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Prior research suggests that introductory physics students have difficulty with graphing and interpreting
graphs. Here, we discuss an investigation of student difficulties in translating between mathematical and
graphical representations for a problem in electrostatics and the effect of increasing levels of scaffolding on
students’ representational consistency. Students in calculus-based introductory physics were given a typical
problem that can be solved using Gauss’s law involving a spherically symmetric charge distribution in
which they were asked to write a mathematical expression for the electric field in various regions and then
plot the electric field. In study 1, we found that students had great difficulty in plotting the electric field as a
function of the distance from the center of the sphere consistent with the mathematical expressions in
various regions, and interviews with students suggested possible reasons which may account for this
difficulty. Therefore, in study 2, we designed two scaffolding interventions with levels of support which
built on each other (i.e., the second scaffolding level built on the first) in order to help students plot their
expressions consistently and compared the performance of students provided with scaffolding with a
comparison group which was not given any scaffolding support. Analysis of student performance with
different levels of scaffolding reveals that scaffolding from an expert perspective beyond a certain level may
sometimes hinder student performance and students may not even discern the relevance of the additional
support. We provide possible interpretations for these findings based on in-depth, think-aloud student
interviews.
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I. INTRODUCTION

Physics is a challenging subject to learn and it is difficult
for introductory students to associate the abstract concepts
they study in physics with more concrete representations
that facilitate understandingwithout an explicit instructional
strategy aimed to aid them in this regard. Without guidance,
introductory students often employ formula oriented
problem-solving strategies instead of developing a solid
grasp of physical principles and concepts [1]. There are
many reasons to hypothesize thatmultiple representations of
concepts along with the ability to construct, interpret, and
transform between different representations that correspond
to the same physical system or process play a positive role in
learning physics. First, physics experts often use multiple
representations as a first step in a problem-solving process
[1–4], anddiagrammatic representations have been shown to
be superior to exclusively employing verbal representations
when solving problems [5–7]. Second, students who are

taught explicit problem-solving strategies emphasizing
the use of different representations of knowledge at
various stages of problem solving construct higher-quality
and more complete representations and perform better
than students who learn traditional problem-solving strat-
egies [8]. Third, multiple representations are very useful
in translating the initial, mostly verbal description of a
problem into a representation more suitable to mathemati-
cal manipulation [9,10], partly because the process of
constructing a representation of a problem makes it easier
to generate appropriate decisions about the solution proc-
ess. Also, getting students to represent a problem in
different ways helps shift their focus from merely manipu-
lating equations toward understanding physics [11].
Some researchers have argued that in order to understand
a physical concept thoroughly, one must be able to
recognize and manipulate the concept in a variety of
representations [10,12]. As Meltzer puts it [12], a range
of diverse representations is required to “span” the con-
ceptual space associated with an idea. Since traditional
courses that do not emphasize multiple representations
lead to low gains on the Force Concept Inventory [13,14]
and on other assessments in the domain of electricity
and magnetism [15], in order to improve students’ under-
standing of physics concepts, many researchers have
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developed instructional strategies that place explicit
emphasis on multiple representations [1,9,16–18] while
other researchers have developed other strategies with
implicit focus on multiple representations [19–21]. Van
Heuvelen’s approach [9], for example, starts by ensuring
that students explore the qualitative nature of concepts by
using a variety of representations of a concept in a familiar
setting before adding the complexities of mathematics.
Many other researchers have emphasized the importance of
students becoming facile in translating between different
representations of knowledge [22,23] and that significant
positive learning occurs when students develop facility in
the use of multiple forms of representation [24]. However,
careful attentionmust be paid to instructional use of diverse
representational modes since specific learning difficulties
may arise as a consequence [12] because students can
approach the same problem posed in different representa-
tions differently without support [12,25].
This paper is focused on students’ ability to transform

between mathematical and graphical representations of a
piecewise function in different regions in the context of an
electrostatics problem with spherically symmetric charge
distribution and the effect of different scaffolding supports
designed to aid them in this regard. Student difficulties in
interpreting graphical representations have been exten-
sively researched in kinematics [26–30]. Instructional
strategies have also been developed to reduce student
difficulties [31–33]. Other researchers have investigated
student understanding of P-V (pressure versus volume)
diagrams both in upper-level thermodynamics courses [34]
as well as in introductory calculus-based physics courses
[35]. In a later study, Christensen and Thompson [36]
investigated student difficulties with the concept of slope
and derivative in a mathematical (graphical) context.
Student difficulties with the concept of a function have

been researched by mathematics education researchers
[37–39]. Hitt [39] found that even secondary mathematics
teachers cannot always articulate between the various
systems of representation involved in the concept of a
function. Vinner and Dreyfus [40] distinguished between a
concept image and a concept definition because they saw
students repeatedly misuse and misapply terms like func-
tion, limit, tangent, and derivative. For many students, the
image evoked by the term “function” is of two expressions
separated by an equal sign. Thompson found [41] that
many students who had successfully passed a calculus and
a modern algebra course saw no problem with a definition
like fðxÞ ¼ nðnþ 1Þð2nþ 1Þ=6 because it fits their con-
cept image of a function. Also, students in introductory
physics courses often have an action conception of a
function because a function is seen as a command to
calculate, and therefore they must actually apply it to a
number before the “recipe” will produce anything. Without
guidance, the way many introductory physics students
manage equations in solving physics problems is often

very predictable: they plug numbers into an equation
and figure out an unknown, which can in turn be plugged
into another equation. This “plug and chug” process is
continued until the target variable is found. When numbers
are not given or when students run into a situation with two
equations and two unknowns, they have much more diffi-
culty solving the problem. As evidenced by these examples
and others [41], while students’ concept images are often not
consistent with concept definitions, for mathematics experts,
the concept images become tuned over time so that they are
consistent with the conventionally accepted concept defi-
nitions. One proposed instructional method of overcoming
some of these difficulties involves real-world investigations
that use realistic data and scenarios [42–44]. Mathematics
education researchers have also investigated student diffi-
culties in connecting various representations of functions, in
particular, graphical and algebraic representations [45,46].
Some researchers have emphasized that this process of
translating between the graphical and algebraic representa-
tions of functions presents one of the central difficulties for
students in constructing an appropriate mental image of a
function [47]. Other mathematics education researchers have
investigated the intertwining between the flexibility of mov-
ing from one representation of a function to another and other
aspects of knowledge and understanding [48–50] as well as
students’ abilities to extract meaningful information from
graphs [51].
In physics, there is the added difficulty of understanding

the relevance of certain mathematical knowledge and pro-
cedures to the solution of physical problems. Students may
have the requisite mathematical knowledge that needs to be
applied to a physical situation, but theymay fail to invoke it at
the appropriate time because they are unaware of its useful-
ness. This is supported by Hammer’s observation that high-
school students take little out of an initial mathematical
review of procedures divorced from physics [52] and by
research on difficulties of transferring mathematical knowl-
edge across disciplines [53–55]. Also, the physics context
typically requires additional information processing, which
may lead to an increased cognitive load [56] and deteriorated
performance.
Here, we explore the facility of students in a calculus-

based introductory physics course in transforming a prob-
lem solution involving the electric field for spherical charge
symmetry from a mathematical to a graphical representa-
tion, and the effect of different scaffolding supports on
students’ ability to carry out the transformation consis-
tently. This study is primarily focused on students’ ability
to transform electric field from one representation to
another and not on their ability to correctly use Gauss’s
law to find the electric field. However, many previous
studies have documented students’ difficulties with
E&M (electricity and magnetism) concepts [57–71]. In
study 1, we investigated the extent to which students were
able to transform from one representation to another
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consistently, and we conducted think-aloud interviews
with students to identify common difficulties. In study 2,
we designed two scaffolding support levels that built on
each other based on the findings of study 1, and inves-
tigated their impact on improving students’ representational
consistency.

II. STUDY 1

A. Methodology and research questions

Since being able to transform between different repre-
sentations of knowledge is a hallmark of expertise, we
investigated the extent to which students in a calculus-
based introductory physics course could transform the
electric field in each region for the situation depicted in
Fig. 1 from a mathematical to a graphical representation.
We selected this problem which is relatively straightfor-
ward from an expert point of view [since the electric field is
no-zero only in region (ii)]. Despite its simplicity for
experts, our past experience with this problem indicated
that students have great difficulty with this problem. In
particular, roughly 70% of the students in this study found
a nonzero expression for the electric field in at least one
region in which it is zero. Moreover, many students
(including those who found correct expressions for the
electric field in each region) had difficulty in transforming
the electric field in each region from a mathematical to a
graphical representation.
Study 1 was designed to investigate the extent to which

students have difficulty in transforming the piecewise
electric field in this problem from a mathematical to a
graphical representation, and to identify possible reasons
that could account for the common difficulties they
exhibit when they engage in the task. In this phase of
the investigation, the problem was administered as a quiz to
an introductory calculus-based class of 65 students. This
was one of the weekly quizzes students took at the end of
recitation which was counted for a certain (small) percent-
age of their final grade. In addition, in order to identify

possible difficulties students have in plotting the electric
field in this situation, think-aloud interviews [72] were
conducted with eight students individually. The interviews
suggested possible student difficulties. The quantitative
data were then used to estimate the prevalence of each
type of difficulty identified. Then, these findings inspired
study 2, in which two levels of scaffolding support that built
on each other (i.e., the second level builds on the first)
were designed to help reduce the most common difficulty
observed and guide students to make better connection
between the mathematical and the graphical representations
of the electric field.
Problem used in this study.—“A solid conductor of

radius a is inside a solid conducting spherical shell of
inner radius b and outer radius c. The net charge on the
solid conductor is þQ and the net charge on the concentric
spherical shell is −Q (see Fig. 1).
(a) Write an expression for the electric field in each

region.
(i) r < a
(ii) a < r < b
(iii) b < r < c
(iv) r > c

(b) On the figure below (see Fig. 2), plot EðrÞ (which is
the electric field at a distance r from the center of the
sphere) in all regions for the problem in (a).

We investigated the following research questions:
RQ1: Without any scaffolding support, to what

extent are students able to make connections between
the mathematical and graphical representations of the
electric field in this problem?—This research question
was answered by determining the percentage of students
who plotted the electric field in a manner consistent with
the mathematical expressions they found in each region.
We considered a students’ graph to be consistent with their
mathematical expression in a particular region if the shape
of the graph agreed with the mathematical expression (e.g.,
linear, inverse); students were not expected to label end
points, or even have correct end points. For example, one
student foundEðrÞ ¼ kr=3 in region b < r < c, and drew a
plot similar to the one shown in Fig. 3 (an increasing linear
plot that starts from the r axis). Based on the expression he

- Q 

c 

b

+ Q
a 

FIG. 1. Problem diagram.

r = cr = b

E(r) 

r 
r = a

FIG. 2. Coordinate axes provided to all students for plotting the
electric field in part (b).
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wrote down [EðrÞ ¼ kr=3], the left end point, Eðr ¼ bÞ,
should be kb=3. However, according to his plot in this region
(see Fig. 3), the left end point was drawn as Eðr ¼ bÞ ¼ 0.
Even though the student did not draw the left end point
correctly, this student was still considered to be consistent in
plotting by the researchers because he drew the correct type
of plot (linear) consistent with the expression in that region.
RQ2: What common difficulties do students have in

transforming the electric field in this problem from the
mathematical to the graphical representation and how
common are these difficulties?—To answer this research
question, we conducted think-aloud interviews during
which students solved the problem while verbalizing their
thought process. After the students had solved the physics
problem to the best of their ability, they were asked for
clarification on points they had not made clear earlier while
thinking out loud. We identified several difficulties after
which we analyzed our quantitative data to determine how
common the difficulties are.
Student volunteers were recruited after instructors who

were teaching a separate section of the second semester
calculus-based introductory physics course sent email
announcements to their students with details about the
study. The interviews were conducted after students were
tested on the relevant topics (Gauss’s law) via a midterm
exam by one of the authors (A. M.) who was not affiliated
with any of the courses. All students had also completed
the study of Calculus I and most of them were taking
Calculus II at the time. They also completed the first
semester of introductory physics, which includes a fair
amount of mathematics. The interviewer ensured that
students had not solved the problem prior to the interview
(or at least did not recognize the problem when presented
with it), so during the interviews students solved the
problem for the first time while thinking out loud. The
interviews were audio recorded, and during the interviews,
A. M. took notes about key points in the interview to listen
to carefully later. Students’ work was also collected, and
later, based on the notes, certain key points in the interview
were transcribed. Two researchers looked at the important
transcribed parts of the interviews and discussed the
difficulties. There was some disagreement in the beginning
in the interpretation of the data, but through discussions,

any disagreements were resolved. We should point out that
the research presented here used mixed methods and the
main purpose of the think-aloud interviews was to help the
researchers interpret the quantitative data.

B. Results

RQ1: Without any scaffolding support, to what
extent are students able to make connections between
the mathematical and graphical representations of the
electric field in this problem?—We found that only 26%
of students plotted the electric field consistent with the
mathematical expressions they found in all regions. Many
students plotted the electric field consistently in some
regions and inconsistently in others. It appeared from the
plots that many students did not recognize that their
expressions in different regions were showing a piecewise
defined electric field. Therefore, we carried out think-aloud
interviews to better understand the common difficulties
students have in plotting the electric field for this problem.
RQ2: What common difficulties do students have in

transforming the electric field in this problem from the
mathematical to the graphical representation and how
common are these difficulties?—Eight students who had
completed the study of electrostatics were interviewed one-
on-one using a think-aloud protocol. The interviews sug-
gested two common difficulties students have in plotting
the electric field in this problem: (1) not contemplating the
behavior of the electric field in each region separately when
plotting and globally plotting the electric field in all regions
at once and (2) contemplating the behavior of the electric
field in each region separately but plotting the “expected”
behavior based upon qualitative reasoning rather than the
mathematical expressions found.
We describe each difficulty in more detail and provide

examples below.
Student difficulty 1: Not contemplating the behavior

of the electric field in each region separately when
plotting and globally plotting the electric field in all
regions at once.—This difficulty was observed in inter-
views in which students insisted on plotting a continuous
electric field without carefully contemplating what the
behavior of the field is in each region or noticing the
discontinuity in the electric field at the boundaries between
regions. For example, one interviewed student, Alex, found
the following expressions for the electric field:

r < a∶ E ¼ kQ=r2;

a < r < b∶ E ¼ −2kQ=r2;

b < r < c∶ E ¼ −kQ=r2;

r > c∶ E ¼ −kQ=r2:

Then, he mainly focused on the sign of the expression for
the electric field in each region and the fact that the field
must be continuous throughout to make his plot. He did not

r = a

E (r) 

r r = b r = c

FIG. 3. Reproduction of a plot by a student in region b < r < c.
His plots in other regions have been excluded for clarity.
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carefully check the behavior of the electric field, especially
at the boundary between two regions where the field is
discontinuous,
After observing his expressions in different regions,

Alex started plotting the electric field (shown in Fig. 4).
As he was plotting the electric field, he said,

EðrÞ is gonna start out really positive while it’s in a [he
means for r < a], it’s gonna be more positive out here
[points towards r close to 0], so it’s gonna go like this
[starts drawing a decreasing graph towards r ¼ a] then
start going down faster, hit that midpoint [points in
between a and b where it is zero according to his plot],
hit this point where r equals b, start leveling off until r
equals c, and then drop down to negative infinity out
here [region r > c].

It was evident from the above quote that Alex was
mainly focusing on the sign of the electric field and making
sure that the field is continuous everywhere. He did not
recognize that each of the different expressions has to be
plotted separately in the appropriate region.
Another student, Charles, used a similar approach. He

found the following expressions for the electric field:

r < a∶ E ¼ kQ=r2;

a < r < b∶ E ¼ kQ=ðb − aÞ2;
b < r < c∶ E ¼ kQ=ðc − bÞ2;
r > c∶ E ¼ 0:

He then reasoned that at r ¼ a, the electric field is larger
than at r ¼ b, which is larger than at r ¼ c. He concluded
that the field should continuously decrease starting from
r ¼ 0 and drew the graph shown in Fig. 5.
Similar to Alex, Charles did not focus on each region one

by onewhile plotting and did not contemplate the behavior of
the electric field in each region separately. He did not realize
that there were discontinuities in the electric field at the
boundaries between different regions. Instead, he plotted a
continuous electric field by considering only several points in
different regions (r ¼ a, r ¼ b, and r ¼ c) at the same time.

He did, however, plot a zero electric field for r > c, which is
consistent with his expression in that region.
Another interviewed student, Yara, used a similar

approach when plotting the electric field. She found the
following expressions:

r < a∶ E ¼ kQr=a3;

a < r < b∶ E ¼ kQ=ðr − aÞ2;
b < r < c∶ E ¼ 0;

r > c∶ E ¼ −kQ=ðr − cÞ2:
Her plot is shown in Fig. 6.
Before plotting, she determined whether the electric

field is negative or positive in each region and used the
convention (which she made up) that if the electric field
points away from the center, it is negative, and if it points
towards the center, it is positive. She did this by reasoning
conceptually and determined that for r < a and r > c, the
electric field points towards the center (positive according
to her convention), and for a < r < b and b < r < c, it
points away from the center (negative according to her

FIG. 4. Electric field plotted by Alex (an interviewed student).

FIG. 5. Electric field plotted by Charles (an interviewed
student).

FIG. 6. Electric field plotted by Yara (an interviewed student).

CHALLENGES IN DESIGNING APPROPRIATE … PHYS. REV. PHYS. EDUC. RES. 13, 020103 (2017)

020103-5



convention). As she was doing this, she plotted a few points
(some of which can be seen in Fig. 6) to indicate that the
electric field is negative or positive. She then plotted the
electric field in all of the different regions together by only
making sure that it has the expected sign (negative or
positive) without thinking about what the exact behavior of
the electric field is in each region (e.g., decreasing as 1=r,
constant, zero, etc.) or whether it is continuous at the
boundaries between the regions.
We note that both Charles and Yara were high-achieving

students who performed well in the first semester calculus-
based introductory physics course (both received an A−),
and in the exam, which covered electrostatics in the second
semester calculus-based physics courses, their scores were
above average; Yara’s score was actually above 90%.
However, they still had great difficulty recognizing that
the electric field should be plotted by considering its
behavior in each region separately. When plotting the
electric field, they did so globally (i.e., in all regions at
once) without considering the behavior of the electric field
in each region. These interviews suggested that in order to
help students plot the electric field consistently, they should
first be guided to recognize that they need to consider each
region separately and identify what the behavior of the
electric field is in each region and plot it accordingly.
Student difficulty 2: Contemplating the behavior of

the electric field in each region separately but plotting
the “expected” behavior based upon qualitative reason-
ing rather than the mathematical expressions found.—
Some students recognized that they should consider the
behavior of the electric field in each region separately while
plotting, but they still drew plots that were inconsistent with
their written expression for the electric field. The reason for
the inconsistency for these students was that they did not
apply the same approach that was previously used for
finding the expression of the electric field to make the
corresponding plot in the same region (or vice versa if they
drew the plot prior to writing down the mathematical
expressions). Instead, they may adopt a qualitative approach
while plotting (e.g., by recalling an expected behavior) but
use a mathematical approach (e.g., by applying Gauss’s law)
when writing down an expression for the electric field.
Because of the common introductory student difficulty in
applying the mathematical form of Gauss’s law correctly,
more often than not, the qualitative reasoning of these
students while plotting did not agree with their mathematical
expression in the same region. For example, Sarah, in region
b < r < c, started by reasoning qualitatively (it is possible
that she recalled a memorized result):

In there it should be zero because it’s within a
conductor.” Then, after a short pause, she added
“Now, if only I could find an expression for that.

It appeared that something like “E ¼ 0” did not fit Sarah’s
conception of “expression,” because she proceeded to try to

find an expression with variables (or constants from the
problem, a, b, c, Q) in it. She used Gauss’s law mathemati-
cally, did so incorrectly, and obtained E ¼ −4πc2 þ 4πb2.
At this point in the problem-solving process, Sarah did not
recall (as she explicitly noted when reading the problem and
when looking at the diagram provided) that b and c are the
inner and outer radii of the spherical shell and that therefore
they are not equal, which implies that her expression,
E ¼ −4πc2 þ 4πb2, is not consistent with her qualitative
expectation (E ¼ 0). She was more inclined to trust an
expression that followed from a mathematical procedure.
However, when plotting the electric field, she plotted
E ¼ 0 (the behavior she was expecting from her qualitative
reasoning).
It appears that some students like Sarah may have

epistemological beliefs [52,73] that quantitative reasoning
should be trusted when writing a mathematical expression
and qualitative reasoning should be trusted when plotting.
Sarah employed a similar approach in region a < r < b, in
which, using Gauss’s law mathematically, she obtained
E ¼ −4πb2 þ 4πa2. But when plotting the electric field, she
said,

For r between distances a and b […] we dropped off
with E being proportional to 1=r2.

She then plotted a function that decreases in this way
instead of plotting the expression she found through
mathematically applying Gauss’s law (a constant negative
function).
Joe, another interviewed student, found a nonzero math-

ematical expression in region b < r < c, namely, kjQjjρj=r2
(in this expression, ρ refers to volume charge density, which
Joe had not defined). However, when he plotted the field
in this region, he said that the electric field should vanish
because the negative charge,−Q, will be on the inner surface
of the spherical shell (i.e., at r ¼ b). Although he seemed to
be aware that the field should vanish in this region while
plotting, when writing an expression, he trusted the math-
ematical expression (∼1=r2) he found.
Another interviewed student, James, in region a < r < b

included contributions from both the inner sphere and
the outer spherical shell to obtain 2kQ=r2, which is the
expression he wrote down for the electric field in that
region. However, he noted that the situation given in the
problem was a spherical capacitor and argued that the
electric field should be constant:

As we get farther away from [the edge of the sphere],
[…] the outer circle’s [outer spherical shell] field would
get stronger in a way that the [net] field would remain
constant anywhere between the two points [ r ¼ a and
r ¼ b].

He then plotted a constant, positive electric field between
r ¼ a and r ¼ b (what he expected from his qualitative
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reasoning) instead of plotting the function he wrote down
for the electric field in this region (∼1=r2).
We note that the main difference between the two

difficulties is that students with difficulty 1 do not con-
template the behavior of the electric field in each individual
region separately, and plot the electric field in all regions at
once, whereas students with difficulty 2 explicitly consider
the behavior of the electric field in each region, but plot
what they expect from qualitative reasoning instead of their
expression. For example, Charles expected the field to
decrease from one region to the next, but when plotting the
electric field, he did it in all regions at once and plotted a
decreasing function (Fig. 5) and did not stop to consider
how that decrease should occur in each region (e.g., linear,
proportional to 1=r or 1=r2). In contrast, Sarah explicitly
considered how the electric field should behave in each
region, and, after finding an expression, she plotted the
field in each region separately instead of plotting it in all
regions at once. However, instead of plotting her expres-
sion, she plotted the behavior she expected.
How common are these two types of difficulties?—In

order to estimate how common the difficulties are, we
analyzed the quantitative data to identify student responses
that are likely to be a result of difficulty 1 or 2. Although it
is difficult to precisely identify the number of students who
do not contemplate the behavior of the electric field in each
region separately based only on written work, the research-
ers obtained an estimate by counting the number of students
who plotted continuous electric fields even though their
expressions indicated that a discontinuity should be present.
This is reasonable because during the interviews, themanner
in which the students with difficulty 1 plotted the electric
field indicated that they felt it should be continuous (some
students explicitly noted this).We found that 51%of students
who participated in the in-class studywere likely to have this
type of difficulty.
To estimate how many students plotted what their

qualitative reasoning indicates the electric field should
behave like instead of the mathematical expression they
found, the researchers focused on all the cases in which
there was an inconsistency between the mathematical and
graphical representation and tried to identify whether it
was possible that the inconsistency was due to difficulty 2.
For example, in region r < a, a student may have found a
nonzero expression for the electric field, but instead plotted
a vanishing electric field. In this case, researchers included
the student in the group that was likely having difficulty 2.
Another example includes a student who found a nonlinear
electric field in the same region, but plotted a linearly
increasing electric field that is zero at the origin. In this case
too. it was considered by the researchers that the incon-
sistency was likely a result of difficulty 2 because students
may have incorrectly thought about the case in which the
sphere is an insulating volume distribution of charge and
not a conducting sphere. Also, for the region a < r < b, if a

student plotted a constant (nonzero) electric field but found
a different expression, it was also considered by researchers
that this was likely due to difficulty 2 because students may
have recognized, e.g., as James did, that the situation
corresponds to a spherical capacitor, but incorrectly gen-
eralized from their knowledge of a parallel plate capacitor
that this implies that the electric field is constant inside the
capacitor. Our analysis of the written data indicates that
including all such cases, in only 9% of the cases the
inconsistency could be due to difficulty 2. It is important to
keep in mind that the 9% included cases in which students
plotted incorrect behaviors that they may have expected
from qualitative reasoning. In only 4% of the cases, the plot
a student drew was correct despite the fact that their
expression was incorrect.
Written data in study 1 found that few students (∼25%)

were able to transform consistently from the mathematical
to a graphical representation, and think-aloud interviews
identified two difficulties that appeared to be common.
Analysis of the written data (from the 65 student quizzes)
suggested that difficulty 1 is a lot more common than
difficulty 2 (51% compared to 9%). Therefore, in study 2,
we designed two levels of scaffolding support to help
reduce difficulty 1. The decision to focus on difficulty 1
was also partly influenced by the fact that the types of
scaffolding required to help students with difficulty 2 are
not necessarily the same as those required to reduce
difficulty 1.

III. STUDY 2

A. Methodology and research questions

In study 2, we designed scaffolding support to help
students recognize that the electric field in this problem
has different expressions in different regions which must
be plotted separately in each region. In order to design
scaffolding supports, we first performed a cognitive task
analysis [74,75] from an expert perspective. Cognitive task
analysis is a technique designed to “yield information about
the knowledge, thought processes, and goal structures that
underlie observable task performance” [74], which, in the
context of physics problem solving consists of identifying
all of the individual thought processes required for students
to be able to solve a problem. Instruction can help students
develop those thought processes on their own by helping
them learn to follow effective problem-solving techniques
that experts employ [76]—an approach that has been
shown to be effective in improving problem-solving per-
formance [75,76]. Therefore, the intent of the scaffolding
supports was to help students follow the steps an expert
would when plotting the electric field for this Gauss’s law
problem. In addition, the design of the scaffolding supports
was also influenced by our knowledge of how students who
have difficulty 1 are reasoning while plotting the electric
field. SL2 built on SL1 in that it included all the support of
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SL1 (plus additional support). We refer to the version of
the problem used in study 1 as “scaffolding level 0” (SL0)
because it did not involve any scaffolding.
Scaffolding level 1 (SL1) design.—Cognitive task

analysis indicates that, when plotting the electric field
for this problem situation, an expert would recognize that
each expression for the electric field should be plotted in
the appropriate region. Students with difficulty 1 plotted the
electric field globally in all regions at once, which suggests
than in order to help reduce this difficulty, scaffolding
support should guide students to focus on one region at a
time. This kind of support can have two benefits: (1) help
students recognize that the behavior of the electric field
should be considered in each region separately, and
(2) reduce the cognitive load [56] associated with consid-
ering four regions at the same time.
Therefore, the first level of scaffolding (SL1) asked

students to plot the electric field in each region separately
before plotting it in part (b) for the problem situation shown
in Fig. 1. The instructions provided to them in part (a) of the
question were as follows:
(a) Write an expression for the electric field in each

region and plot the electric field in that region on the
coordinate axes shown (in the shaded regions, please do
not draw).
For each region (r < a, a < r < b, etc.), right after

calculating the expression for the electric field in that region,
students were given coordinate axes with the irrelevant
regions shaded out, as shown in Table I. This scaffolding
level was designed to help students contemplate the electric
field behavior in each region separately instead of in all
regions at one time and, therefore, help reduce difficulty 1.
Scaffolding level 2 (SL2) design.—In addition to

recognizing that each expression for the electric field
should be plotted in the appropriate region, an expert is
also likely to contemplate the end points of each expression
in each region because this type of analysis provides
explicit information about each expression (which is useful
for plotting it). The plotting approaches of students with
difficulty 1 suggested that they assumed that the electric
field in this problem is continuous (some students explicitly
said this). Therefore, providing scaffolding that helps
students consider end points of different expressions in
different regions can be beneficial, primarily in helping
students recognize that the electric field is not continuous
and plot it accordingly.
Students who received the second level of scaffolding

(SL2) were provided all the support of SL1, and, in
addition, they were asked to evaluate the electric field at
the beginning, midpoint, and end point of each region
immediately before plotting it in that region (see Table I).
In addition to helping students recognize a discontinuity
in the electric field, another potential benefit of SL2 is to
help students make a consistent plot. For example, if a
student is unsure about how a 1=r expression should be

plotted, he or she could plug in values for several different r
to determine what the graph looks like. A student could
potentially recognize how the plot should look like after
calculating the function explicitly at three points, begin-
ning, midpoint, and end point of the respective region.
We note that interviews with students who were thinking

aloud while solving the SL1 and SL2 versions of the
problem indicated that they were not confused by the
instructions in the two scaffolded versions of the problem
(i.e., it was clear to students where to plot the electric field,
what the additional instructions meant, etc.). In addition,
physics graduate students solved the two scaffolded ver-
sions of this problem and commented on the scaffolding
provided (i.e., to what extent they expected it to be useful
for introductory students). Some physics faculty members
who had taught introductory physics recently were also
shown the interventions and were asked to predict the
effectiveness of the interventions. Both graduate students
and faculty predicted that the interventions will help
students connect their expressions with their plots better
than students in the comparison group, with the majority
predicting that students in the SL2 group will perform
better in this regard than students in the SL1 group.
Sometimes they specifically mentioned that the additional
instructions would certainly be helpful for introductory
students.
The scaffolded versions of the problem were given to 95

students in a traditionally taught calculus-based introduc-
tory physics course who were enrolled in three different
recitation sections. The three recitation sections formed the
comparison group and two scaffolding intervention groups
for this investigation. All recitation sections were taught in
a traditional manner by the same teaching assistant who
worked out problems similar to the homework problems
and then gave students a 20-minute quiz at the end of
recitation. Students in all recitations attended the same
lectures, were assigned the same homework, and had the
same exams and quizzes.
Below, we delineate the research questions developed

for the purposes of investigating the impact of different
levels of scaffolding support on students’ representational
consistency and the connection between representational
consistency and performance on this problem.
RQ1: What is the impact of the medium level of

scaffolding support on students’ representational con-
sistency on this problem?—This research question was
investigated by comparing the percentages of students who
plotted the mathematical expressions they found consis-
tently in the SL1 group with the SL0 group.
RQ2: What are some mechanisms which may

account for the impact of the medium level of scaffold-
ing on students’ representational consistency on this
problem?—In order to shed light on the possible mech-
anisms for how students are affected by the medium level
of scaffolding on this problem, interviews were conducted
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using a think-aloud protocol [72]. As mentioned earlier,
eight interviews were conducted as part of study 1 with
students who solved the problem with no scaffolding.
Eight interviews were conducted with students who
solved the SL1 version of the problem and their
approaches to plotting the electric field were compared
to the students provided with no scaffolding.
RQ3: How does the additional scaffolding (SL2)

compare to the medium level of scaffolding (SL1) in
terms of students’ representational consistency on this
problem?—This research question was investigated by
comparing the percentages of students who plotted the
mathematical expressions they found consistently in the
SL2 group with the SL1 group. Since these students had to
plot the electric field twice, once in each individual region
separately (with irrelevant regions shaded out) and once
in all regions combined, we did both comparisons (see
Tables V and VI). (Note that it may seem unnecessary to
perform the second comparison, but we should note that
while an expert is likely to put together the plots he or she

drew in each region when plotting the electric field in all
regions, students often do not do this. They sometimes have
a final plot that is different from putting together the
individual plots they have in each region.)
RQ4: What mechanisms may be useful in explaining

the impact of the additional scaffolding in SL2 com-
pared to SL1 on introductory students’ representa-
tional consistency on this problem?—This question was
investigated by conducting think-aloud interviews with
seven students who solved the SL2 version of the problem
and comparing their approaches to those of students who
solved the SL1 of the problem while thinking aloud.
RQ5: Do students who exhibit representational con-

sistency perform better on this problem than students
who do not?—Previous research has found that students’
representational consistency correlates with learning gains
in mechanics [77] and that students who display superior
skills in representing a physical problem exhibit improved
problem-solving performance [78]. Motivated by these
findings, we investigated whether students who were

TABLE I. Descriptions of the three scaffolding levels.

Scaffolding level 0 (SL0) Scaffolding level 1 (SL1) Scaffolding level 2 (SL2)

(a)(i) r < a
Write an expression for
the electric field.

(a)(i) r < a
Write an expression for
the electric field.

(a)(i) r < a
Write an expression for
the electric field.

When r ¼ 0, Eðr ¼ 0Þ ¼ _________
When r ¼ a=2, Eðr ¼ a=2Þ ¼ _________
When r ¼ a, Eðr → aÞ ¼ _________

Plot the electric field on coordinate axes
provided (irrelevant regions shaded out).

r = a 

E ( )r

r 

Plot the electric field on coordinate axes
provided (irrelevant regions shaded out).

r = a 

E ( )r

r 

Similar for other three regions,
in parts (a)(ii), (a)(iii),
and (a)(iv).

Similar for other three regions,
in parts (a)(ii), (a)(iii),
and (a)(iv).

Similar for other three regions,
in parts (a)(ii), (a)(iii),
and (a)(iv).

(b) Plot the electric field for all regions in (a):

r = a 

E (r) 

r r =b r =c r = a 

E (r) 

r r =b r =c r = a 

E (r) 

r r =b r =c
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consistent between the mathematical and graphical repre-
sentations of the electric field exhibited improved problem-
solving performance compared to students who were not
consistent. In other words, we wanted to know whether
students who were consistent were more likely to find the
correct expressions for the electric field than students who
were not.
A rubric was developed jointly by two researchers to

quantify students’ problem-solving performance. The two
researchers agreed on the final version of the rubric prior to
analyzing the data for this study and independently graded
a randomly selected subset of 20% of the data which
showed excellent agreement (interrater reliability better
than 90%). The rubric used is summarized in Table II.
Table II shows that region a < r < b was assigned

3 times as many points as each of the other regions. This
consideration was made because region a < r < b was the
only one with a nonzero electric field. In finding the
expression for the electric field in parts (a)(i) through
(a)(iv), students were given 80% for the correct expression
and 20% for the correct reasoning that led to that expression.
For example, if a student wrote E ¼ kðQ=r2Þ for the
expression without any explanation in region a < r < b,
he or she would obtain 24 or 30 points. If, instead, a student
found the incorrect electric field and showed his or her work
(which was also incorrect), he or she was awarded 10% of
the credit for the attempt. In addition, to ensure that our
grading scheme did not influence our results significantly,
grading was also performed by weighing each of the regions
in the same manner, i.e., assigning 10 points for finding the
electric field in each of the parts (a)(i) through (a)(iv). All of
the results we report for this study are the same using both
methods, and we chose to describe the results using the
grading method outlined above (which weighs region
a < r < b 3 times more than each other region).
It is important to keep in mind that students in SL1 and

SL2 groups did not obtain any additional points for plotting
the electric field in each region first, or for evaluating
the electric field at the beginning, midpoint, and end point
of each region. All the points given in the regions (a)(i)
through (a)(iv), which required students to find the expres-
sion for the electric field, were based solely on the
expressions students found.

B. Results and discussion

Before analyzing the data that we used to answer the
research questions delineated earlier, we analyzed all

students’ scores on the final exam and found that students
in the three intervention groups exhibited similar perfor-
mance with no statistically significant differences between
different recitation sections (which were randomly assigned
to be the comparison group and the two intervention groups
in this study). We should also note that in the subsequent
pages we compare different groups of students in terms of
either (1) average scores or (2) percentages of students who
are consistent. In order to compare average scores of two
groups, we used t-tests, and in order to compare percent-
ages chi-square tests were used [79], two commonly used
approaches in physics education research. (Note that
throughout this paper differences are considered significant
if the p value for comparing the groups is ≤0.05.)
RQ1:What is the impact of medium level of scaffold-

ing support on students’ representational consistency
on this problem?—We found that the medium level of
scaffolding impacted students’ representational consistency
positively. In particular, we found that, compared to the
SL0 group (comparison group), more students in the SL1
group were always consistent (i.e., consistent in all
regions). Table III shows the percentage of students who
were always consistent in the SL0 and SL1 groups. A chi-
squared test [79] on these data shows that students in the
SL1 group performed better in this respect than students in
the SL0 group (p ¼ 0.020). We note that the performance
of students in SL0 in terms of representational consistency
was nearly identical to the performance of students in study
1 who were also not provided with any scaffolding (29%
compared to 26%). The SL1 intervention effectively
doubled the percentage of students who plotted the electric
field consistently from roughly 30% to roughly 60%.
RQ2: What are some mechanisms which may

account for the impact of the medium level of scaffold-
ing on students’ representational consistency on this
problem?—The interviews conducted in study 1 suggested
that in order to help students plot the expressions they find
consistently, scaffolding support may help students real-
ize that the electric field has different behaviors in
different regions which should each be plotted accord-
ingly. The first level of scaffolding was designed to do
just this: students were asked to plot the expression for
the electric field they found in each region in order to
provide a hint that each expression should be plotted
separately. In addition, the irrelevant regions were shaded
out to help focus students’ attention on the appropriate

TABLE II. Summary of the scores assigned to each part of the
problem.

(a) Find an expression for the electric field

(i) r < a (ii) a < r < b (iii) b < r < c (iv) r > c
10 points 30 points 10 points 10 points

TABLE III. Percentages (and numbers) of students from the
SL0 and SL1 groups who were consistent in all regions, and the p
value for comparison between the groups via a chi-squared test.

Consistent Not consistent

SL0 29% (9) 71% (22)
SL1 59% (16) 41% (11)
p value 0.020
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regions. Interviews with students provided with this level
of scaffolding suggested that it was indeed effective at
helping them realize the piecewise nature of the electric
field. When plotting the electric field, students were
clearly contemplating its behavior in each region, and
they would often say things like “in here [a particular
region] it should drop off like 1=r2” or “in here, it is
constant.”. For example, Mike, an interviewed student,
decided to find all of the expressions first before plotting
them. He found the following expressions:

r < a∶ E ¼ 0;

a < r < b∶ E ¼ kQ=r;

b < r < c∶ E ¼ 0;

r > c∶ E ¼ kQ=r:

After finding them in each region he went back to the
coordinate axes provided in each region and plotted each
expression in those regions. Figure 7 shows the final graph
he drew, which he obtained by putting together the four
plots he drew in each region.
As he was plotting the electric field in each region, he

clearly contemplated the behavior of the functions because
he said,

The graph for the first region] will just be a horizontal
line at zero, and then the graph for (ii), the way I have it
set up it should be… ok, so radius increases, that would
decrease this [expression for electric field], so it should
be a downward line […] and again, for (iii) it’s gonna
be a horizontal [line] and it’s zero and for radius
greater than c, the electric field should also decrease as
the radius increases.

Mike did not seem to know what a function proportional
to 1=r looks like, and plotted it incorrectly. However, he
did contemplate the behavior of the electric field in each

region, and plotted each expression separately, which is
what the SL1 intervention was designed to guide students to
do. This approach (i.e., to plot each expression separately in
each region), common among students who solved the SL1
version of the problem, is in stark contrast to some of the
observed plotting approaches of students provided with no
support who plotted the electric field globally in all regions at
once by assuming it must be continuous (see, for example,
Alex’s approach from study 1). It is possible that the students
in the comparison group had more information to process
due to having to focus on more than one expression at a time,
which increased their cognitive load [56] or distracted
students and resulted in decreased performance. Interviews
with students provided with the medium level of support
suggested that, similar to Mike, they seemed to focus their
attention only on the relevant region in which they were
asked to plot the electric field, which helped them realize that
they need to plot each expression separately. Thus, this
scaffolding may have reduced the level of distraction and
the possible cognitive load.
RQ3: How does the additional scaffolding (SL2)

compare to the medium level of scaffolding (SL1) in
terms of students’ representational consistency on this
problem?—Our research indicates that the higher level of
scaffolding (SL2) actually had a detrimental effect (oppo-
site of that intended) compared to the medium level of
scaffolding (SL1). In particular, fewer students in the SL2
compared to the SL1 group were able to plot the electric
field consistent with the expressions they found.
Students in the two scaffolding interventions were

asked to plot the electric field in each region immediately
after finding it, and, in addition, they were provided with
coordinate axes with the irrelevant regions shaded out.
Table IV shows, in each of the four parts, the percentages of
students who were consistent between the mathematical
expressions they found and their plots, and the comparison
via chi-squared tests between students in SL1 and SL2
groups. The results show that students in the SL2 group
were significantly less consistent than students in the SL1
group in all but the last part.
The data shown in Table IV suggest that sometimes

students were consistent in one or more parts, but not all.

FIG. 7. Electric field plotted by Mike (an interviewed student).

TABLE IV. Percentages (and numbers) of students from the
SL1 and SL2 groups who were consistent between their plots and
the expressions they found in each of the first four parts and p
values for comparing the two groups.

(a)(i) (a)(ii) (a)(iii) (a)(iv)

SL1 86% (24) 67% (18) 77% (20) 69% (18)
SL2 55% (17) 37% (11) 32% (6) 58% (11)
p value 0.012a 0.024 0.005a 0.534a

aBecause of one or more expected cell frequencies being less
than 10, Fisher’s exact test was performed instead of the standard
chi-square test.
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We also investigated how many students were always
consistent between the expressions they found and the
plots they drew (i.e., consistent in all parts). This result
is shown in Table V, which reveals that students in the
SL2 group were significantly less consistent than students
in the SL1 group. In fact, it appears that the additional
instructions of SL2 compared to SL1 erased the benefit
students derived from SL1 because a comparison between
the data in Table V and Table III indicates that on this
problem the percentage of students who plotted the
electric field consistent with their mathematical expres-
sions in all regions in the SL2 group is similar to the no
scaffolding group (SL0).
RQ4: What mechanisms may be useful in explaining

the impact of the additional scaffolding of SL2 com-
pared to SL1 on introductory students’ representa-
tional consistency on this problem?—The data discussed
thus far indicated that students in the SL2 group exhibited
less representational consistency between mathematical
and graphical representations of the electric field than
students in the SL1 group, which was surprising because
the additional scaffolding of SL2 compared to SL1 was
intended to help students be more consistent not less. As
noted earlier, in order to obtain an in-depth account of how
students were impacted by the two scaffolding interven-
tions, we conducted think-aloud interviews with introduc-
tory students, seven of whom solved version SL2 of the
problem and eight of whom solved version SL1 of the
problem.
The interviews suggested that one possible cognitive

mechanism that could partially explain this unexpected
finding relates to a framework involving working memory
[80,81]. In this framework, problems are solved by
processing relevant information in the working memory.
However, working memory has finite capacity (5–9 “slots”)
for any person, regardless of their intellectual capabilities
[82]. In order to solve a problem, one has to determine the
relevant information that must be processed at a given time
in order to move forward with a solution. Some of the
relevant information required for solving a problemmust be
retrieved from long-term memory (for example, relevant
principles, such as Gauss’s law or physics of conductors,
mathematical information related to plotting functions,
etc.), while other relevant information must be accessed
via sensory buffers (eyes, ears, etc.). Experts generally

solve problems by focusing on important features of the
problem and by retrieving the appropriate information
from their long-term memory [83,84], which has a well-
organized knowledge hierarchy in their domain of exper-
tise, and also by processing relevant information from the
environment (e.g., from the problem statement and part of
their solution written down so far). Novices, on the other
hand, typically do not have a robust knowledge structure
and their knowledge chunks are smaller [85]. Therefore,
their working memory processing capacity is effectively
reduced, which can lead to cognitive overload [56,85,86]
and deteriorated performance. Alternatively, they may have
enough cognitive resources (working memory slots) to
process the relevant information while problem solving,
but because they do not have a robust knowledge structure,
they can focus on unimportant features of the problem
[87,88]. They can get distracted by information that is not
useful and lose track of relevant information which, if
processed appropriately, can be helpful in solving the
problem. This mechanism too can lead to deteriorated
performance. We note, however, that it is difficult to
distinguish between these cognitive mechanisms for
deteriorated performance, because even in the case of
cognitive overload, novices can lose track of relevant
information since they may not have enough cognitive
resources to process all that is required at a given time in
order to move forward with a solution.
The additional instructions of SL2 as compared to SL1 as

shown in Table I ask students to “find the limit of the
electric field as r approaches a, b, etc.” in various regions
and will henceforth be referred to as “limits.” A cognitive
task analysis from an expert perspective suggests that
calculating these limits before plotting a function would
be useful because they provide explicit information about
the function at three distinct points, which is helpful for
plotting it. To ensure that physics experts generally agree,
we asked graduate students in a teaching assistant training
class and several physics faculty members whether they
expect that the additional instructions of SL2 would be
helpful for introductory students when plotting the electric
field (the graduate students solved the SL1 and SL2
versions of the problem before being asked this question).
Some of the graduate students and physics faculty members
noted that the additional instructions would definitely be
helpful for introductory physics students. However, the
interviews suggested that the introductory physics students
in the SL2 group for whom the additional instructions were
intended did not, in general, discern the relevance of these
instructions to plotting the function in the next part. To
them, evaluating the function at various points in a given
interval appeared to be just another task that required
additional information processing (which could have dis-
tracted them from processing relevant information or
overloaded their working memory). Every single introduc-
tory physics student interviewed who had to evaluate the

TABLE V. Percentages (and numbers) of students from the SL1
and SL2 groups who were consistent in all parts and p value for
the comparison between the two groups via a chi-square test.

Consistent Not consistent

SL1 59% (16) 41% (11)
SL2 24% (7) 76% (22)
p value 0.008
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electric field at three points in each interval before plotting
it lost track of some important information at one point or
another: some students forgot to plot the electric field in
a particular region, and some students went straight to
evaluating the limits even before finding an expression for
the electric field in that region. An example of losing track
of important information comes from an interview with
John. In finding the limits of the function in regions r < a
and a < r < b, John did not substitute the corresponding
values for r. For example, he wrote Eðr → aÞ ¼ kQ=r2

without substituting r ¼ a into the expression. But then
when he got to the first limit in region b < r < c
[Eðr → bÞ], after writing down an initial expression in
which he did not substitute r ¼ b, he suddenly realized on
his own that he should substitute r ¼ b:

John: “Oh, should I plug in […] ‘cause it’s r approach-
ing b?”
Researcher: “I can’t tell you that. […] What do you
think?”
John (after a short pause): “I’ll just write it to be safe.”

He then went back and changed all the previous limits
where he had not substituted the corresponding values for r.
Discussions with John suggested that the piece of infor-
mation “when you find a limit of a function, you should
substitute the value of the variable in that function” was
present in his long-term memory, but he did not retrieve it
until a particular point. For a while, he appeared to be
focusing on and processing other information in the
problem that was not helpful for figuring out the limits
correctly. It is possible that part of the reason why John
went back to his previous answers for the limits and
changed them is that he was solving the problem while
thinking aloud in an interview session, and in a quiz
situation he would have moved on without stopping to
question the correctness of his work.
Every single student interviewed who had to evaluate the

expression at various points immediately before plotting
overlooked something in a somewhat similar manner to
John while solving the different parts of the problem, and
the intended scaffolding involving explicit evaluation of
the function at the three points was not discerned by the

students as helpful for plotting the function. The additional
instructions were just another chore for the students, which
distracted them from processing the relevant information
for plotting the electric field. During the interviews,
students who solved the SL2 version of the problem were
more likely than those who solved the SL1 version of the
problem to go around in circles, repeat details mentioned
earlier, and not retrieve relevant information from their
memory at the appropriate time, even though that infor-
mation was later revealed to be present in their long-term
memory. It is also possible that because the additional
instructions required more information processing, stu-
dents’ working memory got overloaded, which could lead
to students struggling to process the relevant information
and struggling to plot the mathematical expressions they
found consistently.
RQ5: Do students who exhibit representational con-

sistency on this problem perform better than students
who do not?—We found that representational consistency
was associated with improved student performance in
determining the correct expressions for the electric field
in each region. Table VI shows the averages and standard
deviations in each of the four parts, (a)(i) through (a)(iv), of
students who were consistent in all parts (“consistent” in
Table VI) and students who were not consistent in one or
more parts (“not consistent” in Table VI), regardless of
what intervention group they were in. Table VI also shows
the p values (obtained via t -tests) and effect sizes for
comparing the performance of these groups of students
(students who were consistent in all parts and students who
were not consistent in one or more parts), which reveal that
the students who were consistent outperformed the other
students in every part. The p values for the comparison
between these groups are also very small and the effect
sizes (Cohen’s d) show large effects, three of them being
above 1.0 (for the last three parts). We also conducted this
analysis with the data in study 1 and found the same results.
(Note that Cohen’s d is defined as the difference in means
of the two groups one compares divided by the standard
deviation of the population from which the samples were
taken. In practice, the standard deviation of the population
is almost never known and is most commonly estimated by
the standard deviation of the control or comparison group.

TABLE VI. Numbers of students (N), averages (Avg.), and standard deviations (St. dev.) in each part in which the scores were based
on expressions for students who were consistent in all parts (“Consistent”) and for students who were not consistent in one or more parts
(“Not consistent”), and p values and effect sizes for comparison between these two groups of students.

Part (a)(i) Part (a)(ii) Part (a)(iii) Part (a)(iv)

N Avg. St. dev. N Avg. St. dev. N Avg. St. dev. N Avg. St. dev.

Consistent 32 6.3 4.0 32 7.1 3.6 32 5.8 4.2 32 6.4 4.6
Not consistent 55 3.5 3.9 55 2.9 3.3 55 1.5 3.0 55 2.0 3.7
p value 0.002 <0.001 <0.001 <0.001
Effect size 0.73 1.24 1.20 1.05
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For the two treatment groups we compare here, one can
estimate the population standard deviation by using a
pooled standard deviation based on the two standard
deviations of the samples being compared. This pooled
standard deviation is defined as σpooled ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσ21 þ σ22Þ=2
p

and was used as an estimation of the population standard
deviation [79].)

IV. SUMMARY

We found that calculus-based introductory physics
students have great difficulty translating from a mathemati-
cal to a graphical representation—only about one-quarter
of the students without support plotted electric fields that
were consistent with their expressions in all regions for the
problem investigated here. Via think-aloud interviews,
we also identified possible reasons for the poor student
performance in translating the electric field from the
mathematical to the corresponding graphical representa-
tion. Their difficulties were twofold: (1) students often did
not contemplate the behavior of the electric field in each
region separately and plotted a continuous function by only
thinking about some vague global characteristics of how the
electric field changes in different regions, e.g., the electric
field is larger in one region than in another, the electric
field is positive in some regions, negative in others etc. (this
difficulty was most common among students provided with
no support), and (2) students realized that the electric field
has different behaviors in different regions; however, they
plotted what their qualitative analysis indicated the electric
field should be in a region instead of plotting the math-
ematical functions they found. Our written data in study 1
indicated that the first difficulty was significantly more
prevalent than the second one.
Based on these findings, we developed two scaffolding

support levels with the intention of reducing the number of
students who have difficulty 1, or in other words, to help
students recognize that the electric field is a piecewise
defined function that must separately be plotted in each
region. We found that providing additional scaffolding (by
asking students to evaluate the electric field at the begin-
ning, midpoint, and end point of each interval), although
intended to help students be more consistent in plotting the

electric field, had an adverse effect on their representational
consistency for the problem in electrostatics with spherical
symmetry discussed here that can be solved using Gauss’s
law. Physics graduate students and physics faculty mem-
bers (experts for this study) remarked that they expected the
additional scaffolding to be helpful. However, think-aloud
interviews conducted with introductory physics students
suggested that they did not discern the relevance of these
additional instructions in the SL2 version and often got
distracted by this additional task that they treated as a chore
(or they may have had cognitive overload due to the need to
attend to additional instructions provided while engaged in
solving the problem). An important instructional implica-
tion of this finding is that, although cognitive task analysis
from an expert perspective can be valuable and provide
insight into the scaffolding support that might be beneficial
in a given situation, it is important to assess how students
perceive the scaffolding support designed, for example, by
observing how students solve the problem with scaffolding
support in think-aloud interviews. As we found in our
investigation, a high level of scaffolding support from an
expert perspective may not always benefit students and it
can even lead to deteriorated performance.
We also found that asking introductory students to plot

the electric field in each region immediately after finding
an expression for it in that region (the SL1 intervention)
impacted students positively, resulting in improved perfor-
mance in translating between mathematical and graphical
representations for the Gauss’s law problem analyzed.
Interviews suggested that the improved representational
consistency was partly due to students recognizing that the
electric field behaves differently in different regions and
plotting it accordingly.
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