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We propose a framework for improving accuracy, fluency, and retention of basic skills essential for
solving problems relevant to STEM introductory courses, and implement the framework for the case of
basic vector math skills over several semesters in an introductory physics course. Using an iterative
development process, the framework begins with a careful identification of target skills and the study of
specific student difficulties with these skills. It then employs computer-based instruction, immediate
feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved
training sequences and distributed practice. We implemented this with more than 1500 students over 2
semesters. Students completed the mastery practice for an average of about 13 min =week, for a total of
about 2–3 h for the whole semester. Results reveal large (>1 SD) pretest to post-test gains in accuracy in
vector skills, even compared to a control group, and these gains were retained at least 2 months after
practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course
credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that
simple computer-based mastery practice is an effective and efficient way to improve a set of basic and
essential skills for introductory physics.
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I. INTRODUCTION

Learning how to solve problems is a critical goal for
physics courses, and has thus been the focus of considerable
efforts in research and instructional improvement (for reviews
see Refs. [1,2]). While problem solving can be a very
complexprocess, in this paperwewill focus on thehypothesis
that problem solving requires accuracy and fluency in
relatively simple, elementary skills, such as vector addition
and unit conversion. By investigating the example of basic
vector math skills, we will argue that students frequently do
not have these simple yet essential skills, or they are far from
fluent in their use. In our review of the literature and in our
professional experience, we have found very few examples
(discussed below) that such essential skills are typically
systematically or extensively practiced in introductory phys-
ics courses. One might speculate that is because many
instructors are not aware of the need, believe that it is
prerequisite knowledge for the course and, thus, is each
student’s individual responsibility, believe that it is suffi-
ciently practiced in the course already, and/or do not have
sufficient time to devote to the issue. Regardless of the

reasons, we suggest that the lack of mastery or fluency in
these elementary essential skillsmay be a significant obstacle
to the process of learning physics and how to solve physics
problems.
In this study, we provide a theoretical background,

justification, and framework for the improvement of
students’ “essentials skills” via explicit practice, and we
assess the implementation of an online instructional inter-
vention in a real course setting for an example essential
skill set, namely, the vector math skills necessary for
solving physics problems in first year introductory physics
courses. The development of the materials for the online
vector essential skills units is a continuation of our recent
work on training students on vector skills in an education
research lab setting [3]. Further, we are continuing work on
essential skills units for a course on introductory materials
science engineering [4,5]. Here we will demonstrate, as part
of a regular course, an instructional intervention to help
students achieve and retain significant gains in mastery and
fluency of a set of essential skills with a relatively small
commitment of student time.
The essential skills practice assignments in this study are

in an online format, which lends itself well to our goals,
as described more in Sec. III. A considerable number of
computer-based instructional components of courses have
been developed and investigated in a variety of physics
education research studies, but the combination of meth-
ods, goals, and focus of training on essential skills in this
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study is relatively unique. For example, in addition to
numerous commercial systems, a number of online physics
homework systems with varying levels of instant feedback
have been developed that have proven to be useful instruc-
tional tools [6–8]. However, these systems and studies have
been aimed at providing practice and feedback for standard
physics problems rather than more basic skills necessary to
solve the problems of interest in this study, although these
systems might easily be adapted to teach essential skills in
the way studied here.
Recently, Schroeder et al. [9] and Gladdening et al. [10]

have implemented something more similar to our work and
focus, namely, computer-based mastery practice of specific
skills in an education research lab setting and have shown it
to be effective. The target skills in their studies tended to be
specific to a particular physics problem type and subtopic
(e.g., electric fields and potential for plane and spherical
symmetries) and the studies focused on accuracy, while our
target skills tend to be more broadly applicable (though not
limited to this) and, as we will discuss below, we are aiming
at accuracy, fluency, and retention.
Perhaps the most closely related work involves the

(now commercial) online intelligent tutor ALEKS, which
provides a system of mastery learning with instant feedback
and adaptive practice sequences based on the student’s
responses on all prior questions answered in the system
[11,12]. The sophisticated adaptive-response design is
based on a well-developed theory of knowledge spaces
[13], and the system enjoys widespread use, especially in
the K–12 realm. ALEKS is primarily designed to teach (for
a fee) basic math, including arithmetic, algebra, trigonom-
etry, and vectors, and has developed a unit on “math prep
for college physics.” Many of the goals of ALEKS to
improve basic skills are similar to the goals of this study,
including the topic of vector math. To our knowledge
ALEKS has not been researched for effectiveness in a
physics course context, nor is it based on other physics
education research on physics student difficulties with
essential skills relevant to physics, which is a critical
component of the design process in this study. Further,
our system is much simpler to construct and expand since it
does not use adaptive response.
In future work, it may be worth comparing the relative

effectiveness of the different systems and approaches
mentioned above, but in all the results of these studies
indicate that computer-based instruction may be an effec-
tive tool for teaching a variety of simple skills and
knowledge for a physics course. Here we describe our
specific design and implementation in a course setting, and
report on assessments of its effectiveness.

II. ESSENTIAL SKILLS CHARACTERISTICS
AND RATIONALE

We define an essential skill (ES) for a given course as
having the following characteristics:

• The skill is procedural and relatively simple, requiring
at most a few steps.

• The skill constitutes some steps necessary to solve
commonly assigned problems.

• The skills are largely automated in experts.
When solving a physics problem, experts and novices alike

must make effective use of a number of essential skills. How-
ever, theways inwhich experts andnovices interactwith these
problems are very distinct. An expert has largely automated
these procedural steps, and thus proceeds further into the
problem having expended relatively little time and cognitive
load [14–16]. Automated processes are rapid cognitive
processes that occur at the subconscious level [17,18], and
experts tend to automate a variety of tasks and skills through
years of practice and application in their domain.
Novice students often have not automated the essential

skills, resulting in increased time on task as well as
increased cognitive load. Even if the novice correctly solves
the procedural step—and they often do not—they do so
slowly and with effort and are left with fewer cognitive
resources available to attend to the rest of the problem and
its conceptual underpinnings [19,20]. That is, students often
lack the necessary accuracy with the essential skills, and
even students who are accurate with the skills are often not
fluent enough in their use to be successful problem solvers.
The term fluency in a skill is meant here as including a
relatively short completion time, minimal cognitive load,
and parallel (vs serial) processing (cf. Ref. [21]).
The central idea of this study is that students will benefit

from both high accuracy and high fluency in essential
skills. If essential skills are automated and students become
fluent in their use, the reduced cognitive load presented to
students will allow them to solve problems more efficiently
and effectively. This idea is not new—others have empha-
sized the difference in cognitive load between experts and
novices for commonly used skills, and that improving
fluency in these skills is critical to expertlike performance
in problem solving [21–23]. Further, “procedural fluency”
has been identified as one of the five strands of math-
ematical proficiency in the National Research Council
report on mathematics learning for children [24].
Nonetheless a general framework is needed to prescribe
a procedure for developing ES practice for a given topic.
This is described in the next section.

III. THE ESSENTIAL SKILLS
DEVELOPMENT FRAMEWORK

In this section we propose a set of goals for ES
improvement and an iterative ES development framework
to achieve these goals.

A. General goals of essential skills instruction

There are four general goals for ES instruction, shown
below.
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(1) Maximize accuracy, fluency, and retention of essen-
tial skills. This is aimed at reducing cognitive load
while solving problems (e.g., Ref. [20]).

(2) Minimize additions to student workload. Repeated
practice is not viable in class, and given that
problem-solving homework assignments are typi-
cally assigned to students, extra time assigned out-
side of class must be minimal. ES practice is
designed to take approximately 10–20 min =week.
The practice is low stakes and formative in the sense
that students must continue practicing (with instant
feedback) until they achieve a high enough score to
receive credit for a unit.

(3) Ensure that students accrue positive experiences
and perceptions of ES practice. This includes the
effectiveness, usefulness, and workload fairness of
the ES practice.

(4) Increase student self-efficacy in essential skills.
Improvements to self-efficacy are a critical compo-
nent of STEM learning [25,26]. In this study we
were only able to collect anecdotal evidence for
achieving this goal. This topic needs further exami-
nation in future studies.

B. Components of the essential skills framework

The ES development framework consists of four
components:

1. Identifying essential skills

Naturally, one might imagine a multitude of elementary
skills required to be successful in a physics course (reading,
arithmetic, language mastery, etc.). Here we are interested
in those basic skills in which a significant fraction of
students have not attained a sufficient level of accuracy
and fluency. Candidates for such skills can originate, for
example, from discussions with experienced instructors,
from direct observations, or from the education research
literature, but ultimately empirical verification is needed. In
pilot and formal studies in our own lab (some discussed
below), we have found that it is not uncommon to find
unexpectedly low levels of accuracy and fluency in even the
most basic skills. Typically, we have found that essential
skills topics involve applications and simple conceptual
(and physical) understanding of basic calculation proce-
dures, including basic math and interpretations of repre-
sentations. Examples include vector math, interpreting
graphs and diagrams, and simple arithmetic and algebra.

2. Identifying common difficulties
and errors with essential skills

Similar to strategies used for improving conceptual
understanding and problem solving in physics education
(for a review see, e.g., Ref. [1]), we find that a systematic
characterization of specific student difficulties with an

essential skill is useful for designing targeted, effective
practice. In our experience [4,5,27,28], we have found that
difficulties with skills in a given domain (such as reading
logarithmic graphs) tend to be multidimensional and
interrelated, even for relatively simple skills, and exploring
each dimension can lead to a robust set of practice
examples that “triangulate” the issue by addressing the
difficulty from different perspectives, dimensions, and
representations. Of course incorrect student answers
also provide useful material for distractors on practice
questions.
Even if an instructor or researcher has experience with

common student difficulties with a given essential skill,
a systematic exploration of these difficulties is strongly
recommended. In our experience we have always found
the difficulties with skills to be more complex than first
expected. For example, in the case of vector math, we
found that some vector math skills (such as addition) must
be broken further into subskills (e.g., finding trigonometric
components of vectors), and in this case an exploration of
difficulties with these subskills is critical [27,28].
The research literature often contains useful character-

izations of student difficulties for a given physics topic,
and there are a variety of methods used to identify and
characterize difficulties (see a review, e.g., in Ref. [1])
Generally, difficulties are explored via an array of open-
ended problems related to a given essential skill, using
various representations and exploring different variables
(dimensions) used in the skill. Typically, the problems are
administered in written and interview format in order to
observe the rich array of student responses, and this is
followed up by investigations using multiple-choice ques-
tions administered to a large pool of students in order to
determine the relative frequency of particular difficulties.
Note that this process also can lead to the development of
an assessment instrument to evaluate the effectiveness of
essential skills units.

3. Employing research-validated methods
in the design of ES practice

The essential skills practice units employed a number
of research-validated principles and methods, described
below.

Computer-based training with feedback.—In order to impr-
ove student skillswith relatively little time (10–20min=week)
spent outside of class, we adopt the online, computer-based
practice format. This format allows students to work
towards accuracy and fluency on their own time and at
their own pace. Furthermore, computer-based training with
feedback has proven to be effective in a wide range
of topics [29,30], allowing for an array of feedback
formats, providing individualized feedback to each student.
However, the effectiveness of feedback depends on several
interacting factors, including the knowledge or skill to be
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learned, the type (e.g., complexity) of feedback, timing of
feedback, prior knowledge of topic, student achievement,
correctness of and confidence in responses, interest in topic,
self-efficacy, and other attitudinal factors (for reviews, see
Refs. [29–36]).
Here we will base the practice and feedback format on

results from our recent clinical study which investigates the
relative effectiveness of various forms of feedback on the
same population as the current study (students enrolled in
calculus-based introductory physics) and the same topic,
namely, vector math [3]. Following those results, the
method used in the current study provides immediate
feedback on the correctness of each response and also
makes available a general explanation (via clicking a button
if the student chooses to) of how to answer a particular
question type. Note that this method uses only simple
answer-based feedback and does not rely on more complex
intelligent tutoring systems. Specific examples are pro-
vided in Sec. IV.

Mastery-based training.—Mastery-based training—which
involves allowing time on task to vary between students in
order for everyone to achieve some predetermined standard
of performance—is more efficient and flexible for a multi-
tude of student backgrounds compared to conventional
summative course assignments [37]. Students already fairly
fluent with a given essential skill can complete the task
relatively quickly (typically within 5 min in this study), thus
avoiding possible frustration, yet they are still given the
opportunity to practice and potentially improve fluency.
In contrast, students who need significant practice with an
essential skill may have varying needs and typically require
longer practice times (20–30 min) to achieve sufficient
accuracy and fluency for a given skill.

Distributed and interleaved practice.—Distributing prac-
tice repeatedly over the whole term—as opposed to
practicing in one session—results in learning that is stable
over longer time intervals [38–40]. Such durability of
learning is crucial for the essential skills domain, as these
skills are frequently used for the entire course, and in future
courses within the same discipline. Interleaving problem
types (as opposed to blocking all problems types together)
within a practice session improves learning, as well as
student ability to distinguish between and appropriately
apply the different types of similar skills [39].

Multiple representations.—As mentioned in Sec. III B 2,
the way in which essential skills such as vector addition are
represented can affect student responses (for examples
pertaining to vector math see Refs. [27,41,42]). If students
work with only one representation of the essential skills,
their learning may become tied to this representation. By
mastering the use of multiple representations of individual
skills and making explicit the connection between these

representations, student gains on the essential skills are
more likely to transfer to other aspects of course work, such
as problem solving or conceptual understanding [43,44].

Simple representations.—The use of simple, generic rep-
resentations, rather than complex and perceptually rich
representations, can reduce extraneous processing (e.g., see
Ref. [45]) and improve learning and transfer [46,47].

4. Iterative development of units

We employed the process of iterative development (in a
cycle of implementation and assessment commonly used in
physics education research, see, e.g., the review in Ref [1])
to improve the effectiveness of the units, and this was
particularly helpful for more complex skills. For example,
for some skills we found that after a round of implemen-
tation and assessment, many students still did not master a
specific skill. Further analysis and development often
resulted in breaking the skill down into subskills to be
mastered.

IV. EXAMPLE APPLICATION OF THE
FRAMEWORK: VECTOR MATH

In this study, we applied the ES framework to vector
skills, namely, the topic of simple vector math operations
necessary for introductory calculus-based physics. This
included vector addition, subtraction, components, tilted
coordinate systems, dot products, and cross products in
both algebraic and arrow representations and sometimes in
contexts similar to physics problems (e.g., simple free body
diagrams). Vector math meets our required characteristics
of an essential skill in that it is a relatively simple
procedural task, is required to solve a number of physics
problems, and is a fluent skill of experts.
In fact, simple vector math is so central to introductory

physics that most, if not all, relevant physics textbooks
include an early chapter on the topic, but it is clear that this is
not sufficient. Specifically, the research literature contains a
number of papers detailing student difficulties with various
vector operations (e.g., Refs. [27,28,48–50]), showing that
typically—even postinstruction—only 50%–70% of calcu-
lus-based physics students can correctly perform these
basic vector arithmetic operations. These student difficulties
produce predictable and consistent wrong answers that can
be used as realistic distractor options when designing
training and test questions. In some instances, it was
necessary to collect our own data to better understand
student difficulties and common errors with specific vector
skills (e.g., Refs. [27,28]).

A. Student population and study design

The study consisted of three experiments conducted at
the Ohio State University, a large public university, over the
course of several academic terms (Fig. 1). The purpose for
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the experiments was to establish baseline data (with no
training), to investigate potential improvements in essential
skills, to demonstrate replicability and retention of results,
and to determine whether the method of awarding credit for
the assignment significantly affected the results. Students in
experiments 1 and 2 were enrolled in the first term of intro-
ductory calculus-based physics, in two separate semesters—
autumn and spring, consecutively—with no students
participating in both experiments. While there may be
small differences in the ability and preparation of two
populations, our past experience with students enrolled in
the two different semesters (and results from this study) have
not shown any significant differences in performance
or demographics between these populations. The courses
were taught by faculty and senior lecturers in traditional
format with 3 traditional lectures and one recitation (solving
problems and taking quizzes) per week. The demographics
were ∼80% male and <10% underrepresented minorities.
The authors were not instructors for any of the course
sections during the study. Of students who took the final

exam for each course, a total of N ¼ 1056 students in
experiment 1 and N ¼ 265 in experiment 2 completed both
the pretest and the post test—not graded, course credit
awarded for participation. These students were included in
the study, representing roughly three quarters of all students
in each course who took the final exams. Students in
experiment 1 completed the assignments for 1% of their
final grade,while experiment 2 studentswere given 1%extra
credit for participating. In experiment 3, a subset of N ¼ 61
randomly selected experiment 1 students were brought in
during the succeeding course to compare their performance
with a sample of N ¼ 40 randomly selected students from
the same course who had not previously been trained.
Finally, in a preparatory experiment, baseline data from a
total ofN ¼ 194 participants from an autumn semester were
collected on performance with vector skills near the end of
the same first semester calculus-based course in which none
of the studentswere assignedESpractice. These participants
completed the task for partial course credit (∼1% of grade)
and were randomly selected from all students taking the

FIG. 1. Experimental design used in this study. Experiment 3 was conducted 11 weeks after the post test in experiment 1.

TABLE I. Vector skill categories practiced. Examples shown in Fig. 2.

Problem Type Notes Problem Type Note

Addition Add vectors using ijk and/or
arrow formata

Tilted coord. trig.
comp. Subskills

Determine correct vector triangle,
determine location of given angle
within triangle, determine signs of
components

Subtraction Subtract vectors using ijk and/or
arrow formata

Free body diagram trig.
components

Determine components of net force from
three given vectors in free body
diagram format

Negation Determine the negative of a vector in
ijk and/or arrow formata

Dot product magnitude Determine the magnitude of a dot product
when given magnitudes and an angle

Components Determine components of a vector in
ijk and/or arrow formata

Dot product sign Determine the sign of a dot product given
the directions of the vectors

Trigonometric
components

Determine components using
magnitudes and angles with a
coordinate system given

Cross product magnitude Determine the magnitude of a cross
product when given magnitudes and
an angle

Tilted coordinate
trigonometric
components

Determine components using
magnitudes and angled in a system
with a tilted coordinate system
(e.g., a block on a ramp)

Cross product direction Determine the direction of a cross
product given the directions of the
vectors

aBoth given vectors and answer format were varied between the ijk and arrow format.
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course—other students participated in other PER experi-
ments for course credit.
Participants in experiments 1 and 2 completed a pretest in

the first week of the course and a post test approximately one
week before the final exam, both administered online and
completed outside of class. Between the pretest and post test,
the students were assigned 12 weekly training assignments
via an online application thatwe constructed for this purpose
(see Sec. IV B 1). Participants in experiment 3 completed
just the post test 11 weeks after the post test in experiment 1
for partial course credit (∼1% of grade).

B. Materials

1. ES practice online application

Students completed the ES practice assignments via an
online application that we created and developed using the

principles described in Sec. III. Table I shows the array of
vector skills practiced, all chosen from the research dis-
cussed at the beginning of this section. Screenshots of
example ES practice questions of three of the skills are
shown in Fig. 2. The appendix also shows a variety of
questions that were very similar to ES practice questions.
Each assignment consisted of 2–5 individual skills, and

most skills were included on at least two assignments
throughout the semester. Students were awarded credit for
each skill by answering several (typically 3 or 4) consecu-
tive questions correctly within a given skill to achieve
“mastery.” If a student missed a question, their score for
that skill reset to zero. Students were able to retry
indefinitely, with items randomly selected from a large
pool of items, until they achieved the required number of
consecutive correct answers. Note that the skills practiced
were also interleaved such that, for example, the session

FIG. 2. Example practice questions for addition (top right), components vasic (top left), and cross product direction (bottom) skills.
Current student scores for each skill are recorded on the “progress wheels” to the left. Incorrect answer (red circle “x”) results in the
score returning to zero for that skill.
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would consist of a practice question first from skill A, next
from skill B, and so on, cycling through the skills until
mastery of a skill was achieved, at which point that skill
was excluded from the cycle. In Fig. 2, this would
correspond to first getting a question on vector addition,
then one on subtraction, then negation (finding the negative
of a vector), then component basic (finding the x or y
components of a vector), before cycling back around. As
discussed more in Sec. V, we found that students typically
take between 5 and 20 min to complete an assignment.
After submitting an answer, immediate answer-based

feedback (correct or incorrect) was given after every
problem. If a student answered the problem incorrectly,
they could choose to try the same problem again up to
3 times in total. If a student submitted three incorrect
answers to a single problem, the system allowed them to
see the correct answer. Furthermore, after answering
correctly or incorrectly, students could choose to view
explanations, which popped up in another window of the
application. The explanations included text and graphics
and did not pertain to the specific problem or the student’s
submitted response, but rather outlined the correct pro-
cedure or rule for a given skill and could be applied to a
class of similar problems. Each type of problem contained
at least two explanation images. See Fig. 3 for an example.
We have found this method of using explanation images to
be highly effective [3].

The system made use of randomized questions that were
either generated in real time via a mathematical algorithm
or chosen randomly from a pool of similar sample ques-
tions. For example, a vector addition question would
randomly generate two vectors to be added.
Many of the problem types included two answer modes

(practiced separately): multiple choice or free response.
The multiple choice options were generated via an algo-
rithm that determined the correct answer for that question
and incorrect answers known from research to be common.
Often, the number of possible common incorrect answers
was larger than the number of incorrect multiple choice
options. Thus, the errors represented by the wrong answer
choices were varied from problem to problem within the
same type, minimizing the ability of students to simply
pattern match. Free response options depend on the specific
question asked, but they included typing in numbers and
using a computer mouse to draw a resultant vector on a
grid. Note that the practice questions used different
representation of vectors (algebraic ijk format and arrows
on grids) to provide practice in multiple contexts [27].

2. Assessment

Two assessments were used over the course of this
study, both of which were administered online through the
university’s course management software. The first was a
26 item “vector skills assessment” of student ability to
perform simple vector addition, subtraction, component,
dot product, and cross product calculations. The questions
in the assessment were similar—but not identical—to those
included in training assignments. A pencil and paper
version of the assessment is included in the Appendix.
The reliability of the assessment is acceptable, with
Cronbach’s alphas of 0.73 and 0.77 for pretest students
in experiments 1 and 2, respectively. Only 2 of the 18 items
had pretest scores less than 0.3, and all remaining questions
fell between 0.3 and 0.75. Point biserial correlations were
also at an acceptable level; all values were between 0.2 and
0.6 for both experiments, typically on the higher end of
that range.
The validity of the assessment is supported in four ways.

First, most of the items were based on similar simple skills
questions in textbooks and validated assessment instru-
ments [3,48,49]. Note that the Test of Understanding
Vectors [48] overlaps significantly with our vector skills
assessment, but the former is aimed more at assessing
conceptual understanding, and the latter is more aimed at
assessing accuracy in vector math skills. Second, many of
the items had also been pilot tested and refined through
testing in our education research lab, including student
interviews [3,27,28]. Third, pretest assessment scores were
significantly correlated with grade in the course (r ¼ 0.36,
0.32; p0s < 0.001) for experiments 1 and 2, respectively.
Finally, the assessment was constructed by instructors (the

FIG. 3. Example explanation for the topic of simple vector
components.
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authors) with extensive experience teaching the topic of
vector math in introductory physics.
The second assessment, administered on the post test,

was a series of Likert scale items about the effectiveness
and fairness of the training, and students were given an
opportunity to leave open-ended feedback. The items are
discussed in Sec. V G.

V. RESULTS

A. Completion rates and practice time

Ahistogramof completion rates ofweeklyES assignments
is shown in Fig. 4. Completion of an assignment is achieved
when the student successfully masters all of the 2–5 skills
within that assignment. Of all students in experiment 1, 81%
completed at least 10 of the 12 assignments.
In order to get a sense of the amount of time participants

spent on the ES practice units, we present timing data in
Figs. 5 and 6. Figure 5 shows a histogram of total time
spent on the training units for units 4–12 (timing data are
unavailable from the first three units). For Fig. 5, only
students who attempted all 9 of the timed units are included
in order to avoid underrepresenting the time commitment
required. Figure 6 is a quartile box plot of time spent on
each of the training units for which timing data is available,
and includes all student attempts. To maximize the ease
of viewing the heavily right-skewed distributions, only the
middle two quartiles are shown. In experiment 1, the
median and mean attempt times for units on which timing
data are available were 9.4 and 13.4 min, respectively.
Normalizing for the three units on which timing data are
unavailable, this amounts to a median (mean) total training
time of 113 (161) min over the span of the entire course
term. This relatively small amount of time verifies one of
the goals of ES practice, which is to add only a relatively
small amount of time to the students’ weekly workload.

B. Improvement of accuracy in vector skills

Participants completing the ES practice assignments
demonstrated significant gains in accuracy in vector skills.
This improvement can be shown in three ways. First, we
compare pretest and post-test scores in the vector skills
assessment. A casual inspection of the score distributions
on the pretest and post-test for experiment 1 shown in Fig. 7
reveals a large overall gain in scores. To analyze this in
more detail, we collected data on overall course grade and
categorized students as above or below the mean course
grade. A repeated measures ANOVA (high-low grade vs the
repeated measure of pre-post vector assessment) reveals
perhaps as expected that high grade students score betterFIG. 4. Experiment 1 completion rates for all 12 training units.

FIG. 5. Histogram of total time spent in training for units 4–12.
Only students who attempted all of these units are included. The
dotted line represents the median.

FIG. 6. Box plots of time spent training for units 4–12. All
student attempts for each of the units are included. Only the
middle two quartiles are shown.
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than low grade students [Fð1Þ ¼ 205.2, p < 0.001], and a
significant increase in scores from pretest (41%) to posttest
(69%) [Fð1Þ ¼ 2020, p < 0.001, d ¼ 1.5]. An effect size
of 1.5 represents a large effect, especially compared to the
effect sizes typical of computer-based instruction, and it is
important to note that this large gain came from only about
2 h of practice over the span of the entire course term. There
was no significant interaction between pre-post gains and
high-low grade [Fð1Þ ¼ 0.06, p ¼ 0.8], demonstrating that
both high and low grade students are gaining equally.
Note that, of course, in this section we have only

included data from students completing both pretests and
post tests. Looking more broadly, of the 1313 total students
who took the final exam in the course, 80% (1056)
completed both the pre- and post test. Students that
completed both the pre- and post test tended to have higher
grades than those who did not complete both tests
[tð1311Þ ¼ 9.451, p < 0.001, d ¼ 0.61]. More detail
about completion rates of ES assignments and course
grade is in Sec. V F.
Second, we can at least partially address the claim that

the gains in pre-post scores could be solely due to course
instruction rather than any contribution from the ES
practice assignments. Departmental and ethical constraints
prevented us from performing a truly random-assignment
control vs treatment study. Instead, we compared scores
from experiment 1 to baseline data collected in earlier
semesters. The baseline data were collected near the end of
the term (i.e., post course instruction) from prior semesters
of the same course that did not assign essential skills units.
This allows for a comparison of post course instruction
scores both with and without ES practice. The results are
shown in Fig. 8. The results shown on the left half of the

graph represent skills that are often explicitly taught and
always used in the first semester course (e.g. vector
addition, subtraction, components, tilted axes). The right
half of Fig. 8 shows results for items representing skills
(e.g., dot product, cross product) which, while they are
commonly covered in textbooks, at our institution they are
not commonly emphasized in the first semester course (thus
technically may not be “essential,” so future implementa-
tions may omit them). In particular, for vector skills
commonly taught (such as vector addition), there is usually
a significant difference between the pretest scores and
post-test scores for instruction without training, while
comparisons to post-test scores with training were always
significant. Perhaps as expected, for vector skills that are
rarely taught or emphasized (such as cross product), there is
no difference between pretest and post scores for instruc-
tion without training, but there is a significant difference
for instruction with training. See Table II for a summary of
results. This provides further evidence that the training
improves accuracy above and beyond any improvements
from instruction. We note in particular that the scores on the
item of computing components on an inclined plane is very
low ∼20% even with instruction, and even with training
this is only raised to ∼50%, indicating this is a difficult skill
and more work is needed to improve student accuracy with
this skill.
Third, to provide further evidence that ES practice

contributes significantly to improved accuracy, a linear
regression was performed with post-test score as the
dependent variable and pretest score and number of ES
units completed (mastered) as independent variables (see
Table III). The results indicate that, independent of pretest
score, the number of ES units completed significantly

FIG. 7. Distribution of pre- and post-test scores for experiment 1.
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contributes to the variance of the post-test scores and is
positively correlated (rpartial ¼ 0.29, p < 0.001) with post-
test score. In fact the regression analysis shows that on
average, for every ES unit completed (out of 12 total),
the post-test score increases by 0.14 standard deviations.
While this does not prove that ES practice contributes to the

post-test score (for example, there could also be selection
effects influencing the number of units completed by each
student), this result is consistent with the expectation that
increasing the amount of ES practice increases ES perfor-
mance. More discussion and support for this argument is
presented in Sec. V F where we report on a comparison of

TABLE II. t-test comparison of pretest vs post test assessment scores with and without training. Note that asterisks indicate
significance at the p < 0.05 level.

Pretest vs post-test (no training) Pretest vs post-test (with training)

Question Explicit instruction t df p t df p

Addition on grids Yes 2.70 973 *0.007 10.70 1888 *<0.001
Subtraction on grids Yes −0.56 977 0.574 9.67 1886 *<0.001
Trig Vector components 1 Yes 3.71 1020 *<0.001 11.9 1888 *<0.001
Trig vector components 2 Yes 2.34 1019 *0.019 9.68 1885 *<0.001
Components inclined plane Yes −1.23 1029 0.218 10.53 1887 *<0.001

Dot product magnitude No 1.11 996 0.268 17.45 1887 *<0.001
Cross product magnitude No −0.65 995 0.514 15.91 1887 *<0.001
Dot product sign No 2.31 995 *0.021 20.89 1888 *<0.001
Cross product direction No 0.10 996 0.922 15.43 1888 *<0.001
Dot or cross increase angle No 0.89 992 0.376 7.91 1888 *<0.001

FIG. 8. Comparison of scores preinstruction and postinstruction, with and without essential skills practice. Skills to the left of the
dotted line were explicitly taught in the first semester course, while skills to the right received no explicit instruction. Error bars
are 1 S.E.
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different course credit awards (and resulting participation
rates) for the ES assignments.

C. Retention of skills

Experiment 3, a follow-up longitudinal study, was
conducted in order to (i) investigate retention of gains
in accuracy, and (ii) to further support the claim that a
significant portion of the gains in accuracy are due to ES
practice. In the semester immediately following experi-
ment 1, we collected data from the subsequent course
in the introductory physics sequence, electricity and
magnetism. Many of the participants in experiment 1
were enrolled in this course, and a random sample of
N ¼ 61 of these students, along with another randomly
chosen sample of N ¼ 40 students in this course who were
not enrolled in the previous semester of physics (thus not
in experiment 1, and had no ES practice) were chosen to
take a paper-and-pencil version of the assessment for
partial course credit (other students in the class partici-
pated in other experiments so the random drawing is from
the whole pool of students). This additional “delayed”
post test was administered 11 weeks after the original
post test from experiment 1, during the 5th week of the
15-week electricity and magnetism course.
The results are shown in Fig. 9. It is clear from this figure

that the gain in post-test scores for the participants with
ES practice is retained more than 11 weeks after the final
practice session, since there is no significant change in
scores between the post test and the 11-week delayed post-
test scores [paired tð60Þ ¼ 0.47, p ¼ 0.64].
However, there is a significant difference between the

11-week delayed post-test scores of the participants with
ES practice (76%) compared to participants who had no
ES practice (66%) [tð99Þ ¼ 3.394, p ¼ 0.001, d ¼ 0.67].
This result provides support for the claim that ES practice
results in higher accuracy as well as the claim that the
course itself also results in higher accuracy, consistent
with Sec. V B.
One might argue that the difference between scores

for the practice vs no-practice conditions may be due to
a difference in populations since, for example, the ES
practice condition consists of students taking the introduc-
tory physics courses in adjacent semesters, while the no-
practice condition students took the first physics course at

least one semester earlier. Thus, the two conditions may on
average consist of different students—for example, the
no-practice group may have forgotten some of the essential
skills since they took the first course more than one semester
prior to the test. To at least partially investigate this issue, we
compared the second-semester physics course grades of the
students in these two conditions and found no significant
difference between the two conditions [tð96Þ ¼ 2.6, p ¼
0.79, d ¼ 0.05]. Note that since post-test score is somewhat
correlated with final grade [r ¼ 0.24, p ¼ 0.02], one might
expect that the practice condition, with higher post-test
scores, would also have slightly higher grades. However,
since the correlation is small, the post-test scores only
account for a small amount of the variance of the final
grade (r2 ∼ 5%), thus a much larger sample size would be
needed to see this effect. Therefore, we find no evidence of a
difference between the populations, but clearly a controlled
experiment with larger samples is needed to more formally
resolve this potential confound.

D. Improvement in fluency

So far, we have only discussed improvements in
student accuracy with essential skills. However, the goal
of the ES Framework is not just accuracy but also fluency
(i.e., speed and reduction of cognitive load). In this
section, we discuss preliminary evidence suggesting that
training helps students improve their fluency with the
skills as well.
One measure of fluency of a target skill set is the amount

of time required to complete a practice unit for that skill set.

FIG. 9. Longitudinal student assessment performance. A subset
of experiment 1 students (pretest and post-test scores in dashed
bars) completed a delayed post test (first solid bar) during the
second semester physics course. A sample of students from the
same second semester course who had not previously received
training also completed the post test (second solid bar) at the
same time.

TABLE III. Linear regression results for experiment 1. Post-test
score is the dependent variable. Note that β represents the
standardized regression coefficient. All values are significant
at the p < 0.001 level.

Independent variable β rpartial r2 change

Pretest score 0.40 0.42 0.18
Number of essential
skills units completed

0.25 0.29 0.06
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To quantify this, we compared completion times of two
similar ES assignments. In particular, the 4th and 8th units,
assigned in weeks 5 and 9, were identical in terms of skills
content (type of practice questions). The only difference
between the two units was that the 4th unit required only
three consecutive correct answers for mastery, while the 8th
unit required four. Despite the higher requirement for
mastery, the median time for students who complete both
units dropped from 13.6 to 9.9 min. Mean times showed a
similar drop, from 19.2 to 13.7 min, a significant reduction
by a paired-samples t test [tð805Þ ¼ 8.212, p < 0.001,
d ¼ 0.37]. In addition to the decrease in total time, student
accuracy also improved; the average proportion of train-
ing problems eventually answered correctly (up to three
tries) grew from 83.9% to 92.4% [paired tð805Þ ¼ 5.194,
p < 0.001, d ¼ 0.25].
Another measure of fluency is the amount of time

needed to complete the assessment. The timing data for
completion of the assessment were strongly right skewed;
this is likely a result of students leaving the quiz window
open while not actively working on the quiz, sometimes
for multiple days. In order to remove such outliers, we
only included students completing both the pretest and
the post test in less than 2 h. A paired-samples t test
showed that the mean time to complete the assignment
decreased significantly [tð852Þ ¼ 9.319, p < 0.001,
d ¼ 0.39] from 34 to 27 min (median time decreased
from 30 to 22.5 min). It is worth noting that the pretest
contained only 3 attitudes and beliefs Likert questions,
while the posttest contained 11 Likert questions and four
extended response questions for students to leave feed-
back about the training, meaning time on task decreased
significantly, despite the additional survey questions.
Therefore, it is reasonable to assume that the statistics
above are conservative, representing a lower bound for
the decrease in time to complete the assessment questions
themselves. In any case, this provides more support that
students were more fluent in the target skills when
comparing their pre- and post-test performance.

E. Essential skills and course performance

An important goal of ES practice is to improve course
performance. In this study, it is not possible to conclusively
determine the extent to which ES practice improves course
performance because the design does not include a control
(no treatment) group. Nonetheless, the data do support
important inferences about the relationships among ES
knowledge, ES practice, and course performance.
First, a linear regression analysis was performed with

course grade as the dependent variable and pretest score,
pre to post score gain (difference of post-test and pretest
scores), and number of ES practice units completed as the
independent variables. The results are shown in Table IV,
and the model itself is significant [Fð3Þ ¼ 140, p < 0.001,
r2 ¼ 0.29]. More specifically, not only is the pretest score

strongly correlated with the course grade (perhaps unsur-
prisingly) accounting for 20% of the variance in course
grade, but also the gains in pretest to post-test scores and
the number of completed ES units are significantly corre-
lated to course grade. In fact, the analysis reveals that on
average, for every ES unit completed, the course grade
increased by 0.1 standard deviations.
Clearly there are significant correlations between

pretest scores and grade and pre-post gain and grades,
but can we provide evidence that these relations are
causal? Specifically, does learning essential skills (here,
vector skills) result in good grades, or are essential skills
(vector skills) in fact necessary to do well in the course?
While many instructors may assume that it is obvious
that certain skills are necessary for obtaining a good
grade, one must nonetheless empirically establish such a
necessity.
To go beyond an analysis of correlations and to

determine if there is some directionality in the relations
consistent with causality (i.e., necessity or sufficiency),
we use a simple method developed by Rosenblatt and
Heckler [51] using cross-tabulation tables to analyze
within student performance in the course and the ES
test. Therefore, to gain insight into possible causal
relations, we split students who completed both the
pretest and the post test into either “high” course grade
or “low” course grade categories (above or below the
mean for the whole class), and high or low test scores,
where high is defined as >60% correct (the mean for all
pretest and post-test scores). We then cross tabulated
high-low test score with high-low grade for both the
pretest and post test (Tables V and VI, respectively).
The relatively low count in one of the diagonal cells of

Table V indicates that scoring high on the vector skills
pretest is not necessary for obtaining a high grade, but tends

TABLE IV. Multiple linear regression analysis results with
course grade as the dependent variable. Note that β represents the
standardized regression coefficient. All values are significant at
the p < 0.001 level.

Independent variable β rpartial r2 change

Pretest score (%) 0.55 0.48 0.20
Pre-post score gain (%) 0.24 0.23 0.06
Number of essential
skills units completed

0.18 0.18 0.03

TABLE V. Cross tabulation of pretest scores and course grades.

Grade in course

Score on pretest Low High

Low 415 431
High 42 168
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to be a sufficient indicator: only 52% (431=836) of students
scoring low on the pretest obtained high grades while 80%
(168=210) of students scoring high on the pretest obtained
high grades [χ2ð1Þ ¼ 57.8, p < 0.001]. Conversely, if a
student obtained a low grade, then they were very likely to
have a low pretest score (415=457 ¼ 91%), compared to
students with a high grade (431=599 ¼ 72%), (χ2ð1Þ ¼
57.8, p < 0.001). In all, this indicates that scoring high on
the pretest—i.e., being accurate in essential skills prior to
the course—tended to be sufficient but not necessary for
obtaining a high grade in the course. In other words, being
accurate in ES before the course was not essential to
scoring high in the course. Rather the pretest scores suggest
a causality that is more of a selection effect. Namely,
awarding a low course grade tends to disproportionally
select for students with low pretest scores.
In contrast, the post-test results have the opposite

implications compared to the pretest results. In Table VI
we present post-test and grade results for only those
students who score “low” on the pretest, which is 80%
of the students. Thus we focus only on students who could
improve from low to high on the vector skills test. For
students scoring high on the pretest, almost all 200=210 ¼
95% also scored high on the post test. In Table VI,
therefore, students in the high post-test score row have
improved their score from low to high. Table VI suggests
that improving from low to high on the ES test does not
tend to be a very good (or sufficient) indicator of
obtaining a good grade, but improvement on the ES test
does tend to be important (necessary is too strong) for
obtaining a high grade: 57% (352=617) of students
improving from low to high on the ES test also obtained
a high grade, but significantly fewer students 35%
(79=229) who did not improve from low to high on
the vector skills test obtained a high grade in the course
[χ2ð1Þ ¼ 34.0, p < 0.001].
Therefore, while we cannot conclude that knowing

vector skills is necessary for obtaining a good grade, the
data do suggest that students who enter the course scoring
high on the vector skills test tend to do well in the course,
and for students who score low initially, if they do not
improve from low to high on the vector skills test, they are
unlikely to obtain an above average grade. We note also that
the relation between improvement on the vector skills test
and obtaining a good grade does not necessarily mean that
the content of the vector skills test alone is important but

rather it could be that a student’s demonstrated ability to
learn the vector skills test material is an indicator of the
ability to do well in the physics course.

F. Awarding regular course credit vs extra credit

In this section we examine whether the way in which
course credit is awarded for ES assignments affects ES
performance. Experiment 1 offered the assignments as a
required part (1%) of the regular total course credit,
while experiment 2 was offered for 1% extra credit. That
is, grades for students in experiment 1 were made up of
99% other course assignments and 1% for ES assign-
ments, while experiment 2 consisted of 100% for
other assignments with up to 1% extra credit for the
ES assignments. This ostensibly small difference in the
course credit structure accounted for large differences in
terms of participation and ultimately gains in vector
skills scores.
Specifically, counting the ES assignments as part of

the course grade (compared to extra credit), significantly
improves participation. In experiment 1, 82% of all
students in the course completed at least 9 out of 12 total
ES assignments, compared to just 54% in experiment 2
[χ2ð1Þ ¼ 132, p < 0.001]. Consistent with the results of
Sec. V E, there is a significant difference in participation
between low-grade students and high-grade students. In
experiment 1, 72% of low-grade and 91% of high-grade
students completed 9 out of 12 ES assignments, and 40%
and 67% of low- and high-grade students, respectively,
completed to 9 out of 12 ES assignments in experiment 2
(p0s <0.001).
Furthermore, on average students in experiment 1

completed 10.28=12 (86%) training assignments compared

TABLE VI. Cross tabulation of post-test scores and course
grades for students scoring low on the pretest.

Grade in course

Score on post test Low High

Low 150 79
High 265 352

FIG. 10. Pretest and post-test scores for experiments 1 and 2,
which varied whether the essential skills were assigned for course
credit or extra credit.
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to the students in experiments 2 who completed only
7.43=12 (62%). It is worth noting that both populations
show a similar rate of assignment mastery—the proportion
of units completed per units attempted is above 95% for
each experiment. The difference in participation simply
comes from students not attempting as many of the training
assignments.
The results also suggest that there are differences in

pre- and post-test gains depending on how the credit was
awarded. Figure 10 shows mean pre- and post-test scores
for experiments 1 and 2. Both cases showed significant
pretest and post-test gains with large effect sizes [experiment
1: paired tð1055Þ ¼ 46.01, p < 0.001, d ¼ 1.5; experiment
2: paired tð264Þ¼15.01, p<0.001, d¼0.97.] However,
a comparisonof gains (post testminus pretest scores) between
the two experiments reveals that assigning regular course
credit for ES assignments results in higher average gains
(28%) compared to average gains from awarding the equiv-
alent value in extra credit points (21%) [tð1319Þ ¼ 5.02,
p < 0.001, d ¼ 0.33]. Further analysis suggests that this
difference is due to the fact that assigning course credit results
in more (here, about 3) assignments completed on average,
which in turn results in higher gains in scores. To further
quantify these effects, a linear regression was performed with
a post-test score as the dependent variable and pretest score,
number of ES assignments completed, and award structure
(regular credit vs extra credit) as the input variables. Such a
regression model resulted in r2 ¼ 0.26, and only pretest
(β ¼ 0.40, p < 0.001) and number ES assignments com-
pleted (β ¼ 0.27, p < 0.001) were significant; the award
structure was not significant (p ¼ 0.37). Rather the award
structure is causing a difference in howmany ES assignments
are completed, thus indirectly causing the larger score gain.
This result is also consistent with our finding in Sec. V B

that gain increases about 0.1 standard deviations for every
assignment completed.
Note that there is a potential confound in this com-

parison: The students in experiment 1 were enrolled in
Autumn and the students in Experiment 2 were enrolled
in Spring. One might argue that any differences could be
due to differences in population. However, we would
argue that this is likely only a small effect. We have
found that the main effect of assigning credit as part of
the course grade is in a very large difference in
participation in ES practice (as mentioned, 82% in
Experiment 1 vs 54% in Experiment 2), for both high
and low grade students. First, in our experience with
these courses (doing education research and teaching
these courses), there is no evidence of a difference in
physics course performance between these two semesters
(if there is any at all). Second, since we see this effect for
both low and high performing students, this argues
against a large confounding effect.
In sum, we have replicated the gains in vectors skills

in a slightly different implementation context, and
these findings suggest that in order to maximize student
participation in ES practice and overall gains in ES skills,
regular course credit should be assigned rather than extra
credit.

G. Student feedback on ES practice

Immediately after both the pretest and the post test on
vector skills, students answered a number of 5-point Likert
scale questions designed to briefly probe their attitudes
about the training (post test only; see Table VII).
Student attitudes about the ES practice were generally

positive, and responses to post-test questions about training
are shown in Table VII. In general, most students felt that

TABLE VII. Student responses to attitudes and beliefs of post-test survey items. Note That percentages may not
add to 100% due to rounding.

Percentage of students

Survey question 1 2 3 4 5

How much did you enjoy the essential skills units? 11 19 37 22 10
1 ¼ Strongly disliked, 5 ¼ Strongly liked

How much did you learn from Essential Skills Units? 6 15 28 33 17
1 ¼ I learned nothing new, 5 ¼ I learned many new things

How difficult did you find the Essential Skills Units to be? 16 40 34 9 1
1 ¼ Not difficult at all, 5 ¼ very difficult

How fair was the workload associated with the essential skills units? 2 5 17 29 48
1 ¼ Workload was unfairly high, 5 ¼ workload was completely fair

How strongly would you recommend the essential skills units are used
in <the course> in the future?

5 9 26 31 30

1 ¼ I highly recommend the essential skills units ARE NOT used again
5 ¼ I highly recommend the essential skills units ARE used again
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the workload was fair, the assignments were not difficult,
they learned new things during training, and—notably—
recommended that the ES assignments are used in the same
course in the future. Still, 30% of students disliked or
strongly disliked the ES practice, and we are investigating
ways to reduce this number. We also provide a place to type
open-ended comments, and while many comments were
positive (“I learned a lot”; “it helped me in the course”), one
somewhat common complaint is that students must get
several correct in a row in order to master a topic, and if
they happen to get one wrong, they do not like to “start all
over again at zero.”

VI. SUMMARY AND DISCUSSION

The proposed essential skills design framework
and successful implementation in this study provide
support for the idea that many students have difficulties
with basic, essential skills in STEM courses—even
postinstruction—and distributed, interleaved practice
using computer-based, mastery graded instruction
with immediate feedback can significantly—perhaps
even dramatically—improve and maintain accuracy and
fluency with these skills with only a few hours of practice
during a semester course. While this study has only
implemented the framework for a relatively small set of
essential skills (vector math), it is not unreasonable to
expect that this framework will work for a wide range of
other STEM skills as well, and some of our studies on
other skills support this [4,5].
The conceptualization, justification, and design of ES

practice could be seen as a fusion and application of well-
known and empirically tested ideas and principles, includ-
ing deliberate practice [15,52] and, as discussed earlier,
best cognitive learning and feedback practices, and dis-
cipline-based education research on specific difficulties
with target skills. The computer application itself does
not use adaptive techniques or artificial intelligence. Rather
the application has a straightforward structure, and as such
the methods used here could be adapted to other existing
learning software. Nonetheless, it should be noted that
considerable effort was invested in designing the content,
which was based on a significant amount of education
research and iteration.
While this study has been successful in showing gains in

a set of essential vector math skills, we note that this is only
one potential tool for achieving some of the many and
varied instructional goals for introductory physics. ES
practice is certainly not a silver bullet, nor is it likely
appropriate for other goals, such as deep conceptual
understanding and complex problem solving. In fact, from
a previous study [4], we found evidence suggesting that it is
likely that even some basic skills cannot be trained using
the methods in this study. There are a variety of factors,

including student attitudes and perceptions of the target
skill, which may strongly affect student learning of that
skill. For example, they may see the skill as irrelevant or
that it is easy to look up online, so there is no need to
commit it to memory.
Of course this study is just a small step in the process of

determining how to improve student understanding and
problem solving skills in STEM. For example, it still needs
to be established that improving essential skills leads to
improvement in problem solving that employs essential
skills and how one might further facilitate the transfer of
such skills to more complex problem solving or similar
skills.
Further, it is would also be interesting to investigate

how the improvement in essential skills interacts with
improvements in conceptual understanding of topics
related to such skills. Research in developmental psychol-
ogy suggests that children discovering new rules for
automating specific procedural mathematical skills fre-
quently exhibit the new, more efficient rule before they are
able to explicitly state the rule themselves [53]. That is,
procedural knowledge and fluency often precede formal
declarative knowledge for procedural skills. This implies
that training for accuracy and fluency before requiring the
ability to state formal declarative rules is, in fact, a natural
way for students to learn the simple skills, and further, this
may play a role in the development of more complex
problem solving skills and perhaps even robust conceptual
understanding.
Another potential significant strength of ES practice is in

helping students who are less prepared, and this may help
reduce the number failing grades and course withdrawals.
Clearly, we found that students with high and low grades
obtained large gains in the skills. While we found strong
relationships between the number ES assignments com-
pleted and higher grades, a more controlled study is needed
to firmly establish that ES practice leads to higher grades. It
is reasonable to expect such improvements, since this effect
has been seen in similar mastery based practice systems
such as ALEKS [54].
Finally, we note that there is more work to be done to

develop ES practice for other skills beyond vector math.
As noted earlier, we have made some progress on skills
related to introductory engineering courses, such as reading
logarithmic plots and unit analysis [4,5], but there are many
skills yet to be identified, studied, and employed in an ES
practice system.
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APPENDIX: VECTOR SKILLS ASSESSMENT

A paper version of the Vector Skills Assessment is shown below.

1. Vectors A and B are shown.

Which of the following options represents the vector sum, Aþ B? Please circle your choice.

2. A vector with magnitude F is shown. Find the component of vector F in the y direction.
Note: The coordinate system provided specifies the positive directions for x and y.

3. As shown in the picture to the right, vector A has length 5, and vector B has length 3. The angle between A and B is
θ ¼ 120°. What is the dot product, A •B? You may use a calculator.
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4. Force diagrams for two different objects, C and D, are shown.

How does the magnitude of the net force on object C (i.e., the vector sum of all forces on the object) compare to the
magnitude of the net force on object D?
a) The magnitude of the net force on object C is greater than the magnitude of the net force on object D.
b) The magnitude of the net force on object C is less than the magnitude of the net force on object D.
c) The magnitude of the net force on object C is equal to the magnitude of the net force on object D.

5. A block with weight W sits at rest on an inclined plane, as shown. What is the component of the weight vectorW in
the y direction?
Note: The coordinate system provided specifies the positive directions for x and y.

6. As shown in the picture to the right, vector A has length 3, and vector B has length 4. The angle between A and B is
θ ¼ 40°. What is the magnitude of the cross product, jA × Bj? You may use a calculator.

FRAMEWORK AND IMPLEMENTATION FOR … PHYS. REV. PHYS. EDUC. RES. 13, 010122 (2017)

010122-17



7. Multiple force vectors act on an object, as shown.

Which of the following options represents the net force (i.e., the vector sum of all forces) on the object? Please circle your
answer.

8. Vector A Is shown.

Which of the following options represents Ay, the y component of vector A? Please circle your choice.

9. For two arbitrary vectors A and B, which of the following statements about dot and cross products is true?
a) Both A ×B and A •B are scalars.
b) Both A × B and A • B are vectors.
c) A ×B is a scalar and A • B is a vector.
d) A ×B is a vector and A • B is a scalar.
e) Both A ×B and A •B can be either vectors or scalars.
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10. Forces A, B, and C act on an object at the origin, as shown.

What is the x component of the net force on the object? (i.e., the x component of the vector sum of all forces)
Note: The coordinate system provided specifies the positive directions for x and y.

11. For each of the pairs of vectors below, determine whether their dot product is positive (þ), negative (−), or zero (0).
Please circle your answers. (5 points)

12. A vertical force of magnitude F is applied to a rod that is free to rotate about its other end. At the instant shown, what
is the component of the force vector F in the radial direction (i.e., the y direction)?
Note: The coordinate system provided specifies the positive directions for x and y.
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13. Consider the two vectors below.
A ¼ 1iþ 3j
B ¼ −4iþ 2j
Which of the following options represents the vector difference, A −B? Please circle your answer.
Note: i and j represent the unit vectors in the x and y directions, respectively.

14. For each of the four pairs of vectors shown, determine the direction of the cross product A ×B. (4 points)
Answer using the key shown to the right.

15. A vector with magnitude F is shown. Find the component of vector F in the y direction.
Note: The coordinate system provided specifies the positive directions for x and y.

MIKULA and HECKLER PHYS. REV. PHYS. EDUC. RES. 13, 010122 (2017)

010122-20



16. Vectors A and B are shown.

The vector sum of vectors A, B, and C is zero. Which of the options below represents vector C? Please circle your
answer.

17. Two pairs of vectors are shown below. For each pair, if the angle between the two vectors is increased slightly, what
will happen to the magnitudes of the dot product and cross product? (2 points)

18. Vectors A and B are shown.

Which of the following options represents the vector difference, A −B? Please circle your answer.
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