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We examine students’ mathematical performance on quantitative “synthesis problems” with varying
mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in
different chapters. Mathematical performance refers to the formulation, combination, and simplification
of equations. Generally speaking, formulation and combination of equations require conceptual reasoning;
simplification of equations requires manipulation of equations as computational tools. Mathematical
complexity is operationally defined by the number and the type of equations to be manipulated
concurrently due to the number of unknowns in each equation. We use two types of synthesis problems,
namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application
of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent
concepts. A total of 179 physics major students from a second year mechanics course participated in the
study. Data were collected from written tasks and individual interviews. Results show that mathematical
complexity negatively influences the students’ mathematical performance on both types of synthesis
problems. However, for the sequential synthesis tasks, it interferes only with the students’ simplification
of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the
students’ formulation and combination of equations. Several reasons may explain this difference, including
the students’ different approaches to the two types of synthesis problems, cognitive load, and the variation
of mathematical complexity within each synthesis type.
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I. INTRODUCTION

Quantitative physics problem solving usually involves
the blending of concepts and mathematics. Most physics
problems, including traditional end-of-chapter exercises in
textbooks, are structured to comprise a conceptual aspect
(the underlying physics concepts and their application) and
a mathematical aspect (manipulation of equations and
mathematical tools). Although mathematics is an essential
component of physics, its manipulation often occurs
mechanistically. Students view equations as computational
tools and struggle to ascribe meaning to the mathematical
symbols and tools as used in the physics domain [1–4].
A number of studies on problem solving have focused on

how students use mathematics when tackling physics prob-
lems. These studies were implemented with students in lower
and upper division calculus-based physics courses. Students’

reasoning when manipulating the mathematics of physics
problems was elicited using the framework of epistemic
games [5–7], resources [8,9], epistemological framing
[2,10,11], cognitive, or conceptual blending [12–14]. Their
difficulties when using mathematical tools, such as integrals
and partial derivatives, in the physics context were also
identified [3,14–21]. Further, studies were conducted to
explore the link between students’ mathematical difficulties
and their understanding of physics concepts [22,23]. Research
has also demonstrated that using mathematical concepts,
tools, andprocedures in puremathematics contexts is different
from their application in the physics domain [1,24–29]. For
instance, Hu and Rebello [11] exemplified how the use of
integration differs in physics and mathematics. An under-
standing of integral as representing the Riemann sum suffices
to tackle mathematics problems. However, in physics, stu-
dents also need to understand the underlying meaning of the
differential terms used for the physical system under consid-
eration. As outlined by Redish [1], the mathematical expres-
sions and the symbols comprising the expressions are used to
represent physical systems and have conceptual meanings.
The symbols express ideas and have units.

A. Synthesis physics problems

Most of the previous work highlighted in the earlier
section has utilized single-concept problems. Although a
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few studies on problem solving have used problemsmerging
two or more physics concepts [30–33], there is a dearth of
literature explicitly documenting how university students
solve such problems. Moreover, little is known about
students’ use of mathematics and their difficulties when
tackling physics problems merging multiple concepts that
are more challenging.
Thus, for our study, we used quantitative synthesis

problems, i.e., tasks consisting of two or more distinct
concepts, typically from different chapters and separated in
the teaching timeline [34]. The basis of synthesis problems
is the merging of multiple concepts and equations during
the concept application stage in order to build a solution.
Further, we considered the two common types of synthesis
problems, namely, sequential and simultaneous synthesis
tasks. Figure 1 presents an illustration of a sequential
synthesis problem and a simultaneous synthesis one [34].
The sequential synthesis problem is depicted in Fig. 1(a).

The situation presents two events that can be analyzed in
chronological order. A charged projectile is initially launched
from a compressed spring. The projectile then undergoes a
trajectory to enter a region of uniform electric field. Although
these two events are parts of one situation and are connected
by intermediate variables, it is possible to consider one
event at a time. As a result, the two pertinent concepts (energy
conservation and projectile motion) can be applied consecu-
tively to solve the problem. Figure 1(b) is a simultaneous
synthesis problem. The situation presents two events which
occur concurrently. A disc is at rest on a frictionless surface.
A bullet is fired on a wooden block attached to the disc
causing a change in translational and rotational motion of the
system simultaneously. These two events are such that they
must be considered at the same time, thereby leading to the
concurrent application of the two pertinent concepts (linear
and angular momentum conservation).

Many earlier studies on single-concept problem solving
have focused on the development of expertlike approaches
among students by emphasizing qualitative task analysis,
interpretation and understanding (see, e.g., Refs. [35–41]). In
principle, these studies have used multistep problem solving
strategies to encourage students to fully unpack the con-
ceptual aspect of the task, and use qualitative depictions to
mathematically express the concepts. They have additionally
emphasized the key role of conceptual reasoning when
dealing with mathematics, particularly for constructing the
mathematical formulations and evaluating the quantitative
solution. Further, the importance of conceptual reasoning
whilemanipulating the equations has also been advocated [4].
In our study, we use quantitative synthesis problems which
may emphasize qualitative analysis by requiring students to
focus on the underlying concepts [34,42–44]. Further, these
problemsmay not be easily solved by the formulaic plug-and-
chug approach. Synthesis problems require the blending of
equations formulated from the application of multiple con-
cepts. Apart from understanding the concepts underlying the
individual equations, students also need to comprehend how
the different mathematical expressions are connected. Syn-
thesis problemsmay thus encourage solvers to engage in con-
ceptual reasoning when manipulating equations, specifically
when formulating and combining the multiple equations.
A previous study on quantitative synthesis problems

investigated the role of guided conceptual scaffolding for
promoting expertlike problem-solving approaches among
students [34]. However, the majority of the students failed to
find the correct quantitative solution despite the conceptual
scaffolding. Ding et al. hypothesized that this may be due to
the students’ inability to combine the multiple concepts and/
or equations. A follow-up study [42] showed that mastery of
single concept is a necessary but insufficient component for
successfully solving synthesis problems. The students have

A uniform electric field of 8.6 kV/m is directed
as shown. A projectile of mass 5g and +1mC
charge is just outside the region, attached to a
spring-based launcher. The spring, which has
a spring constant 1kN/m is compressed 10cm
and released. The projectile is launched into
the region of the uniform electric field at an
angle of 30o to the horizontal. Ignore gravity.
At some point, the projectile will be at the
same vertical position as when it entered the
field. What is the horizontal displacement of
the projectile at that point?

Tom shoots a bullet of mass m=0.02kg and 
initial velocity v=300 m/s at a wood block 
attached to the outer rim of a disk, which in turn 
rests on a horizontal frictionless air table. The 
bullet rips through the block, emerging in the 
same direction, but at a lower speed of 100m/s. 
Tom sees that the mass of the wood block can 
be ignored, so that the disk has a moment of 
inertia, with M=1kg and R=25cm. (a) In what 
direction does the disk move after the collision? 
(b) What is the total kinetic energy of the disk 
after the collision?

v = 300 m/s

Top view

Wood block

R

Bullet

Disk

(a) (b)

FIG. 1. Two types of synthesis problem: (a) sequential and (b) simultaneous.
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difficulties identifying and applying the pertinent concepts.
These initial studies have led us to propose potential bottle-
necks to quantitative synthesis problems: (i) single-concept
proficiency (mastery of applying individual concepts when
solving a synthesis problem), (ii) concept identification
(ability to identify all the pertinent concepts underlying the
synthesis problem), (iii) joint application of concepts (pro-
ficient at applying multiple concepts in concert to solve the
synthesis problem), and (iv) joint application ofmathematical
equations (proficient at manipulating the multiple equations
in concert to solve the synthesis problem).
For the current study, we explored the effect of the

mathematical complexity of the problem as a possible key
factor in the bottlenecks. Particularly, we are interested in
examining how mathematical complexity affects students’
manipulation of mathematics, mainly their joint application
of equations. In a separate study, we have focused on the
conceptual aspect of synthesis problems where we report
the effect of mathematical complexity on two bottlenecks,
namely, the identification and the application of pertinent
concepts [45].

B. Mathematical complexity

The mathematical complexity of a solution may depend
on the mathematical structure in which the variable to
be determined is imbedded in a problem. In the
context of algebra, a single unknown problem posed as a
“double reference” problem [e.g., x − 0.3x ¼ 7] is more
complicated than a problem posed as a “single reference”
[e.g.,ðx − 1Þ=3 ¼ 4] [46]. Additionally, a “start unknown”
story problem [e.g.,ðx − 66Þ=7 ¼ 23] can be more complex
than a “result unknown” problem [e.g.,2.65 × 6þ 63 ¼ x]
[47]. For more complicated multistep problems, there is a
composition effect [48]. Heffernan and Koedinger [48]
found that students’ performance on “composed” problems,
which they defined as tasks combining two subproblems,
thus requiring a merge of two steps and mathematical
operations, was significantly worse than their aggregated
performance on two matched single-step problems.
Here, we operationally define mathematical complexity as

the number and the type of equations to be solved simulta-
neously due to the number of unknowns in each equation.
Consider a problem with two unknowns and two equations.
It is mathematically more difficult to concurrently manipu-
late two nonlinear equations (such as quadratic or trigono-
metric) each with two unknowns than to manipulate two
linear equations, each with one unknown. In this study,
the physics problems themselves do not change, rather the
variables (knowns and unknowns) are manipulated such that
the mathematical complexity is varied.

C. Mathematical complexity and its influence
on student mathematical performance

In solving quantitative synthesis problems, mathematical
complexity may interfere with the students’ mathematical

performance. We refer to mathematical performance as
consisting of three aspects: formulation, combination, and
simplification of mathematical equations. In our study, we
propose that the formulation and combination of equations
involve the blending of mathematical manipulation and
conceptual reasoning. During these processes, students
need to identify the relevant concepts and think about
how to apply them in a situation comprising two or more
events. Moreover, they are required to reflect on how the
occurrence of one event is connected to another, how the
multiple concepts are linked through intermediate variables
and, hence, how the multiple equations are related. After
these processes, the simplification of equations to deter-
mine the variable of interest requires the manipulation of
equations as computational tools. It mostly requires iden-
tifying and canceling out known and unknown variables
and rearranging the equation such that the required variable
is written as a function of the others.
Mathematical complexity represents a potential difficulty

for quantitative synthesis problems as follows. The math-
ematical complexity of a task can increase if (i) the number
of unknowns in each equation increases, hence, leading to an
increase in the number of steps to find each unknown, (ii) the
complexity of the solution process increases (for example,
manipulating quadratic or trigonometric equations), and
(iii) both conditions highlighted earlier occur. This increase
in mathematical complexity may make it difficult for
students to comprehend how the multiple concepts are
related in the given situation. Thus, students may struggle
to identify the connecting variables and understand how to
link the multiple equations. It may also negatively impact the
students’ fluency to combine the individual equations and
simplify the resulting equation for the required variable.
Previous studies have reported that students struggle with
transferring and using their mathematical knowledge and
skills in the physics context [1,24,25,28]. In our case, as
mathematical complexity increases, the students may find it
even more difficult to apply their mathematical knowledge in
the physics domain.
Our study differs from previous ones that explore

students’ use of mathematics during physics problem
solving in four ways. First, earlier studies have utilized
single-concept problems [2,3,5–18]. In our study, we used
quantitative synthesis (sequential and simultaneous) prob-
lems. These problems involve not only a combination of
concepts but also the merging of mathematical equations
after applying the concepts. Second, these equations do
not include sophisticated mathematical operations such as
integrals or derivatives. Instead, students have to manipu-
late algebraic expressions. At the university level, few
studies have been implemented to explore students’ use of
algebra during physics problem solving [14,25]. Third, we
incorporate conceptual reasoning during two stages of
mathematical manipulation, namely, formulation and com-
bination of equations. Last, the tasks are presented with
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varying levels of mathematical complexity from simple and
linear equations to more intricate quadratic or trigonometric
equations without changing the underlying physics.
We investigate the following overarching research

question: How does mathematical complexity influence
students’ mathematical performance when solving quanti-
tative sequential and simultaneous synthesis physics prob-
lems? We explore the effects of mathematical complexity
on students’ abilities to mathematically express pertinent
concepts, combine multiple mathematical expressions, and
simplify the equations to determine the variable of interest.
We also explore possible reasons for similarities and
differences in student mathematical performance on the
sequential and simultaneous synthesis tasks.
In Sec. II we discuss the research design and data

analysis. Section III presents the outcomes. The conclu-
sions and discussions are highlighted in Sec. IV.

II. METHOD

The sequential synthesis problems were administered to
105 students and the simultaneous synthesis tasks were
completed by 74 students. These students were enrolled in
a second year mechanics course for physics majors. They
completed the sequential and simultaneous synthesis tasks
after studying the relevant concepts in their lectures. The
mechanics course was traditionally taught, and the students
worked in groups of 3–4 during recitation to practice
problem solving. They were not explicitly taught how to
solve synthesis problems. However, they had opportunities
to solve multiconcept problems as homework and in class.
They were also provided with the solutions to these
problems. Grading of the synthesis problems focused on
the application of pertinent concepts for setting up

equations, on the combination of pertinent equations,
and on the final answer obtained.

A. Tasks

The final sets of the sequential (shown in Fig. 2) and
simultaneous (shown in Fig. 4) synthesis problems were
obtained after being vetted with a group of students,
physics education researchers, and physicists. In particular,
we checked that the students did not misinterpret the
problem statement and the quantitative information used
is rational. We also ensured that the problems are based on
topics which the students have learned in class.

1. Sequential synthesis problems

The sequential synthesis problems are presented in
Fig. 2. We designed three versions of the same problem,
with varying mathematical complexity, namely, simple,
intermediate, and complex. Each task depicts a block on a
ramp angled at θ being propelled from a spring. The block
then undergoes a trajectory and lands on another surface
inclined at ϕ. The two pertinent concepts for tackling the
three versions of the sequential task are energy conserva-
tion and projectile motion.
Four fundamental equations (as shown in Fig. 3) are

required to solve all three versions of the problem.
Application of energy conservation results in Eq. (1)
connecting the initial energy of the system (spring potential
energy) to its final energy (block’s kinetic energy and
gravitational potential energy). Application of projectile
motion leads to three equations: Eq. (2) and Eq. (3) for the
horizontal and vertical motion respectively, and Eq. (4),
trigonometry relating the horizontal and vertical motions.

Landing spot 
of block

Landing spot 
of block

Landing spot 
of block

Simple: An apparatus uses a spring launcher to fire a block
(mass 2kg) over a ridge. The spring (spring constant,
k=3000N/m) is compressed 0.1m and releases the block from
its equilibrium position, which is located a distance L=0.5m
from the crest. If the angles shown are =350 and =250, what
is the horizontal distance R from the crest to where the block
hits the slope on the other side?

Intermediate: An apparatus uses a spring launcher to fire a
block (mass 2kg) over a ridge. The spring (spring constant,
k=3000N/m) is compressed to an unknown distance x, and
releases the block from its equilibrium position, which is located
a distance L=0.5m from the crest. The block lands on the
opposite slope, a horizontal distance R=1.3m from the crest. If
the angles shown are =350 and =250, what was the initial
compression of the spring, x?

Complex: An apparatus uses a spring launcher to fire a block
(mass 2kg) over a ridge. The spring (spring constant,
k=3000N/m) is compressed 0.1m and releases the block from
its equilibrium position, which is located a distance L=0.5m
from the crest. The block lands on the opposite side, a
horizontal distance R=1.3m from the crest. If =250, what was
the angle of the initial slope, ?

FIG. 2. The three versions of the sequential synthesis problems.
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Table I presents information about the known and
unknown variables and the types of equations to be manip-
ulated for the simple, intermediate, and complex version of
the sequential problem. For the simple task, v could be
determined at the onset from Eq. (1) and, hence, could be
regarded as a known in Eqs. (2) and (3). For the intermediate
and complex tasks, a value for y could be solved at the onset
from Eq. (4) and could be considered as a known in Eq. (3).

2. Simultaneous synthesis problems

As for the simultaneous synthesis problems (shown in
Fig. 4), we designed two versions, namely, simple and
complex involving the same physics but with varying
mathematical complexity. They are both based on the
situation of a disc sliding on a frictionless surface while a
projectile is released by a spring launcher. When the com-
pressed spring releases the projectile the disc spins, resulting
in energy transfer and a change in translational and rotational
motion of the system. Energy conservation and linear and
angular momentum conservation are the pertinent concepts
for tackling both versions of the problem.
Three main equations, depicted in Fig. 5, are required for

solving both tasks.
Application of energy conservation results in Eq. (1)

connecting the different types of energy for the initial

and final conditions. Application of linear momentum
conservation gives Eq. (2) relating the initial momentum
of the system to its final momentum. Application of angular
momentum conservation results in Eq. (3) connecting the
initial angular momentum of the system to its final angular
momentum. Information about the known and unknown
variables and the types of equations to bemanipulated for the
simple and complex version of the simultaneous synthesis
task is shown in Table II. For the simple task, vf andω can be
obtained at the onset from Eq. (2) and Eq. (3), respectively.
Hence, these variables were treated as knowns in Eq. (1).
“Types of equations” refers to the final equation obtained,
fromwhich the required variable (Δx orvo) can be solved for.

B. Administration of sequential and
simultaneous synthesis problems

Data were collected from written tasks and individual
interviews during the “flexible homework” assignment
[49]. It is a 1 h session where students engage in activities
such as tutorials and interviews as a replacement for one of
their homework assignments. The students earn full credits
for participating in the “flexible homework”.
A total of 105 students completed the sequential syn-

thesis tasks. Ninety-two of them signed up to complete the
written tasks only. The remaining 13 students signed up for
a 1 h individual interview session. For those who completed
the written tasks, each student was randomly given one
version of the problem, simple (n ¼ 30), intermediate
(n ¼ 31), and complex (n ¼ 31). Across the three groups,
the students had similar level of average course grade
[Fð2; 91Þ ¼ 0.127, p ¼ 0.881]. They completed the
given task on their own, without consulting their peers.
Irrespective of the task’s mathematical complexity, they
were given approximately 30 min to tackle the problem.

: ½ k x 2 = ½ m v2 + m g (L+x ) sin …..(1)

: R = v cos t …………………………………(2)

y = v sin t – ½ g t 2 ………………………...(3)

tan = - y / R ………………………………..(4) 

FIG. 3. The four essential equations for tackling the sequential
synthesis problems.

TABLE I. Known and unknown variables, and types of equations across sequential synthesis tasks with increasing
mathematical complexity (m, mass of block; k, spring constant; L, equilibrium position; ϕ, angle of final slope; x,
initial compression of spring; θ, angle of initial slope; R, horizontal distance; v, block’s velocity at crest of the ramp;
y, block’s final vertical position; t, time taken by block to hit the landing spot). Types of equations refer to the final
equation obtained after manipulation, from which a value for the unknown variable of interest (R, x, and θ) can be
found. See Appendix A for the solutions.

Simple task Intermediate task Complex task

Common given information m, k, L, and ϕ

Additional given information x and θ R and θ R and x

Variable to solve for R x θ

Unknowns in each equation:
1
2
kx2 ¼ 1

2
mv2 þmgðLþ xÞ sin θ (1) v v, x v, θ

R ¼ v cos θt (2) R, t v, t v, θ, t
y ¼ v sin θt − 1

2
gt2. (3) y, t v, t v, θ, t

tanϕ ¼ −y
R (4) y, R y y

Types of equations Nonquadratic Quadratic Quadratic with trigonometry embedded
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Each of the 13 students in the interviews was randomly
assigned one version of the problem, simple (n ¼ 4),
intermediate (n ¼ 5), and complex (n ¼ 4). In each ses-
sion, the student was given 30 min to solve the problem
followed by an interview session of approximately 30 min.

The same process was used for administering the written
tasks and individual interviews to the 74 students who
completed the simultaneous synthesis problems. Sixty-six
students signed up to complete the written tasks only.
The remaining 8 students signed up for a 1 h individual

: A disc of mass 3.0kg and radius R=0.75m is sliding
(face down) at velocity vo along a frictionless surface. A spring
launcher is fixed outside the edge of the disc. The spring
(spring constant, k=49.0kN/m) is compressed a distance x
and releases a projectile of mass 6.0kg from its equilibrium
position. After release, the velocity of the projectile relative to
the surface is vp=11.0m/s. Assume that the mass of the
launcher is small and that the spring releases the projectile
very rapidly. If the initial velocity of the disc was vo=5.0m/s,
what was the initial compression of the spring, x?

R

Top view of surface

A disc of mass 3.0kg and radius R=0.75m is sliding
(face down) at velocity vo along a frictionless surface. A spring
launcher is fixed outside the edge of the disc. The spring
(spring constant, k=49.0kN/m) is compressed a distance x
and releases a projectile of mass 6.0kg from its equilibrium
position. After release, the velocity of the projectile relative to
the surface is vp=11.0m/s. Assume that the mass of the
launcher is small and that the spring releases the projectile
very rapidly. If the initial compression of the spring was

x=17.5cm, what was the initial velocity of the disc, vo?

R

Top view of surface

FIG. 4. The two versions of the simultaneous synthesis problem.

: ½ k x 2 + ½ (M + m) vo
2 = ½ mvp

2 + ½ Mvf
2 + ½ I 2 .....(1)

: (M + m) vo = Mvf + mvp ................................(2)

: m vo R = m vp R + I ................................(3)

FIG. 5. The three essential equations for solving the simultaneous synthesis problems.

TABLE II. Known and unknown variables, and types of equations across simultaneous synthesis tasks with
increasing mathematical complexity (M, mass of disc; R, radius of disc; vo, initial velocity of disc; vf , final velocity
of disc; ω, angular velocity of disc; m, mass of projectile; vp, final velocity of projectile; k, spring constant; Δx,
initial compression of spring). See Appendix B for the solutions.

Simple task Complex task

Common given information M, m, R, k, and vp

Additional given information vo Δx

Variable to solve for Δx vo

Unknowns in each equation:
1
2
kΔx2 þ 1

2
ðM þmÞv2o ¼ 1

2
mv2p þ 1

2
Mv2f þ 1

2
Iω2. (1) Δx vo, vf , ω

ðM þmÞvo ¼ Mvf þmvp. (2) vf vo, vf
mvoR ¼ mvpRþ Iω (3) ω vo, ω

Types of equations Independent quadratic
equation.

Quadratic equation embedded
in a system of 2 equations.
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interview session. For the written tasks, the students were
randomly assigned one version of the problem (simple,
n ¼ 33; complex, n ¼ 33). In this case, there was no
significant between-group difference indicating that the
students were at the same grade level [F ð1; 65Þ ¼ 0.242,
p ¼ 0.625]. All the students were given approximately
30 min to handle the problem. For the interviews, each of
the 8 students was randomly assigned one version of the
problem (n ¼ 4 for simple task; n ¼ 4 for complex task).
Each student was first allocated 30 min to complete
the task. They were then immediately interviewed for a
maximum of approximately 30 min.

C. Analysis of sequential and simultaneous
synthesis problems

From the written solutions to the sequential and simul-
taneous synthesis problems, the students’ mathematical
performance was analyzed in three levels, namely, formu-
lation, combination, and simplification of equations.
For formulation of equations, we considered if the

students identified all the pertinent concepts underlying
the task and generated all the equations to mathematically
express the identified concepts. For combination of equa-
tions, we looked at whether or not the students combined
their formulated equations associated with the pertinent
concepts. For simplification of equations we coded the
students’ attempt to identify variables and rearrange equa-
tions such that the required variable is written as a function
of the others. The detailed coding scheme for the sequential
and simultaneous synthesis problems is presented in
Appendixes C and D, respectively. The coding of the
students’ written solutions was done independently by two
researchers. For the sequential synthesis problems, an
interreliability rate of 87% was obtained. For the simulta-
neous synthesis problem, the intercoder agreement was
88%. After discussion, all the differences were resolved.
We conducted χ2 tests at the three analysis levels to detect
any differences across the synthesis tasks with varying
mathematical complexity.
From the written solutions, we additionally explored

why the students did not combine and simplify the
equations in the sequential and the simultaneous synthesis
problems. We examined their actions by focusing on
whether they merely wrote down the steps to find the
variable of interest or whether they executed the steps. We
also considered if the students dealt with linear, quadratic,
or trigonometric equations in a purely symbolic form or if
they immediately substituted values as they generated the
expressions. Further, we looked at how the students applied
their mathematical knowledge, such as trigonometric iden-
tity, factorization, and expansion of algebraic expressions
to the physics problems.
We have two main themes extracted from the individual

interviews. They were analyzed thematically for the link
between the students’ mathematical performance, their

approach to tackle the two types of synthesis problems
(if they divided the situation into segments or treated it as a
single event), and their unpacking of the physical situations
(if they realized there was more than one event in the
situation, understood how the occurrence of one event
was connected to another; hence, how the different con-
cepts were related). We also examined the interviews for
possible reasons why students failed to combine and
simplify the equations after formulating them for the
two types of synthesis problems. The interview protocol
is in Appendix E.

III. RESULTS

We first present the findings on the effects of math-
ematical complexity on students’ mathematical perfor-
mance on the sequential and simultaneous synthesis
problems. We then report the reasons why students did
not combine and simplify their equations for the two
synthesis problem types. We also present the outcomes
on the link between the students’ mathematical perfor-
mance, their approaches to tackle the situation in the
sequential and simultaneous problems, and their unpacking
of the physical situations.

A. Written results

Figure 6 presents the percentage of students who
properly formulated all the pertinent equations, combined
the equations, and simplified the combined equations for
the two types of synthesis problems with different math-
ematical complexity. For instance, if a student formulated
all the relevant equations, combined them but did not
successfully simplify the combined equations, then the
student was classified within the “formulate” and the
“combine” category, respectively, but not in the “simplify”
category.
For the sequential synthesis tasks, Fig. 6(a), there was no

significant difference across the three conditions in the
number of students who formulated the pertinent equations
( χ2 ¼ 0.280, p ¼ 0.869) and combined these equations
( χ2 ¼ 0.142, p ¼ 0.931). However, we noted a significant
difference across the three tasks in the number of students
who attempted to simplify the equations to determine the
required variable ( χ2 ¼ 8.20, p ¼ 0.017). Thus, for the
sequential synthesis problems, mathematical complexity
seemed to impact students’mathematical performance only
when simplifying the equation to obtain the variable of
interest.
For the simultaneous synthesis tasks, Fig. 6(b), there was

a substantial between-group difference at all the three
analysis levels (formulation of equations: χ2 ¼ 5.28, p ¼
0.022; combination of equations: χ2 ¼ 5.80, p ¼ 0.016;
simplification of equation: χ2 ¼ 5.80, p ¼ 0.016). This
indicates that mathematical complexity may have influ-
enced the students’ formulation and combination of
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equations as well as simplification of equations to deter-
mine the required variable for the simultaneous synthesis
problems.
Overall, as the task’s mathematical complexity increases,

the students’ mathematical performance on the sequential
and simultaneous synthesis tasks decreases. For the sequen-
tial tasks, mathematical complexity appears to negatively
influence the students’ mathematical performance only at
the stage of simplifying the equation for the required
variable. For the simultaneous tasks, mathematical com-
plexity has a negative effect across all the three stages.
We made a comparison between the two types of

synthesis problem for the number of students who formu-
lated all the fundamental equations. We also compared the
number of students who properly combined the pertinent

equations among those who formulated them, and the
number of students who simplified the equations among
those who combined them. The outcomes, for the sequen-
tial and simultaneous synthesis tasks with varying math-
ematical complexity, are shown in Fig. 7.
Regardless of the task’s mathematical complexity, the

students were better able to formulate all the pertinent
equations for the sequential synthesis tasks (simple, 57%;
intermediate, 55%; complex, 61%) as opposed to the
simultaneous tasks (simple, 36%; complex, 12%). This
also shows that the students were more successful in
identifying all the pertinent concepts for the sequential
tasks compared to the simultaneous problems. In order to
formulate all the fundamental equations, the students need
to first identify all the pertinent concepts. However, after
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FIG. 7. Number of students formulating all the fundamental equations, combining the formulated equations and simplifying the
combined equations for the sequential and simultaneous synthesis tasks with varying mathematical complexity.
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formulating the pertinent equations, the students were more
successful in combining them for the simultaneous tasks
(11 out of 12 students, equivalent to 92%, for the simple
group, and 3 out of 4 students, equivalent to 75%, for
the complex group) as opposed to the sequential tasks
(13 out of 17 students, equivalent to 76%, for the simple
group, 12 out of 17 students, equivalent to 71%, for the
intermediate group, and 13 out of 19 students, equivalent to
68%, for the complex group). They were also better able to
simplify the combined equations for the simultaneous tasks
(11 out of 11 students, 100%, for the simple group, and 3
out of 3 students, 100%, for the complex group) compared
to the sequential problems (11 out of 13 students, equiv-
alent to 85%, for the simple group, 7 out of 12 students,
equivalent to 58%, for the intermediate group, and 2 out of
13 students, equivalent to 15%, for the complex group).
We considered the student’s actions (written solutions)

to explore why they did not combine and simplify the
equations after formulating them. We found two main
reasons. One related to the features of the equations, and
the other pertains to the students’ ability to apply their
mathematical knowledge of trigonometric identity, factori-
zation and expansion of algebraic expressions to the
physics problems. For the sequential synthesis tasks, the
students manipulated quadratic equations, involving trigo-
nometry, which became more complicated for the inter-
mediate and complex tasks, and when left in a purely
symbolic form. They failed to apply their mathematical
knowledge of trigonometric identity when solving the
complex problem. For the simultaneous synthesis tasks,
the students dealt with linear expressions and quadratic
equations with no trigonometry involved. Regardless of
mathematical complexity, these equations were relatively
simple to manipulate compared to those in the sequential
tasks. The students were able to apply their mathematical
knowledge of factorization and expansion of algebraic
expressions.
We first looked at the actions of those students who

did not combine the pertinent equations after formulating
them for the sequential synthesis tasks. The outcomes and
examples of students’ actions for the simple, intermediate
and complex sequential synthesis tasks are in Appendix F.
The prominent outcome is that the students knew at a
conceptual level how to obtain the necessary intermediate
variables and the final variable of interest from the pertinent
equations. We observed that some students drew an arrow
linking the energy conservation equation to the expression
obtained after merging the projectile motion equations. We
also noted that the students re-arranged the energy con-
servation equation with velocity as the key variable and
determined an expression for time from the projectile
motion equations. Further, after formulating the fundamen-
tal equations, the students wrote down the steps to find the
intermediate variables and final variable of interest from
these equations. However, they failed to combine the

energy conservation equation with the projectile motion
equations. This is because the equations became more
complicated to manipulate, mainly for the intermediate and
complex tasks. The students tended to leave the equations
in symbolic forms, which increased the complexity of the
expressions. Further, after merging the projectile motion
equations, an intricate quadratic equation with trigonom-
etry emerged. The fact that the equations were complicated
might have made it difficult for the students to combine
the resulting projectile motion equation with the energy
conservation equation. In one case of the simple task, the
student seemed to spend a lot of time trying to solve the
problem using an inappropriate concept, Newton’s second
law. The student then shifted to using energy conservation
and projectile motion but ran out of time to solve the
problem using these pertinent concepts and equations.
We also explored why the students did not simplify their

equations after combining them for the sequential synthesis
tasks. The results and illustrations of students’ actions for
the simple, intermediate and complex sequential synthesis
tasks are in Appendix G. Overall, the main outcome is that
regardless of the task’s mathematical complexity, after
combining the energy conservation and projectile motion
equations, the students arrived at quadratic expressions
involving trigonometry, which they usually left in a purely
symbolic form. Although they were given the values for
certain variables, these were not substituted, and therefore
the quadratic expressions became increasingly compli-
cated. Moreover, for the complex sequential synthesis task,
the students had to use their mathematical knowledge of
trigonometric identity which they failed to apply.
Overall, for the sequential synthesis tasks, the students

manipulated quadratic expressions with trigonometry
which became more intricate for the intermediate and
complex tasks. The complexity of the equations increased
if these equations were left in symbolic forms and after the
projectile motion equations were merged. The students also
failed to apply their mathematical knowledge of trigono-
metric identity. As a result, they did not combine and
simplify their equations.
For each of the simple and complex simultaneous tasks,

all but one student attempted to combine and simplify their
formulated equations. Although the exact mechanism for
such a failure was unclear from the written solutions, we
observed some consistent patterns among those who
successfully combined and simplified the formulated equa-
tions. All the students who combined the formulated
equations proceeded with simplifying the expression to
find a value.
In this case, the students formulated one quadratic

equation (energy conservation) and two linear equations
(angular and linear momentum conservation). For the
simple task, the students found a value from each of the
linear equations which they plugged into the quadratic
equation. For the complex task, they substituted their linear
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expressions in the quadratic equation. The handling of
values or linear expressions seemed easy and straightfor-
ward for the students, which facilitated their attempt to
combine the equations. Once combined, a quadratic equa-
tion emerged. It was straightforward to manipulate for
the simple task, which dealt mainly with numbers. For the
complex task, however, the students had to use their
mathematical knowledge of factorization and expansion
of algebraic expressions, which they successfully applied.
The results and examples of students’ actions for the simple
and complex simultaneous tasks are in Appendix H.
Hence, for the simultaneous synthesis tasks, regardless

of mathematical complexity, the students properly com-
bined and simplified the equations as they manipulated the
linear and quadratic expressions. They were able to apply
their mathematical knowledge of factorization and expan-
sion of algebraic expressions.

B. Interview results

From the individual interviews we first explored the
connection between the students’ mathematical perfor-
mance, how they approached the situation in the sequential
and simultaneous synthesis problems and their unpacking
of the physical situations.
For the sequential synthesis problems, the most promi-

nent outcome is that irrespective of the task’s mathematical
complexity, all the students split the physical situation into
segments. They realized there were more than one event
and displayed an understanding of the link between the
events. They identified all the pertinent concepts which
they expressed mathematically. Further, they recognized all
the connecting variables, demonstrated a comprehension of
how to combine their equations and use the intermediate
variables to obtain the final variable of interest. Typical
interview responses for students who completed the

simple, intermediate, and complex version of the problem
are shown in Fig. 8.
In the examples of students’ responses, irrespective of

the sequential task’s mathematical complexity, the students
divided the situation into segments and recognized that it
comprised two events. This is indicated by their use of the
verbal expressions “first part or second part of the problem”
and “broke this problem into two”. They also identified
the two pertinent concepts, energy conservation and pro-
jectile motion, and mathematically expressed each concept.
Further, they recognized velocity and time as the necessary
intermediate variables for connecting the events and hence
the pertinent concepts. A value or expression for the
velocity of the block at the crest of the ramp was obtained
from the energy conservation or projectile motion equa-
tions. A value or expression for the time taken by the block
to hit the landing spot was determined from the projectile
motion equations. The students also explained how they
would solve for the final variable of interest by combining
their values or expressions for velocity and time from the
energy conservation and projectile motion equations.
For the simultaneous synthesis problems, the prominent

outcome is that the majority of the students who completed
the complex version of the task (3 out of 4 students) treated
the physical situation as a single event and used one
concept for problem solving. As such they formulated
only one equation, for the one pertinent concept identified,
and did not combine any equations. The majority of the
students who completed the simple version of the problem
(3 out of 4 students) realized there was more than one event.
However, they recognized part of the multiple events,
instead of all of them, thus identified part of the multiple
pertinent concepts which they expressed mathematically.
Further, they combined the formulated equations and only
identified part of the necessary connecting variables to
solve the problem. Regardless of the task’s mathematical

Student RP (simple task): “The problem is asking for the distance from the tip of the crest which is
not difficult to find altogether. I decided to think through the first part of the problem with energy
conservation to determine the velocity at the crest. For the second part, I use the velocity at the crest
and projectile motion to find how long it takes for the block to travel through the air and hit the ground.
From there I use time and the horizontal component velocity to find R [horizontal distance].”

Student DM (intermediate task): “I started with the second part of the problem where I use projectile
motion, set the equation for the y distance travel [equation for vertical motion] and the x distance
[equation for horizontal motion]. From the x equation, I can find the time that the object flies in the air.
Once I get the time I can substitute it in the y equation to get the velocity [of the object]. Then I use
conservation of energy […]. I can get an expression in terms of x [initial compression of the spring]
from it [energy conservation equation], substitute velocity from projectile motion and solve for x.”

Student RV (complex task): “I broke this problem into two. Here is your first part where you have a
spring potential energy becoming kinetic energy and also gravitational potential [energy] to give you
the velocity of the block. From there it goes from conservation of energy equation to projectile motion
equations where the second part is taking into account the trajectory the block is launched. I set my
equation for horizontal and vertical motion. From the projectile motion equations I can get rid of time,
time that the block is in the air, and plug in the velocity of the block to find the angle [angle of initial
slope, ”

FIG. 8. Examples of interview responses for the three versions of the sequential synthesis task.
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complexity, the students were not capable of fully unpack-
ing the given situation and making predictions by con-
necting the task to learned physics concepts. Examples
of the interview and written responses from the students
completing the complex and simple versions of the problem
are shown in Fig. 9.
The student who completed the complex version of

the simultaneous task reduced a multiple events situation
into a single event one comprising only energy conserva-
tion, typically when the spring is compressed and when it
releases the projectile. As such the student used only one
pertinent concept, energy conservation, and mathematically
expressed this one identified concept. In this case, the need
to combine multiple different equations does not arise as
the student formulated one equation comprising all the
known variables to determine the initial velocity of the disc
which is the aim of the task.
The student who completed the simple version of the

simultaneous task realized there were more than one event
in the situation and identified two pertinent concepts,
energy conservation and linear momentum conservation.
As such, the student formulated two equations (one for
linear momentum conservation and one for energy con-
servation) and combined them. Hence, the student identi-
fied only part of the intermediate variables, the final
velocity of the disc, to solve the problem. A value for
the final velocity of the disc was obtained from the linear
momentum conservation equation. This value was then
plugged into the energy conservation equation, a quadratic
equation which can be easily simplified to find the variable
of interest, the spring compression.

Overall, regardless of the mathematical complexity of
the sequential synthesis task, the students divided the
situation into segments and fully unpacked the physical
situation which seemed to facilitate their formulation and
combination of equations. They were also able to explain,
at a conceptual level, how they would obtain the key
connecting variables and the final variable of interest from
the pertinent equations. In contrast, for the simultaneous
synthesis problems, the students struggled to fully unpack
the physical situation which appeared to impede their
formulation and combination of equation. They treated
the complex simultaneous task as a single event and
formulated only one equation such that the need to combine
equations did not arise.
From the individual interviews, we also investigated the

reasons for students not combining and simplifying the
fundamental equations after formulating them. Consistent
with our analysis for the written solutions, for the interview
responses we considered only students who identified all
the pertinent concepts and formulated all the fundamental
equations. As such, the outcomes reported here pertain only
to the sequential synthesis tasks. The eight interviewees
completing the simultaneous synthesis tasks either identi-
fied one pertinent concept thus formulating one equation
(mainly for the complex version) or identified two pertinent
concepts hence formulating two fundamental equations
(mainly for the simple version). Of the 13 interviewees
completing the sequential synthesis tasks, only four of them
either did not combine or did not simplify the equations.
Two of these students did not combine the equations after
formulating them. They tackled either the simple or the

Student SD (complex task): “ I wasn’t exactly sure what the ball was
going to do, if it was going to shoot straight off or if it was constrained
to the disc and I really don’t know how the spring will affect the disc. I
assume that [the given situation] is lying flat on the table which doesn’t
necessarily have to be the case. If that is not the case then I have to
take into account some gravity. Not sure […]. When I looked at the
problem, I see two points that I can use as a final and initial. When the
spring is compressed versus when it is at equilibrium. I saw I can use
energy conservation pretty simply to solve the problem. I can write this
[energy conservation equation] in terms of all the knowns which is
easy to solve.”

Student AW (simple task): “I am not sure if the disc is moving like this
[indicate sliding] or it is rotating. Since there’s no friction, there’s no
torque to make it spin. It is just moving, going forward. I decided to go
with conservation of [linear] momentum and energy. First I set up the
conservation of [linear] momentum equation […]. I saw that it doesn’t
give me x at all which is what I am looking for. I then set up the
conservation of energy equation […] and there I saw it does have x that
I am looking for and it requires the final velocity of the disc which I can
find using conservation of [linear] momentum. I then plug this velocity [of
the disc] into the energy conservation equation to solve for x. […] now
that I think about it, I could have included that the release of the projectile
causes the torque. But I don’t know how to do that. If the disc is indeed
rotating, then I wouldn’t know how to find how much it is rotating. I don’t
know how I will get that information from the problem.”

FIG. 9. Examples of interviews and written responses for the complex and simple simultaneous synthesis problems.
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complex task. The remaining two participants combined
the equations but did not simplify them. They completed
either the intermediate or the complex problem.
These four students mentioned that the equations are

complicated with many signs, symbols, and variables
which made it difficult for them to manipulate to find a
quantitative solution. It must be pointed out that all the four
students correctly articulated the physics underlying the
task regardless of mathematical complexity. They were able
to identify the necessary intermediate variables and explain
how to obtain these and the final variable of interest from
the pertinent equations. The interview responses are pre-
sented in Fig. 10.
Thus, for the sequential synthesis tasks, the interview

results indicate that the students did not combine and
simplify the equations because the mathematics was rather
complicated, particularly when left in the symbolic form.
However, the students were able to highlight, at a con-
ceptual level, how they would obtain the connecting
variables and the final variable of interest from the pertinent
equations.

IV. CONCLUSIONS AND DISCUSSIONS

This study indicates that mathematical complexity neg-
atively influences the students’ mathematical performance
on the sequential and simultaneous synthesis problems.
However, for the sequential synthesis tasks, mathematical
complexity affects only the students’ simplification of

equation for obtaining the variable of interest. For the
simultaneous synthesis tasks, it additionally affects the
students’ formulation and combination of equations which
in a sense also relates to conceptual reasoning.
Further, the results from the individual interviews show

that the students approached the sequential and simulta-
neous tasks differently. Their approaches seemed to influ-
ence their unpacking of the physical situation, which in turn
interfered with their mathematical performance on formu-
lating and combining the equations. The students divided
the sequential tasks into a sequence of subtasks, regardless
of their mathematical complexity. As a result, their unpack-
ing of the physical situation was greatly facilitated and their
formulation and combination of equations were mostly
successful. For the simultaneous synthesis tasks, especially
the complex version, the students oversimplified the sit-
uation as a single-concept event. Irrespective of the task’s
mathematical complexity, the students failed to fully
unpack the situation, which may have hindered their
formulation and combination of equations.
Sequential synthesis problems include the chronological

occurrence of events. Even if the events are connected,
it is possible to consider one event at a time which may
have led the students to divide the situation into segments,
as observed from the individual interviews, regardless of
the task’s mathematical complexity. Consequently, the
students may have been prompted to consider each event
individually, which facilitated their unpacking of the
situation. As evident from the individual interviews,

Student SB (simple task, formulate all equations and do not combine): “I have to break this task into two separate tasks. The first task is
to find how much velocity you are going to get in order to launch the block and then using this velocity to know where the block will land. [...] I
have to equate energies to find out the velocity first. Then I use R = vo cos t to solve for t which I will plug in the y equation [equation for
vertical motion]. You have to equate the y equation to the slope of the line which is – tan and then you just plug in values to find R. […] the
concepts are pretty straightforward. The algebra, I got mix up with so many symbols and signs, I can easily make an error. I got stuck here
just because of the algebra which looks complicated and I have difficulty naming notations.”

Student RC (complex task, formulate all equations and do not combine): “Conceptually I knew what’s going on in the task but I don’t
know how to show that completely mathematically. It seems like I have too many variable and not enough information to solve it. I started by
finding the velocity that this block will leave the spring with by using conservation of energy. And then I started writing down basic kinematics
equations, your change in x distance [horizontal motion equation] and your change in y [vertical motion equation]. And then I set tan equal
to – y / R. R is 1.3m. Then I set 1.3 = vo cos t. From all these [projectile motion equations] I can get rid of time. But then the equation looks
complicated.”

Student NC (intermediate task, combine equations and do not simplify): “This is kind of two problems because you have to solve for
each thing separately. I started from the chronological beginning where the spring is compressed. I use conservation of energy to find the
velocity of the block. I got an expression for v that involves x. Then I use projectile motion, equations for horizontal and vertical motion to find
the time the block will land. […] I basically merge the two concepts to come up with this compression [of the spring]. If you know everything
over here on this side [show the trajectory event], you can get a value for the velocity and then that can give you a value for the compression
[of the spring]. […] I think if I evaluated these numerically I would have reduced the algebra. My plan was to get an expression for the
distance that it is compressed and then plug in all the values at the end. But I left them in the form of algebra which complicated things.”

Student NY (complex task, combine equations and do not simplify): “I find the task difficult mathematics wise. It can be a lot simpler way
to do it. […] I divided the problem into two parts. This one [show the spring event] you have to find the velocity and then after that you
simplify it as a projectile motion problem. You use energy conservation to find the velocity of the block and from there you use projectile
motion to know where it lands. The issue with that is the mathematics become very ugly very quickly. It doesn’t work out nicely. I use
projectile motion, decompose my velocity into x and y. I need to get how long the block is in the air from the equation for y position and plug
it in the expression for the x distance since we know R [horizontal distance]. I then plug the velocity expression and then from there I try to
simplify for . Unfortunately this is in terms of which will lead to mathematical difficulties. […] The main difficulty here is just solving the
math.”

FIG. 10. Interview responses for students failing to combine the formulated equations, and those failing to simplify the combined
equations for the sequential synthesis tasks.
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irrespective of the task’s mathematical complexity, the
students identified all the events, comprehended the link
between them, identified all the pertinent concepts, and
recognized all the key connecting variables. Hence, the
students’ formulation and combination of equations may
have been favorably influenced. As noted from the inter-
views, the students mathematically expressed all the
pertinent concepts. They were also able to explain, at a
conceptual level, how they will obtain the necessary
intermediate variables and the variable of interest from
the fundamental equations. In this case, the characteristics
of the sequential synthesis task seemed to be a dominant
factor that influenced the students’ approaches to and
unpacking of the physical situation, which in turn impacted
their formulation and combination of equations. Therefore,
this may explain why for the sequential synthesis tasks, we
did not observe prominent effects of mathematical com-
plexity on the students’ formulation and combination of
equations.
In contrast, the simultaneous synthesis problems include

concurrent events such that it is necessary to consider all of
them at one time. The concurrence of the events may have
made it difficult for students to fully unpack the situation
thus negatively influencing their formulation and combina-
tion of equations. As evidenced by the individual interviews,
for the simple version of the task, the students recognized
part of the multiple events and part of the multiple pertinent
concepts. For the complex version, they oversimplified a
multiple events situation to a single event one and used one
concept. The individual interviews also indicate that for the
simple task, the students formulated equations for part of the
pertinent concepts. Although they combined their individual
equations, they identified part of the necessary connecting
variables for problem solving. For the complex task, they
formulated one equation for the one pertinent concept
identified. Thus, they did not have to combine multiple
equations to solve the problem. In this case, both the
characteristics of the simultaneous synthesis tasks and
mathematical complexity seemed to impede the students’
mathematical performance. Mathematical complexity may
have worsened the situation and negatively interfered with
the students’ formulation and combination of equations.
Cognitive load [50] may also account for why students were
better able to formulate equations for the sequential syn-
thesis tasks compared to the simultaneous problems. For the
sequential tasks, the fact that students could consider one
event at a timemight have resulted in reduced cognitive load
and supported their identification of all the pertinent con-
cepts for formulating the equations. For the simultaneous
tasks, the students had to consider the events concurrently
which may have negatively interfered with their ability to
consider and process all the pertinent information in their
working memory. This additional cognitive load may have
resulted in a reduced ability to identify the pertinent
principles for formulating the equations.

Further, the different results we observed in the sequen-
tial and simultaneous tasks may relate to the fact that the
variation in the mathematical complexity within each
synthesis type was different. For each version of the
sequential synthesis task, the students had to handle one
equation with one unknown plus three equations with two
or three unknowns in each (see Table I). This means that
the variation in the mathematical complexity across the
three sequential synthesis tasks was not significantly large.
For the simple simultaneous task, students could find, at the
onset, a value from the linear and angular momentum
conservation equation respectively. They were then left to
tackle only the energy conservation equation having one
unknown. For the complex version, they needed to con-
currently manipulate three equations with two or three
unknowns in each equation (see Table II). The difference
in mathematical complexity difficulty was much larger
between the simple and complex simultaneous tasks
compared to the difference among the three versions of
the sequential problem. This difference in mathematical
complexity difficulty may explain the differences observed
across the three levels (formulation, combination and
simplification of equations) in the simultaneous tasks but
not in the sequential problems.
We also made a comparison between the two types of

synthesis problems. The findings show that regardless of
the task’s mathematical complexity, the students were more
successful at formulating all the pertinent equations for the
sequential synthesis problems compared to the simulta-
neous tasks. However, once they formulated the funda-
mental equations, the students were better able to combine
the equations and simplify the combined equations for
the simultaneous synthesis tasks than for the sequential
problems.
There are two possible reasons to explain why students

were more successful at formulating the pertinent equations
for the sequential problems compared to the simultaneous
tasks. The first one pertains to the students’ familiarity with
and confidence in the concepts underlying the two types
of synthesis problems. The second reason deals with the
characteristics of the sequential and simultaneous synthesis
tasks (i.e., chronological versus concurrent occurrence of
events) which may support or impede the students’ iden-
tification of pertinent concepts. If students fail to identify
the pertinent principles, they will not be able to formulate
the fundamental equations. These two possible reasons are
highlighted in detail in our separate paper investigating the
effect of mathematical complexity on students’ conceptual
performance in the two synthesis problem types [45].
The differences in students’ ability to combine and

simplify their equations between the two types of synthesis
problems can be explained by the differences in the
mathematical composition of the equation systems. For
the sequential synthesis tasks, the students tackled four
fundamental equations involving trigonometry. They were
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required to use trigonometric identity to solve the complex
version of the problem. Moreover, they had to combine the
equations twice. One is merging the projectile motion
equations to find or eliminate time. The other is combining
the energy conservation with the projectile motion
equations. Our results indicate that after combining the
projectile motion equations, mainly for the intermediate
and complex tasks, a complicated quadratic equation
with trigonometry was obtained. The complexity of the
quadratic equations increased when the equations were left
in symbolic forms. Further, the students failed to apply their
mathematical knowledge of trigonometric identity.
In contrast, for the simultaneous synthesis tasks, the

students manipulated three fundamental equations. These
equations did not involve trigonometry. However, the
students had to use factorization and expansion of algebraic
expressions to solve the complex task. Combination of
equations occurred only once by plugging the linear and
angular momentum conservation equations in the energy
conservation expression. Our findings show that the stu-
dents properly dealt with the linear and quadratic expres-
sions, and they successfully applied their mathematical
knowledge of factorization and expansion of algebraic
expressions.
In short, the equations for the sequential tasks were more

complicated than for the simultaneous problems. However,
our results show that although the students failed to
mathematically combine and simplify the equations for
the sequential tasks, they correctly explained, at a con-
ceptual level, how to obtain the intermediate and final
variables from the fundamental equations.
These outcomes add to the literature on students’

handling of mathematics during physics problem solving.
Previous studies in this research area [3,15–18] have
reported that students, in either lower or upper division
physics, have difficulties applying sophisticated math-
ematical tools such as integrals and partial derivatives in
advanced physics topics. Nearly all of these studies utilized

typical textbooklike problems. Further, there is a dearth of
studies investigating university students’ handling of alge-
bra problems when solving physics problems [14,24]. In
our study, we used synthesis problems, based on funda-
mentals of energy conservation, projectile motion, linear,
and angular momentum conservation which are extensively
covered both at the introductory and sophomore level. In
addition, these synthesis problems only required basic
mathematical skills such as factorization and expansion
of algebraic expressions and use of trigonometric identity.
Overall, regardless of the level of sophistication of the topic
and mathematical tools, the students struggled to apply
their mathematical knowledge in the physics context.
Moreover, in the physics domain, “problem-solving

expertise should include opportunistically blending of
conceptual and formal mathematical reasoning even while
manipulating equations.” [4]. However, the many instruc-
tional materials or strategies designed to improve the
problem-solving process have mainly emphasized concep-
tual reasoning when formulating equations and evaluating
the final answer [4,6,36–39,41]. Further, these instructional
materials have predominantly utilized single-concept prob-
lems. We advocate that synthesis problems may provide an
additional opportunity to incorporate conceptual reasoning,
specifically while manipulating the mathematics. Once the
multiple equations are formulated, the students are required
to combine them to solve for an answer. As such, they need
to have a good sense of the connection between the
multiple events, concepts as well as the equations. In short,
synthesis problems may emphasize expertlike problem
solving approaches among students by channeling their
attention to conceptual reasoning when dealing with the
conceptual and mathematical aspects of the problem.
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APPENDIX A: TYPICAL SOLUTIONS FOR SEQUENTIAL SYNTHESIS PROBLEMS

For the three sequential problems, we need the four equations:

Energy conservation :
1

2
kx2 ¼ 1

2
mv2 þmgðLþ xÞ sin θ ðA1Þ

Projectile motion : R ¼ v cos θt ðA2Þ

y ¼ v sin θt − 1

2
gt2 ðA3Þ

tanϕ ¼ −y
R

ðA4Þ
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Simple task Intermediate task Complex task

From Eq. (A1):
mv2
2

¼ kx2
2
−mgðLþ xÞ sin θ

v ¼ ½kx2m − 2gðLþ xÞ sin θ�12

From Eq. (A2): t ¼ R
v cos θ From Eq. (A1):

v2 ¼ kx2
m − 2gðLþ xÞ sin θPlug Eq. (A4) and t ¼ R

v cos θ in Eq. (A3):

−R tanϕ ¼ v sin θð R
v cos θÞ − gR2

2v2cos2θ
Plug values gives

v2 ¼ 15 − 11.76 sin θ m=s.

Plug values give v ¼ 2.87 m=s. Simplify and isolate for v

v ¼ ½ gR
2cos2θðtanϕþtan θÞ�

1
2

From Eq. (A2): t ¼ R
v cos θ

Plug Eqs. (A2) and (A4) in Eq. (A3):

−v cos θt tanϕ ¼ v sin θt − gt2

2

Plug values gives v ¼ 2.87 m=s Plug Eq. (A4) and t ¼ R
v cos θ

in Eq. (A3) and simplify:

tanϕ ¼ tan θ − gR
2v2cos2θ

Simplify and isolate for t

t ¼ 2vðcos θ tanϕþsin θÞ
g

From Eq. (A1): plug v ¼ 2.87 m=s and other
values and simplify:

1500x2 − 11.24x − 13.74 ¼ 0

Plug values and expression
for v2 and simplify:

Plug values gives t ¼ 0.560 s Isolate for x 12.74
ð30−23.52 sin θÞcos2θ − tan θ ¼ 0.466

From Eq. (A2), plug values gives
R ¼ ð2.87Þ cos 35ð0.560Þ ¼ 1.3 m.

x ¼ 11.24�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð11.24Þ2−4ð1500Þð−13.74Þ
p

2ð1500Þ
x ¼ 0.1 m.

Use identities and isolate for θ:
θ ¼ 35°

APPENDIX B: TYPICAL SOLUTIONS FOR SIMULTANEOUS SYNTHESIS PROBLEMS

For both versions of the simultaneous problem, we need the three equations:

Energy conservation :
1

2
kΔx2 þ 1

2
ðM þmÞv2o ¼

1

2
mv2p þ

1

2
Mv2f þ

1

2
Iω2 ðB1Þ

Linear momentum conservation : ðM þmÞvo ¼ Mvf þmvp ðB2Þ

Angular momentum conservation : mvoR ¼ mvpRþ Iω ðB3Þ

Simple task Intermediate task

From Eq. (B2): From Eq. (B2):

vf ¼ ðMþmÞvo−mvp
M vf ¼ ðMþmÞvo−mvp

M

Plug values gives vf ¼ −7 m=s From Eq. (B3):

From Eq. (B3): ω ¼ mvoR−mvpR
I ¼ mR

I ðvo − vpÞ

ω ¼ mRvo−mRvp
1
2
mR2

Plug expressions for vf, ω, and I ¼ ½ M R2 in Eq. (B1):

Plug values gives ω ¼ −32 rad=s 1
2
kΔx2 þ 1

2
ðM þmÞv2o ¼ 1

2
mv2p þ 1

2
M
m2 ½ðM þmÞvo −mvp�2 þ 1

2
IðmR

I Þ2ðvo − vpÞ2

From Eq. (B1), simplify and isolate for Δx: Plug values, simplify, and isolate for vo:

Δx ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mv2pþMv2fþ1
2
MR2ω2−ðMþmÞv2o
k

q ð−42Þv2o þ ð924Þvo − 3581.375 ¼ 0

vo ¼ 22�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð22Þ2−4ð85.27Þ
p

2

vo ¼ ð5.0 m=s; 17 m=sÞ, vo ¼ 5.0 m=s.

Plug values gives
Δx ¼ �0.176 m, Δx ¼ 17.6 cm
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APPENDIX C: CODING SCHEME FOR
SEQUENTIAL SYNTHESIS PROBLEMS

Level I: Formulation of equations—deals with iden-
tifying all the pertinent concepts and generating equations
to mathematically express each pertinent concept, energy
conservation and projectile motion.
If a student formulates all the equations for all the

pertinent concepts, then the student is considered to be in
this category. We coded for the following:

• correct energy conservation equation linking the
relevant types of energy for the initial and final
conditions and using the correct height expression
for the gravitational potential energy term, i.e.,
½kx2 ¼ ½mv2 þmgðLþ xÞ sin θ.

• incorrect energy conservation equations linking irrel-
evant types of energy for the initial and final con-
ditions and/or using incorrect height expressions for
the gravitational potential energy term.

• correct projectile motion equations: (i) horizontal mo-
tion, R ¼ v cos θ t, (ii) trigonometry relating angle ϕ,
magnitude and direction of the horizontal and vertical
motion, tanϕ ¼ −y=R, and (iii) equation for vertical
motion, −y ¼ −R tanϕ ¼ v sin θ t −½ g t2.

• incorrect projectile motion equations such as incorrect
(i) initial and/or final position in the vertical motion
equation, (ii) expressions for the components of
the block’s velocity, and (iii) expressions for trigo-
nometry.

Level II: Combination of mathematical equations—
refers to combining the equations emerging on application
of all the pertinent concepts.
Students who did combine their formulated energy

conservation and projectile motion equations are in this
category. The students tend to merge the expression for
the block’s velocity from the energy conservation equation
with the vertical motion equation.
Level III: Simplification of equation to obtain the

variable of interest—pertains to students’ attempt to
identify variables and rearrange equations such that the
required variable is written as a function of the others.
Students who did attempt to simplify their expression,

emerging from combining the energy conservation and
projectile motion equations, to determine the required
variable are in this category. From the expression emerging
from combining the energy conservation and projectile
motion equations, the required variable is (i) R, the
horizontal distance, for the simple task, (ii) x, the initial
compression of the spring, for the intermediate version, and
(iii) θ, the angle of initial slope, for the complex task.

APPENDIX D: CODING SCHEME FOR
SIMULTANEOUS SYNTHESIS PROBLEMS

Level I: Formulation of equations: deals with identi-
fying all the pertinent concepts and generating equations to

mathematically express each pertinent concept, energy
conservation, linear, and angular momentum conservation.
If a student formulates all the equations for all the

pertinent concepts, then the student is considered to be in
this category. We coded for the following:

• correct linear momentum conservation equation link-
ing the initial and final linear momentum due to the
disc and the projectile. We also considered the correct
velocity variables used for the initial and final con-
ditions i.e., (M þm) vo ¼ M vf þmvp.

• correct angular momentum conservation equation link-
ing the initial and final angular momentum due to the
projectile, and the final angular momentum due to
the disc. We also considered the correct velocity
variables used for the initial and final conditions, i.e.,
m vo R ¼ m vp Rþ Iω.

• correct energy conservation equation linking the
relevant types of energy for the initial and final
conditions. We also considered the correct velocity
variables used for the initial and final conditions,
i.e., ½kΔx2þ½ðMþmÞv2o¼½Mv2fþ½mv2pþ½Iω2.

• the incorrect equations for energy conservation,
linear, and angular momentum conservation relating
irrelevant types of energy, linear, and angular mo-
mentum, respectively, and/or the incorrect velocity
variables used for the initial and final conditions.

Level II: Combination of mathematical equations—
refers to combining the equations emerging on application
of all the pertinent concepts.
Students who did combine their formulated equation

for energy conservation, linear, and angular momentum
conservation are in this category. The students tend to
merge the expression for the disc’s final velocity vf and
angular velocity ω from the linear and angular momentum
conservation equation, respectively, with the energy con-
servation equation.
Level III: Simplification of equation to obtain the

variable of interest—pertains to students’ attempt to
identify variables and rearrange equations such that the
required variable is written as a function of the others.
Students who did attempt to simplify their expression,

emerging from combining their energy conservation, linear,
and angular momentum conservation equations, to deter-
mine the required variable are in this category. From the
expression emerging from combining the energy conser-
vation, linear, and angular momentum conservation equa-
tions, the required variable is (i) Δx, the initial compression
of the spring, for the simple task, and (ii) vo, the disc’s
initial velocity, for the complex task.

APPENDIX E: INTERVIEW PROTOCOL FOR
SEQUENTIAL AND SIMULTANEOUS

SYNTHESIS PROBLEMS

• Tell me, in your own words, what the task is about?
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• Guide me over your solution. How did you proceed to
solve this problem?

• When you were given this task, how did you think
about it before you started solving it?

• You mentioned that you used the best approach
to tackle this problem. Can you tell me more
about that?

• You said that you use two different methods; you
mentioned that you attempted the problem in stages.
Can you explain what you mean by that? Can you
elaborate on your response?

• You said you use these concepts. How did you use
them to solve the problem?

• I see that you got stuck with the math here. What
happened at that point?

• You mentioned mathematically you were having some
troubles. Can you tell me more about it?

• Did you find it easy or hard to manipulate the
mathematics? Can you elaborate on your response?

• Any difficulties that you face while trying to merge
these equations?

• How did you find the task? In what ways did you find
it easy or difficult?

APPENDIX F: RESULTS FOR WHY STUDENTS
DID NOT COMBINE THE EQUATIONS
FORMULATED FOR THE SEQUENTIAL

SYNTHESIS TASKS

Table III presents the actions of those students who did
not combine the pertinent equations after formulating them
for the sequential synthesis tasks. Illustrations of students’
actions for the simple, intermediate and complex sequential
synthesis tasks are presented in Fig. 11.

TABLE III. Actions of those students who did not combine the equations across the three versions of the sequential synthesis task.

Students’ actions Simple (N ¼ 4) Intermediate (N ¼ 5) Complex (N ¼ 6)

1. The students formulated all the fundamental equations.
However, instead of mathematically manipulating the
equations, they wrote down the key intermediate
variables and steps needed to find the final variable of
interest.

3 0 2

2. The student first tried to solve the problem using
Newton’s Second Law before shifting to using energy
conservation and projectile motion.

1 0 0

3. The students merged the projectile motion equations.
They obtained a complicated quadratic equation with
trigonometry for the intermediate and complex tasks.
These expressions were left in purely symbolic forms.
The students did not combine the expressions although
they knew they needed to do so to find the variable of
interest. This is indicated by the students’ drawing an
arrow linking the expressions from the energy
conservation and projectile motion equations, and re-
arranging the energy conservation equation with
velocity as the required variable. The students also re-
arranged the projectile motion equations with velocity
or time as the necessary variable.

0 5 4
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APPENDIX G: RESULTS FOR WHY STUDENTS DID NOT SIMPLIFY THE COMBINED
EQUATIONS FOR THE SEQUENTIAL SYNTHESIS TASKS

Table IV highlights the actions of those students who did not simplify the equations after combining them for the
sequential synthesis tasks. Figure 12 depicts examples of students’ actions for the simple, intermediate and complex
sequential synthesis tasks.

FIG. 11. Written solutions of those students who failed to combine their formulated equations for the (a) simple, (b) intermediate, and
(c) complex sequential synthesis tasks.

TABLE IV. Actions of those students who did not simplify their equations after combining them for the simple, intermediate and
complex sequential synthesis tasks.

Students’ actions Simple (N ¼ 2) Intermediate (N ¼ 5) Complex (N ¼ 11)

1. From the energy conservation equation, the students found
an expression rather than a value for velocity. They
combined the v expression with the projectile motion
equations to obtain a quadratic expression involving
trigonometry. Although all the variables were known, the
students did not plug in the values to simplify the equation
to solve for the variable of interest.

2 0 0

(Table continued)
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FIG. 12. Written solutions of those students who failed to simplify their combined equations for the (a) simple, (b) intermediate, and
(c) complex sequential synthesis tasks.

TABLE IV. (Continued)

Students’ actions Simple (N ¼ 2) Intermediate (N ¼ 5) Complex (N ¼ 11)

2. The students obtained an expression for velocity from the
energy conservation equation. They combined this
expression with the horizontal and the vertical motion
equation respectively. Two intricate quadratic expressions
with trigonometry resulted for the intermediate task. These
expressions were left in symbolic form. They had to be
tackled simultaneously to find the variable of interest.

0 5 0

3. The students obtained an intricate quadratic expression for
the complex task after combining the energy conservation
and projectile motion equations. They left the equations in
symbolic form and had to use trigonometric identity,
which they failed to apply, to find the variable of interest.
They may also write down that they were unsure how to
solve for the variable of interest from the combined
equation.

0 0 11
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APPENDIX H: RESULTS FOR WHY STUDENTS COMBINED AND SIMPLIFIED THE
EQUATIONS FOR THE SIMULTANEOUS SYNTHESIS TASKS

The actions of those students who were able to combine and simplify the equations for the simple and the complex
simultaneous synthesis task are presented in Table V. Examples of students’ actions for the simple and complex
simultaneous synthesis tasks are presented in Fig. 13.

TABLE V. Actions of those students who combined and simplified the equations formulated for the simple and complex simultaneous
synthesis tasks.

Students’ actions Simple (N ¼ 11) Complex (N ¼ 3)

1. The students found a value for the disc’s final linear velocity and
angular velocity from the linear momentum conservation and
angular momentum conservation equation respectively. They then
plugged these two values in the energy conservation equation. This
resulted in a quadratic expression which was straightforward to
manipulate to find a value for the variable of interest.

11 0

2. The students found an expression for the disc’s final linear velocity
and angular velocity from the linear momentum conservation and
angular momentum conservation equation respectively. These two
expressions were linear. They then substituted these two expressions
in the energy conservation equation. This resulted in a quadratic
expression requiring the use of expansion and factorization of
algebraic expressions, which they successfully applied, to find the
variable of interest.

0 3

FIG. 13. Written solutions of those students combining the formulated equations and simplifying the combined equations for the
(a) simple, and (b) complex simultaneous synthesis tasks.
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