to 60%, even after instruc-
tion. Second, except for a few exceptions, the performance
for both populations was similar. Since the assessments for
the two populations were not identical, we did not conduct
statistical tests for quantitative comparisons between the
two populations, but inspection of Fig. 2 reveals the
similarity of performance. Third, we found no significant
difference in performance on the “direction” of the ques-
tions for the skills in which students must use one of the
standard relations (T ¼ 1=f, ω ¼ 2π=T, ω ¼ 2πf). That is,
there was no difference in performance between a question
in which frequency is given and the student is asked to
calculate period and the reverse question, in which period is
given and the student is asked to calculate frequency.
Therefore, we combined the scores for a given standard
relation (e.g., T ¼ 1=f) into a single score.
Finally, examination of Fig. 2 reveals some significant

variation in performance between the skills. Overall,
students performed the best on finding the period from a
graphical representation and on applying the relationship
T ¼ 1=f. Both populations tended to perform poorly on
finding the period or frequency from an equation of the

FIG. 1. (Continued)
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form xðtÞ ¼ cosðωtÞ and most skills involving angular
frequency. The differences in performance of these skills
suggest possible hierarchies in these skills, which will be
discussed in Sec. III.

D. Observed specific difficulties

In this section we discuss the most common difficulties
observed in student responses to the assessments and pilot
study testing and interviews. To be included in our analysis,
the difficulty had to be observed on both free response and
multiple-choice questions and had to be made by at least

10% of one of the populations. A summary of the
difficulties, mean percent of students having each difficulty,
the percent of students who repeatedly (at least 75% of the
time) encountered the difficulty, and the percent of students
who never gave an answer consistent with the difficulty is
shown in Table I. The skill of relating the period and
frequency using T ¼ 1=f is excluded from the table since
there were no specific difficulties that met our criterion of
being made by an average of at least 10% of either
population of students.
One overall important observation coming from Table I

is that for each skill only a small fraction of students

FIG. 2. The proportion of correct responses plotted for each of the nine skill categories by each population of students. Not all students
saw questions from each of the nine skills.

TABLE I. The mean percentage of responses indicating given difficulty, the percent of students indicating given difficulty on at least
75% of the relevant items, and the percent of students who never indicated given difficulty. Some response percentages from the algebra-
based students were not included because of a confounding question format in the assessment used.

Algebra-based students (N ¼ 590) Calculus-based students (N ¼ 57)

Skill Difficulty
Mean % of
responses

% Students
indicating

≥75% of time

% Students
never

indicating
Mean % of
responses

% Students
indicating

≥75% of time

% Students
never

indicating

Graph T T is half of cycle 17.9 4.9 70.2 3.1 0.0 93.0
Graph f f equal to T 26.3 12.0 39.5 19.7 10.5 57.9
Graph ω ω equal to T 21.9 5.9 42.4 21.5 8.8 52.6
Graph ω ω equal to T=2 19.1 3.2 58.5 9.4 1.8 80.7
ω ¼ 2π=T Answer is given parameter � � � � � � � � � 10.1 5.3 77.2
ω ¼ 2π=T Answer is inverse of given

parameter
� � � � � � � � � 18.4 15.8 71.9

ω ¼ 2πf Answer is given parameter � � � � � � � � � 25.4 21.1 61.4
Eq. ω Treat ω as 2π=ω 19.4 5.4 47.3 13.6 5.3 64.9
Eq. ω Treat ω as 1=ω 20.7 6.8 47.6 14.0 1.8 57.9
Eq. T Treat ω as T 34.1 23.7 35.9 15.8 7.0 66.7
Eq. T Treat ω as 1=T 20.0 8.3 50.5 17.1 8.8 64.9
Eq. f Treat ω as f 38.5 26.9 28.5 31.1 22.8 47.4
Eq. f Treat ω as 1=f 20.4 8.0 49.8 13.2 8.8 71.9
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consistently indicated a specific difficulty compared to
students who indicated the difficulty just one or two times
(out of four). For example, only about 12% of algebra-
based students consistently indicated that the frequency is
the period in the graph f skill, while over 60% answered
this way once or twice. Thus it appears that these
difficulties may be more often a lack of knowledge, careless
error, or simple oversight than a deeply held belief. Our
pilot interviews and observations from the group work
training of Sec. IV support this idea.

1. Finding the period from a graphical representation

When determining the period from a graphical repre-
sentation, some students thought that the period was half of
the actual period, for example, the time from peak to
trough. This difficulty was more prevalent among the
algebra-based physics students than among the calculus-
based physics students. In the algebra-based course,
roughly 30% of the students thought the half period was
the actual period on at least one of the four questions while
roughly 18% responded this way for each question.

2. Finding the frequency from
a graphical representation

When determining the frequency from a graphical
representation, the most common incorrect response was
to confuse the frequency with the period. This error was
frequent, with about 60% of algebra-based students and
40% of calculus-based students making this error at least
once (out of 4 items).

3. Finding the angular frequency from
a graphical representation

Students experienced two types of difficulties when
trying to find the angular frequency from a graphical
representation. The most common difficulty was confusing
the angular frequency with the numerical value of the
period. This difficulty was approximately equally common
in both the algebra- and calculus-based students. While less
than 10% of the students in either the algebra- or calculus-
based course made the error repeatedly, nearly half of the
students thought the angular frequency was equal to the
period on at least one of the questions.
The second and less common difficulty students expe-

rienced was indicating that the angular frequency was equal
to half of the numerical value of the period.

4. Finding the angular frequency
or period using ω= 2π=T

As mentioned earlier, when using the equation
ω ¼ 2π=T, students scored equally well regardless of
whether the question provided the angular frequency and
asked for the period or provided the period and asked for
the angular frequency. In addition, the incidences of the

difficulties do not appear to be dependent on which
parameter is provided.
Students encountered two main difficulties when trying

to apply the relationship ω ¼ 2π=T. First, the students
assumed that the parameter in question would be equal to
the parameter given. For example, if the student were
provided with ω ¼ π=2 rad=s, the most common difficulty
was to respond that T ¼ π=2 s. This could be seen as the
confusion of angular frequency and period discussed in
previous difficulty #3. Since the algebra-based students
were administered these questions in multiple-choice for-
mat with two parameters given in each answer, the algebra-
based students were excluded from this skill.
Second, some student responses indicated that the period

and angular frequency were related by ω ¼ 1=T, which
resembles the relationship between the period and fre-
quency. One possible explanation is that some students may
be confusing frequency and angular frequency. Some
support for this explanation comes from the next discussed
difficulty.

5. Finding the angular frequency
or frequency using ω= 2πf

As with the previous skill, the students scored equally
well on questions utilizing this skill regardless of whether
the frequency or angular frequency was provided and
encountered the main difficulty at a similar rate regardless
of which parameter was provided in the question. The main
difficulty using the formula ω ¼ 2πf was for the student to
respond that the frequency and angular frequency had the
same value. About 20% of calculus-based students con-
sistently answered this way.

6. Finding the angular frequency from
a mathematical representation

On items asking the student to identify the angular
frequency from an equation of the form xðtÞ ¼ cosðωtÞ,
students encountered two difficulties related to identifying
what each number in the cosine equation represented. First,
most students in both algebra- and calculus-based classes
appeared to be aware that the coefficient of the time
variable t was the value of interest, but they often
incorrectly identified this coefficient as the period (rather
than the angular frequency). For example, if the students
were given the equation xðtÞ ¼ 3 cosð2πt=5þ π=4Þ, many
would use T ¼ 2π=5 s with the standard relation ω ¼
2π=T to find the angular frequency.
Second, some students identified the coefficient as the

inverse of the angular frequency. For example, if the student
were given the equation xðtÞ ¼ 3 cosð2πt=5þ π=4Þ,
the student would report the angular frequency as
ω ¼ 5=ð2πÞ rad=s. Both of these errors occurred in
roughly equal proportions (around 15%–20%) for both
populations.
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7. Finding the period or frequency from
a mathematical representation

Since students encountered the same type of difficulties
when determining the period or the frequency from an
equation of the form xðtÞ ¼ cosðωtÞ, we discuss both of
them in this section. For both skills, the most common
difficulty was to identify the coefficient of the time
variable t with the parameter in question. For example,
if the student were presented with the equation xðtÞ ¼
3 cosð2πt=5þ π=4Þ, the student would report the period as
2π=5 s when asked for the period and the frequency as
2π=5 Hz when asked for the frequency; this was observed
on both free response and multiple choice questions and
observed in interviews. Additionally, some students iden-
tified the coefficient as the inverse of the parameter in
question. Returning to the previous example, the student
would have reported the period as 5=ð2πÞ s and the
frequency as 5=ð2πÞ Hz. These difficulties were the most
frequently observed and many students (often about one-
third) consistently responded in one of these incorrect
ways, and this indicates that this difficulty may be one of
the more difficult ones to overcome.

III. ANALYSIS OF HIERARCHY

Given that we have identified nine essential skills for
working with period, frequency, and angular frequency, and
that we have found that many, if not most, students are not
proficient with these skills, a natural and pedagogically
practical question arises as to whether these skills fit within
a hierarchical structure. In short, is proficiency in a
particular skill or set of skills necessary for proficiency
in another given skill?
We have two reasons to believe that there is at least an

empirical hierarchy among the skills. The first reason
comes from the results of the previous section: there is
variability in average performance of skills, thus one might
suspect that the skills with low average performance may
require mastery of the skills with high average perfor-
mance. The second reason is more theoretical. Given that
some parameters cannot be directly “read off” from a
representation but rather involve two steps, we expect to
find hierarchical relations among the skills. For example,
the angular frequency cannot be determined directly from a
graphical representation. Instead, the period would need to
be determined from the graphical representation and then
the relationω ¼ 2π=T would need to be applied. Therefore,
if a student understands how to determine the angular
frequency from a graphical representation, then the student
would also have needed to understand how to determine the
period from a graphical representation and how the period
and angular frequency are related. In the context of our
essential skills framework, determining hierarchies could
allow for improved training modules since students could
practice the prerequisite skills first.

In this section we will first review a more intuitive
process for determining hierarchies and discuss the results
from this process. Then we will apply a more formalized
process and a corresponding computer algorithm to the
same set of data to help confirm our results.

A. Simple multiple cross tabulation analysis

The typical method used to formally determine the
existence of hierarchies is to begin with an examination
of cross tabulations of (binary) mastery achievement for all
pairs of skills [16–19]. For example, if two skills, A and B,
are related hierarchically with skill A implying skill B
(A → B), then there should be no students who have
mastered A but have not mastered B. Therefore, the
notation A → B can be thought of as “mastering A implies
mastering B” and its logical equivalent, “not mastering B
implies not mastering A.” In this example, the contingency
table shown in Table II of the mastery of the two skills
would have cell c equal to zero, that is, there are zero
counterexamples that mastery of A implies mastery of B. In
real data settings, however, student responses are com-
monly inconsistent, and inevitably, there are counterex-
amples. Therefore, in order to show evidence supporting a
hierarchy A → B we adopt the more qualitative and
intuitive idea that the table should be consistent with the
constraints a ≫ c, d ≫ c, and b ≫ c (cf. Refs. [18,20]).
A more formal process for dealing with counterexamples is
pursued in Sec. III. D. For this analysis, we operationally
define that a student has “mastered” a skill if the student
answered 75% of the items about that skill correctly.
An example from our data from the algebra-based

physics course is shown in Tables III–V. Here, the relatively
low counts in the lower-left off-diagonal cell in each data

TABLE II. Sample cross tabulation for the mastery of two
hypothetical skills. If a ≫ c, d ≫ c, and b ≫ c, then skill
A → skill B.

Skill B

Skill A Not mastered Mastered

Not mastered a b
Mastered c d

TABLE III. Cross tabulation for the mastery of graph ω and
calculate ω or T skills. Here we see indication of the hierarchy
graph ω → calculate ω or T.

Calculate ω or T

Graph ω Not mastered Mastered

Not mastered 286 162
Mastered 19 123
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table helps to lend support to the hierarchies graph ω →
calculate ω or T and graph ω → graph T. That is, for a
student to have mastered finding the angular frequency
from a graphical representation, the student must have also
mastered applying the relation between the period and
angular frequency: graph ω → calculate ω or T. Table III
supports this relation because only 3% (19=590) of the
cases run counter to this hierarchy, and the odds of mastery
of graph ω is 11.4 times greater if calculate ω or T is
mastered (95% confidence interval [6.8, 19.2]). Similarly,
the student must have also mastered finding the period from
a graphical representation graph ω → graph T. Table IV
shows that only 4% (24=590) of the students respond
counter to this hierarchy, and the odds of mastery of graph
ω is 2.5 times greater if graph T is mastered (95% con-
fidence interval [1.6, 4.1]).
Finally, the data in Table V suggest that a student must

have mastered finding the period from a graphical repre-
sentation before the student can master applying the
relation between the period and the angular frequency,
namely, calculate ω or T → graph T, but the relationship
does not appear to be quite as strong: about 11% (59=540)
of the students respond counter to this hierarchy and the
odds of mastery of calculate ω or T is 2.4 times greater if
graph T is mastered (95% confidence interval [1.7, 3.4]).
Nonetheless, the data do indicate some support for the
overall hierarchy graph ω → calculate ω or T → graph T.
Keep in mind, however, that overall we are not limiting
ourselves to a strictly linear hierarchy. There may be
branches and more complex structure.

B. Results from multiple cross tabulation analysis

We used two somewhat informal methods to build an
intuitive picture of the hierarchical structure of the nine

skills. The first method was to expand upon the method in
Sec. III. A and examine the cross tabulations of all possible
pairs of skills to determine whether there were any
hierarchies between any two skills. The results from
looking across all possible contingency table pairs for
the algebra-based students are shown in Fig. 3. We found
that the nine skills can be divided into three levels, where
skills at the same level did not show any hierarchical
relations among themselves. The first level consists of the
definitional skills finding the period from a graphical
representation and relating the period and frequency using
T ¼ 1=f. The second level consists of determining the
frequency from a graphical representation and relating the
period and angular frequency using the equation
ω ¼ 2π=T. The top level consists of all other skills
involving the angular frequency. In addition, there were
a few students (5%), who did not master any skills.
To help support this informal analysis, we used a second

informal and intuitive method, which involved the per-
centage of students mastering each skill, as shown in
Table VI. The hierarchy in Fig. 3 is consistent with the
percentage of students having mastered each skill in that

TABLE IV. Cross tabulation for the mastery of graph T and
graph ω skills. Here we see indication of the hierarchy graph
ω → graph T.

Graph T

Graph ω Not mastered Mastered

Not mastered 152 296
Mastered 24 118

TABLE V. Cross tabulation for the mastery of graph T and
calculate ω or T skills. Here we see indication of the hierarchy
calculate ω or T → graph T.

Graph T

Calculate ω or T Not mastered Mastered

Not mastered 117 188
Mastered 59 226

FIG. 3. A simple, informal hierarchy constructed using cross
tabulations. Skills on lower levels are prerequisite to the skills on
higher levels. Skills on the same level are not necessarily
equivalent. Only algebra-based physics students are included
in the figure.

TABLE VI. Percent of the algebra-based students having
mastered each of the nine skills.

Skill Percent

Find f from xðtÞ ¼ cosð2πf � tÞ 17
Find T from xðtÞ ¼ cosð2π=T � tÞ 23
Find ω from graph 24
Find ω or f using ω ¼ 2πf 28
Find ω using xðtÞ ¼ cosðωtÞ 33
Find f from graph 38
Find T or ω using ω ¼ 2π=T 48
Find T from graph 70
Find T or f using T ¼ 1=f 72

YOUNG and HECKLER PHYS. REV. PHYS. EDUC. RES. 14, 010104 (2018)

010104-8



the skills mastered by more students are on a lower level in
the hierarchy than the skills mastered by fewer students.
Preliminary results for the calculus-based students sug-

gest a hierarchy consistent with that in Fig. 3. However, due
to the small sample size, we do not formally present that
analysis here.

C. Limitations of the informal cross
tabulation analysis

While the cross tabulation method is effective for
creating a general description and intuition of the hierarchy,
it suffers from a few inherent problems. First, the criteria for
determining a hierarchy (e.g. the count in one off-diagonal
cell is “much less” than the others) is not well defined. Put
another way, there is no formal way to account for cases
that run counter to a proposed hierarchy. These counter-
examples may occur for a variety of reasons including
guessing, inadvertent errors, variability due to contextual
factors, or possibly student confusion or confounding of
variables, as evidenced by our observation that sometimes a
student would answer two identical problems (except for
the values) in two distinct manners. For example, for graph
ω problems, the student would answer one of the problems
correctly but answer another as if the question had
(ostensibly) asked for the period. Second, there is no
formal measure to determine how well the data fits any
proposed hierarchy, or how to decide which potential
hierarchy fits the best. Finally, there is no formal way to
account for all possible branchings in the hierarchy. To
account for these limitations, we employ the method of
item tree analysis, discussed in Sec. III. D.

D. Item tree analysis (ITA)

Item tree analysis was first developed in 1974 by Van
Leeuwe [17] and since then, multiple modified, inductive
versions have been created [19,21,22]. Each of the various
versions of ITA are based on the ideas of knowledge space
theory which was introduced by Doignon and Falmagne in
1985 [23]. In brief, knowledge space theory provides a
framework for knowledge and skills that describes a
knowledge (or skill) domain in terms of N problems that
span the domain, and the subset of problems a given person
can successfully solve defines a knowledge state. The set of
all (empirically) possible knowledge states is the knowl-
edge structure. It is this framework of knowledge structure
that can be used to formally describe a hierarchy among the
N problems of the domain.
All the Inductive ITA methods employ the framework of

knowledge space theory and follow a similar procedure,
which will be outlined here. For a full explanation of the
algorithm, see Ref. [22]. First, suppose an assessment has
m items and is completed by n subjects. Form the n by m
matrix D that contains the responses to the m items in a
dichotomous manner. Now consider pairs of items, i and j,
and find all pairs such that j → i and the number of

counterexamples, bij, is zero. From these pairs, construct a
hierarchy, which will be called H0. Next, find all pairs of
items such that j → i and the number of counterexamples,
bij, is no more than 1. From these pairs, construct a
hierarchy, which will be calledH1. This process is repeated
with the number of allowed counterexamples increasing by
1 until the maximum number of possible counterexamples
is reached, that is the number of counterexamples is equal
to the number of subjects, n.
Once all the hierarchies have been generated, the

expected number of counterexamples, b�ij for each relation
j → i is computed. How this expected number of counter-
examples is computed varies based on which version of
inductive ITA is utilized. Next, the sum CΣi≠jðbij − b�ijÞ2,
where C is some constant, is computed for each hierarchy
Hk, which represents the discrepancy between the observed
and expected number of counterexamples for all relations
and is called diffðHk;DÞ, where k ¼ 0; 1; 2;…; n. As
Sargin and Ünlü [22] note, the constant is picked to be
C ¼ 1=½nðn − 1Þ�, but any other constant scale factor
would not change the results. Finally, the hierarchy that
best fits the data is chosen, which is the hierarchy that
minimizes the value of diffðHk;DÞ. In order to implement
the inductive ITA algorithm, the DAKS package for R was
used [24].

E. Item tree analysis results

Sargin and Ünlü [22,25] find that the corrected algorithm
and the minimized corrected algorithm perform equally
well for large sample sizes and outperform the original
inductive ITA algorithm, in that these two algorithms detect
less erroneous relations than the original inductive ITA
algorithm does. Therefore, we utilized the former algo-
rithms rather than the latter algorithm. Since item tree
analysis has limited validity for small sample sizes, we only
present results from the algebra-based students. The cor-
rected and minimized corrected algorithms find identical
hierarchical relations so we only report the results from the
minimized corrected algorithm here.
The resulting hierarchy for the algebra-based students is

shown in Fig. 4. The error rate for the resulting hierarchy is
0.20, which can be thought of as roughly the average ratio
of the number of counterexamples to the hierarchical
relations to the number of examples consistent with the
hierarchical relations. The judgment as to whether this is a
large or small error rate is somewhat subjective, though it
does seem that 0.20 (which is in effect a 1∶5 odds ratio)
does indicate a fair amount of counterexamples observed in
this domain. In contrast, it also indicates that, overall, the
hierarchy is accurate roughly 84% (5=6) of the time. While
the hierarchy shown in Fig. 4 is more complex than the
more informally derived hierarchy shown in Fig. 3, the
general structure is similar to that found by using the cross
tabulation approach.
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IV. DEVELOPMENT OF AN INTERVENTION

In this final study, we used the results of the first parts of
this study to develop a group work “tutorial” activity to
improve students’ ability to determine the period, fre-
quency, and angular frequency from mathematical and
graphical representations. In addition, we hope to use this
material to inform the construction of online essential skills
modules in future work.

A. Methods

This study uses students from the same calculus-based
physics course pool described in Sec. II A. Students were
randomly assigned to either the tutorial or the nontutorial
(control) condition when they entered our lab. Upon the
start of the in-person sessions, the students in the tutorial
condition were randomly placed in groups of three, with up
to six students participating per 1 h session. In the case that
a full group of three students could not be formed, students
were randomly selected to form a group of three and the
remaining students were assigned to the control condition
in which participants did not receive the tutorial, but instead
completed physics tasks unrelated to period, frequency, and
angular frequency. These nontutorial group students were
sent to a separate room so that they would not hear any
discussion occurring during the tutorial. Upon completing
the tasks unrelated to period, frequency, and angular
frequency, the nontutorial students completed a period,
frequency, and angular frequency assessment, which will
be described in the following.
The tutorial group students began by answering ques-

tions (on paper) asking them to consider the definition and
units of period, frequency, and angular frequency. The
students were then asked to use those definitions to write
the formulas relating all three quantities (T ¼ 1=f,
ω ¼ 2π=T, ω ¼ 2πf) and then to use those formulas to

check that the formulas produced the correct values when
given one of the parameters. Next, the students were asked
to determine the frequency of a mass on a spring from a
graphical representation and to mark half and a quarter of a
cycle. Finally, the students were asked to find the period,
frequency, and angular frequency from a graphical repre-
sentation (with the parameters picked so that the three
quantities could easily be identified) and to use their three
equations to show that all three answers were consistent
with each other. The students answered two such questions.
The tutorial was designed to be completed within 30 min or
roughly half a recitation session, though this experiment
was not actually conducted in a recitation session, and was
completed with little to no intervention by the room proctor.
The proctor only intervened when the students did not
understand what a question was asking. Our general
observation was that almost all students were engaged in
the activity and discussed the questions in the group. The
students were not told the correct answers to the tutorial
questions once they had completed the tutorial.
Upon the completion of the tutorial, the students were

individually administered an assessment that assessed six
of the nine skills (graph T, graph f, graph ω, calculate T or
f, calculate ω or T, and calculate ω or f) with 28 items. The
calculation questions were free response while the ques-
tions involving graphical representations were presented as
free response or multiple choice. The multiple-choice
questions either presented the student with a graphical
representation and asked them to determine the period,
frequency, or angular frequency or presented the student
with one of the three parameters and asked the student to
select the graphical representation that correctly depicted
the parameter. In addition to these 28 relevant items, the
assessment contained four proportional reasoning items
involving the maximum speed, maximum acceleration,
period, and frequency of a harmonic oscillator, which were
not trained on the tutorial. The tutorial and nontutorial
students completed the same assessment. Students who did
not answer at least half of the questions on the assessment
were excluded from the analysis, as we do not believe these
students put an honest effort into answering the questions.
This left 55 students in the tutorial group and 65 students in
the nontutorial group. In order to confirm the equivalency
of the two randomly assigned groups, a comparison of the
final course grades of the two groups was computed and
revealed that the average (z score) of the students who
participated in the tutorial was not statistically different
from the z score of the students in the nontutorial control
group [tð118Þ ¼ 0.162, p > 0.1].

B. Results

The tutorial group, with a mean score of 81%,
scored significantly better than the nontutorial group, with
a mean score of 57% [tð98Þ ¼ 5.258, p < 0.001, effect size
d ¼ 1.04]. The distribution of the scores on the 28 relevant

FIG. 4. Hierarchy of period, frequency, and angular frequency
skills for the algebra-based students obtained using item tree
analysis and the DAKS package for R.
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items for both the tutorial group and the nontutorial group
are shown in Fig. 5, and show the dramatic difference in
scores.
To determine whether any specific skills were driving the

improvement, we then examined the tutorial and non-
tutorial students’ scores on each of the six skills; these are
shown in Fig. 6. Students in the tutorial condition per-
formed better than the control students did across all six
skills tested (non-Bonferonni corrected p ¼ 0.003 for
graph T and p < 0.001 for the other five skills). Thus, it
appears that all six skills that were trained contributed to the
increased performance by the tutorial group.
In contrast, we compared the tutorial and nontutorial

students’ scores on the four items not covered by the
tutorial, which are also shown in Fig. 6. A t test shows that
there is no statistical difference between the two groups’
scores [tð118Þ ¼ 0.903 p > 0.1], suggesting that the
differences in scores between the tutorial and nontutorial
groups can be attributed to the tutorial and not to a
difference in the groups themselves.

V. CONCLUSIONS AND DISCUSSION

The overall context of this study is that, through a series
of pilot tests and interviews, we categorized nine essential
skills needed for determining the period, frequency, and
angular frequency from commonly used graphical and
mathematical representations for a generic harmonic oscil-
lator scenario. These skills are simple, fundamental, and
necessary for several areas of the physics curriculum.
We present three main conclusions from this study. The

first conclusion is that, even postinstruction, only about
20%–40% of students have mastered most of the nine skills
for determining period, frequency, and angular frequency.
There are a couple of skills in which most students are
fairly proficient, namely, determining the period of a
harmonic oscillator from a position vs time graph, or
calculating period given frequency or vice versa, but even
for the latter skill, students demonstrated only about 75%
overall accuracy. For such simple and essential skills, it
would seem natural for instructors to expect (or assume)
proficiency to be much closer to 100%. However, the nature
of student errors are likely familiar to instructors. For
example, students often make errors of factors of 2,
inversion errors, and confusion of variables. It is also
worth noting that while we have reported here some
common errors, we also found that some students dem-
onstrated significant diversity in their answers, perhaps due
to uncertainty in whether their path to the solution was a
correct one. Specifically, the free response questions
generated a wide distribution of answers that did not
seem to have a specific pattern. For example, among the
calculus-based students, there were at least 15–20 unique
responses for each question asking students to determine
the frequency or angular frequency from a graphical
representation and between 10 and 20 unique responses
for each question asking students to determine the period,
frequency, or angular frequency from a mathematical
representation. Given the small sample sizes of the calcu-
lus-based students in the study (about 60 per study), this
represents a sizable population of students who appear to be

FIG. 5. Distribution of scores for the tutorial and nontutorial groups on the 28 items relevant to the tutorial. The percentages are based
on the students within each treatment.

FIG. 6. A comparison between the proportion correct for
tutorial students vs nontutorial students for each T, f, ω skill,
and for four unrelated physics questions.
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using unspecified (or unspecifiable?) methods for obtaining
an answer rather than using the normatively relevant
knowledge and skills. Thus, it appears that there are three
groups of students: those who have mastered a skill, those
who have not mastered a skill but whose answers are
informed by knowledge of the period, frequency, and
angular frequency, and those whose answers are not
informed by any ostensibly relevant knowledge.
Further, while the average percent of students encoun-

tering a difficulty is informative of how often a difficulty
occurs, the percent of students never encountering the
difficulty is also informative. On most of the skills, roughly
half of the algebra-based students experienced each diffi-
culty at least once while roughly one-third of the calculus-
based students experience each difficulty at least once.
Therefore, it seems that even if students do answer some of
the questions regarding a particular skill correctly, many
still may have some uncertainty on whether what they are
doing is correct, or they may not be using methods that
avoid unmindful errors.
The second conclusion is that, based on student answer-

ing patterns, one can meaningfully and quantifiably arrange
the nine skills in a hierarchical structure, with some skills
being necessary prerequisites for other skills. We deter-
mined a hierarchy with an intuitive, semi-quantitative
method, and also with the formal item tree analysis process
and found them to be consistent, raising our understanding
and confidence in the validity of the hierarchy. Specifically
we found that all nine skills are linked in a (roughly)
four-level, nonlinear tree. We found that the skills of

determining the period from a graph and calculating period
from frequency are prerequisite skills for all other skills,
and determining period or frequency from an equation of
the form xðtÞ ¼ cosðωtÞ are the highest level skills. The
method of item tree analysis is rarely if ever used in
education research, but appears to be a very useful tool.
The third conclusion of this study is that students

demonstrate dramatic gains (1 standard deviation) in
accuracy in these skills with only 30 min of targeted
practice in a group setting. One limitation of this study is
that we do not know how long this gain in skills was
retained. Nonetheless, this relatively easy gain further
characterizes these skills and makes them excellent candi-
dates for online, spaced, mastery practice with feedback
(cf. Refs. [14,15]). Such practice could increase the fluency
and retention of these skills and help students to solve more
complex problems. It is interesting to consider how the
observed hierarchy of the skills might inform such targeted
practice and is an interesting topic for future study.
Certainly, this study suggests that since determining the
period from a graph and proficiency with the period-
frequency relationship are on the bottom of the hierarchy,
practice with these skills should be the focus of early
practice.
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