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In this study, we explore the strategic self-regulatory and motivational characteristics of students in
studio-mode physics courses at three universities with varying student populations and varying levels of
success in their studio-mode courses. We survey students using questions compiled from several existing
questionnaires designed to measure students’ study strategies, attitudes toward and motivations for learning
physics, organization of scientific knowledge, experiences outside the classroom, and demographics. Using
a person-centered approach, we utilize cluster analysis methods to group students into learning profiles
based on their individual responses to better understand the strategies and motives of algebra-based studio
physics students. Previous studies have identified five distinct learning profiles across several student
populations using similar methods. We present results from first-semester and second-semester studio-
mode introductory physics courses across three universities. We identify these five distinct learning profiles
found in previous studies to be present within our population of introductory physics students. In addition,
we investigate interactions between these learning profiles and student demographics. We find significant
interactions between a student’s learning profile and their experience with high school physics, major,
gender, grade expectation, and institution. Ultimately, we aim to use this method of analysis to take the
characteristics of students into account in the investigation of successful strategies for using studio methods
of physics instruction within and across institutions.
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I. INTRODUCTION

Despite their growing popularity, studio-mode introduc-
tory physics courses, which support an interactive student-
centered learning environment, have seen variable success
at different institutions as measured by student outcomes.
We define a studio-mode introductory physics course as
one that combines the lecture, laboratory, and recitation
activities of a traditional introductory physics course and
endeavors to reduce time spent on instructor-led lecture in
favor of student-centered active learning opportunities. A
variety of studio methods, which combine traditional
lecture and recitation activities, have been developed for
introductory physics, such as Workshop Physics [1,2],
Rensselaer Polytechnic Institute’s Studio Physics [3],
and SCALE-UP [4]. These reforms typically prescribe a
modified classroom structure, with tables that facilitate
student collaboration rather than stadium-style lecture
seating. SCALE-UP, a focus of this work, uses a reformed
pedagogy that aims to minimize lecture time and maximize

collaborative work time in a studio (large-enrollment)
classroom environment.
Although many positive learning outcomes have been

published for studio-mode courses [1,2,4–6], these benefits
do not arise automatically from a reformed classroom.
Instead, instructional practices and other factors can signifi-
cantly influence success. Several instructor effects have been
identified that may affect the success of a studio-mode
course. As reported by Cummings et al. [3], conducting a
course within a studio-mode classroom and adapting largely
traditional activities to fit in with the studio environment was
not enough to replicate the substantial student conceptual
gains seen at other institutions adopting studio modes of
instruction, such as SCALE-UP [7]. Along the same lines,
Lasry et al. [8] found that an instructor’s teaching methods
are more important than the format of their room, such that
teacher-centered pedagogies enacted in student-centered
classrooms may have negative effects on students who have
low physics knowledge prior to taking the course [8].
Furthermore, a recent study by Foote [9] found that even
when the instructors adopting SCALE-UP have an interest in
physics education research (PER) and are motivated to make
the reform, difficulties in implementation of the research-
based instructional material designed for SCALE-UP can
lead to instructors creating their own materials which have
the possibility of not being grounded in PER outcomes and
thus may not fully support the SCALE-UP reforms.
Ultimately, an increasing body of evidence supports the
conclusion that building a studio-mode physics classroom
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and conducting class within it is not sufficient to make the
implementation successful; there are nuances of studio-mode
physics adoption and implementation that greatly affect the
impact of such a learning space.
While previous research has explored instructor-level

reasons for the variation in success of studio-mode physics
courses, in this paper we explore how students’ back-
grounds, expectations, study strategies, and motivations
may influence how they approach their learning in a studio
setting. Prior work suggests these aspects vary across
students and have the potential to influence their perfor-
mance in a course. Elby demonstrated that students may
select study strategies aligned with a performance orientation
to get a good grade in a physics course despite understanding
how to use study strategies aligned with a mastery orienta-
tion [10]. On the other hand, Kortemeyer found that students
who tended to make physics-related comments on an online
course discussion board had higher course grades and
concept test scores compared to students who tended to
make solution-oriented comments [11]. Stewart and col-
leagues found that students who earned high end-of-course
grades were better able to self-regulate by changing their
exam preparation time in reaction to their progress in the
course compared to those who earned low end-of-course
grades [12,13]. We expect that such behaviors may play an
even more significant role in determining student success in
studio-mode courses, which require active engagement of
students both inside and outside of class.
While prior work has explored students’ backgrounds,

expectations, study strategies or motivations, in this paper
we examine these constructs simultaneously. Specifically,
we explore the utility of the “profile approach”, which has
been used in studies in educational psychology to identify
five distinct learning profiles among several student pop-
ulations [14]. We investigate the presence of these five
previously identified learning profiles among students
enrolled in algebra-based introductory studio-mode physics
courses across three universities. To do this, we compiled a
student characteristic survey from several published and
validated questionnaires, similar to those used in Ref. [14],
which probes students’ strategic self-regulation and motiva-
tional characteristics and collects demographic information.
In this paper, we address the following three questions:
(i) Do the five learning profiles identified in prior

research in the fields of educational psychology
[14,15] and engineering education [16] describe the
ways students approach learning in algebra-based,
studio-mode introductory physics course?

(ii) Does learning profile adoption vary based on student
demographics, such as gender, race or ethnicity,
major, etc.?

(iii) Does learning profile adoption vary by institution?
We establish our survey’s reliability and construct

validity in our sample. We then use model-based cluster
analysis to explore the presence of these five learning

profiles among our students. This cluster analysis is
“person centered,” as it uses students’ individual responses
to find common, coherent groups among the students
[14,17]. We start by discussing the five learning profiles
found in previous studies using the profile approach, move
to our survey construction and validation, and finish with
our cluster analysis and learning profile results and their
interpretation in relation to those found in the literature.

II. THEORETICAL FRAMEWORK

A. Self-regulated learning

The active attempt of a student to monitor and alter her or
his approaches to a task is called self-regulation. Students
engaged in ideal self-regulation are aware of their own
thinking, can assess their current understanding and goals,
and can change their strategies and thought processes as the
need arises [18]. In educational psychology literature, a
perspective that considers the various cognitive, motiva-
tional, behavioral, and contextual elements that guide
student learning is termed the “self-regulated learning”
(SRL) perspective [19]. We adopt the SRL perspective as it
is important when looking at classroom environments such
as the studio mode, where students are encouraged to learn
on their own and in groups, to seek information from
electronic sources, and to possess “personal initiative,
perseverance, and adaptive skills” (p. 167) [20].
In the SRL model, students are assumed to be autono-

mous, active participants in their learning, able to make
judgments about their learning processes in the context of
their learning environments, and able to adapt to new goals
and challenges, if they choose to do so. Further details of
these assumptions are given by Pintrich [19]. Within the
SRL perspective, there are four main areas in which self-
regulation occurs: cognition, motivation or affect, behavior,
and context [19,21]. Regulation of cognition refers to the
active setting of goals and planning for studying the course
material and the act of using metacognitive techniques to
monitor studying and learning [19,22]. The regulation of
motivation and affect encompasses how students regulate
interest levels in the subject material, change ideas about
the utility of the tasks involved, and alter goal orientations
[19,20,22–24]. The regulation of behavior deals with how
students decide to behave and how they control their
behavior, including the links between planned behavior
and subsequent actions [25–27] and the management of
study time and the control of study effort [28,29]. The
regulation of context refers to the extent that students
interact with and shape elements of the course, such as
designing experiments and working together in groups
[19]. Although the nature and context of classroom
activities are often controlled by the course instructor
and out of the hands of the students, regulation of context
becomes more important and relevant in student-centered
classrooms, such as studio-mode courses [19].

POND and CHINI PHYS. REV. PHYS. EDUC. RES. 13, 010119 (2017)

010119-2



The major motivational and self-regulatory character-
istics that work together to explain the actions of a student
are represented in the SRL perspective. While many studies
look at one or two areas of SRL at a time, there is a method
emerging in the field of educational psychology to better
understand the interrelations between students’motivations
and strategic self-regulatory behaviors which takes into
account many of the different components of SRL simul-
taneously. This method is termed the “profile approach”
and is detailed in the next section.

B. Profile approach

The profile approach is a relatively new and powerful
method emerging from growing efforts in educational
psychology research to better understand what motivates
students and what self-regulated learning strategies students
enact when studying [19,20,23,30–34]. This approach is
distinguished from other methods by the use of person-
centered techniques to group together individuals with
similar motivations and strategic self-regulatory behaviors.
Person-centered techniques take into consideration students’
individual response patterns across multiple measures (or
variables), looking for groups of individuals that share
similar patterns. This is in contrast to variable-centered
methods that are characterized by investigating the relation-
ship between measures after averaging across students’
responses, treating these measures as separate entities
[17]. Some examples of techniques that utilize a person-
centered approach are latent profile analysis [35,36], canoni-
cal correlation [15], and cluster analysis [14,16,37,38].
One of the most well-defined and reproducible sets of

student groups was initially identified by Shell and
Husman, who found five distinct student learning profiles
among undergraduate educational psychology students in a
study using canonical correlation to analyze a wide range of
motivational, affective, and strategic self-regulatory mea-
sures [15]. The five profiles are described as follows: (i) a
strategic profile of a student motivated to learn and retain
the subject material, using whatever self-regulatory strat-
egies are needed to do so; (ii) a knowledge building profile
of a student intrinsically motivated to learn and understand
the subject material, but less actively engaged with the
course; (iii) a surface profile of a student who understands
the course’s usefulness, but is primarily concerned with
passing the course with little engagement in the subject
material; (iv) an apathetic profile of an unmotivated student
who, though wanting to pass the class, invests minimal
engagement and personal interest in learning the subject
material; and (v) a learned helpless profile of a student
putting in large amounts of time and effort to pass the
course, but unable to optimize self-regulatory study strat-
egies [14]. These five profiles, or some subset, have been
found in several other studies using different types of
analyses on varying student populations. Cluster analysis
was used to identify the profiles among post-secondary

computer science and engineering [14,16] and education
students [39]. Latent profile analysis was used to identify
them among German secondary and post-secondary stu-
dents [36], middle school earth science and space science
students and high school biology and chemistry students
[35]. In this study, we aim to describe introductory algebra-
based physics students based on the motivations and
study strategies they adopt while enrolled in studio-mode
courses.
Shell and Soh [14] investigated the prevalence of the five

profiles among majors and nonmajors in a postsecondary
computer science course and found that computer science
majors more frequently adopted the strategic and knowl-
edge building profiles while nonmajors more frequently
adopted the surface and apathetic profiles. Additionally,
they found that students in the strategic and knowledge
building profiles demonstrated better retention of computa-
tional thinking knowledge than students in the other
profiles. Since the algebra-based physics sequence is taken
by nonphysics majors, we may expect to see a high rate of
adoption of surface and apathetic profiles.
A growing catalog of literature suggests the profile

approach to be a powerful and informative research
methodology built upon a well-established theoretical
framework of student learning. We thus adopt this strategy
to not only investigate the existence of these five learning
profiles among a population of undergraduate physics
students (a population not yet investigated), but also to
better understand the students in studio-mode physics
courses and how their varying backgrounds, study strate-
gies, and motivations may influence their success in these
courses.

III. METHODOLOGY

To explore whether the five learning profiles identified
by Shell and Husman [15] extend to students enrolled in an
algebra-based, studio-mode introductory physics course,
we distributed an online survey to students across three
universities during the final month of the semester. We
named this survey the Student Characteristics Survey, or
SCS. In this section, we describe the development and
validation of our survey, the cluster analysis method we
used to analyze students’ responses to the survey, and our
study population.

A. Student Characteristics Survey

Based on the results of prior research, we sought to
develop a survey with questions probing both motivational
and strategic self-regulatory factors to identify all five
learning profiles; studies that explored too few categories
tended to identify only a subset of the five profiles
[14,35,40]. We used the survey scales of Ref. [14] as a
starting point and substituted comparable scales when
specific ones were not readily available; these deviations
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are explained in the Supplemental Material [41]. Our
strategic self-regulatory scales explore self-regulation,
knowledge building, question asking, collaborative learn-
ing, learning approaches (deep, strategic, and surface), and
study time and effort. Our motivational scales explore goal
orientation, perceptions of instrumentality, and future time
perspective. Additionally, we added an epistemological
scale and demographic and academic experience questions.
Information on the parent surveys and descriptions of the
scales are given in the Supplemental Material [41].
To be confident that our set of survey items behaves

together as expected, we evaluated both the reliability (the
extent to which items collectively measure the same latent
variable) and validity (if all of the scales put together into
one survey act similarly as they did on their own) of our
SCS for our population. We found that the ordinal α
coefficients for all scales were above 0.70, indicating
sufficient reliability to evaluate survey scales on a group
level, and most were above 0.80, indicating sufficient
reliability to evaluate survey scales on an individual level
[42,43]. (The α for each scale is given in the Supplemental
Material [41].) We used confirmatory factor analysis
through the lavaan package in the open source statistical
programming language, R, to test a proposed model where
each item was associated with only the scale it came from
and the scales were allowed to correlate [44,45]. The
resulting fit statistics indicate the model is supported by
the data, and we may use these scales together in one
survey with confidence [χ2ðdf ¼ 2254Þ ¼ 6639.966,
p < 0.001; SRMR ¼ 0.063; RMSEA ¼ 0.046] [46].

B. Cluster analysis

Cluster analysis is a method of creating groups, or
clusters, such that individuals within a cluster are similar
to each other and distinct from individuals in other clusters
[47], allowing one to compare responses within and across
groups [48]. Cluster analysis can be easily performed with
R [44]. There are two main categories of cluster analysis
algorithms: hard clustering and fuzzy clustering. When
hard clustering methods are used, individuals are assumed
to belong to one, and only one, of the resulting clusters
[47]. On the other hand, when fuzzy clustering methods are
used, each individual belongs to each cluster with a
particular degree of membership [47]. We chose a
model-based clustering method with mixture models in
the present work because it allowed us to interpret an
individual’s cluster membership as a set of probabilities,
analogous to the degrees of cluster membership resulting
from fuzzy cluster analysis methods [49], instead of placing
(or misplacing) an individual into a particular cluster.
Additionally, it allowed us to conduct further analysis on
the clusters with a population restricted to high probability
(here, a minimum of 0.75 was chosen) of membership to
only one cluster.

1. Model-based cluster analysis

We use model-based cluster analysis for the following
three main reasons: (i) the use of likelihood measures of
similarity in model-based clustering allow for one to
interpret clustering in the data not just as collections of
geometrically close points, but as probability distributions
estimating populations of individuals from which one’s
sample was collected [47,50,51]; (ii) the likelihood sim-
ilarity measures can easily be extended to account for
mixing of these probability distributions (or clusters),
allowing for a fuzzy interpretation of the clustering results
[47,49,52]; and (iii) model-based clustering allows one to
easily explore several different clustering solutions and
provides a means to assess which solution is the best fit for
one’s data [52].
As with any cluster analysis method, a measure of

proximity (or similarity) must be defined to quantify the
distance between responses so that judgments can be made
about the relationship between individuals. Model-based
cluster analysis uses the probabilistic distance measure of
likelihood rather than the more familiar Euclidean distance.
With the likelihood distance measure, a set of data points is
“closer” to each other if it is more likely that those points
come from probability density functions with a shared set
of parameters. In contrast to the Euclidian distance, where
one looks for a minimum to find the closest points, one
looks for the maximum likelihood to find the closest, or
most similar, points. Furthermore, when using the prob-
abilistic likelihood distance measure in model-based clus-
tering, we make the assumption that the observed data
come from a population comprised of subpopulations, or
clusters; we then model each of these subpopulations
separately and consider the total population as a mixture
of these subpopulations [50,51]. This changes slightly the
interpretation of our clustering results, as individuals placed
in clusters are not simply close to each other in their
numerical responses to our survey but are likely to belong
to the same subpopulation of students (e.g., the same
learning profile). The level of mixing of these subpopula-
tions is interpreted as the probabilities that each individual
belongs to a particular subpopulation, or cluster [47,50,51].
Thus, as a result of the model-based clustering, each
individual is assigned a set of cluster membership proba-
bilities: one value for each cluster, the set of which sum to
1.0. Such a set of values is analogous to degrees of cluster
membership assigned to individuals as a result of fuzzy
clustering techniques; thus, we consider our model-based
cluster analysis with mixture models as a fuzzy cluster
analysis [49].
In addition to a probabilistic distance measure, model-

based cluster analysis allows one to propose different
models that define the ways in which the volume, shape,
and orientations of clusters are allowed to vary with respect
to one another. Volume refers to whether the clusters are
constrained to be roughly the same size (equal) or if they
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can vary in size across one another (variable). Shape refers
to whether the clusters are constrained to be roughly the
same ellipsoidal shape (equal) or if they can vary in
ellipsoidal shape (i.e., vary in the sizes of their semi-major
and semi-minor axes) across one another (variable).
Orientation refers to whether the clusters are constrained
to be roughly the same orientation (equal) or if they can
vary in orientation across one another (variable).
Analytically, the sizes and shapes of clusters are determined
by the relative magnitudes of the clustering variable
standard deviations, and the cluster orientations are deter-
mined by the correlations between clustering variables [53].
Ultimately, these different models constrain the covariance
matrices of data within each cluster in different ways. For
example, the model that returns the best solution in our
analysis is the variable volume, variable shape, and equal
orientation, or VVE, model. Thus, in our best solution, the
clustering variable standard deviations are variable across
clusters, but the correlations between clustering variables
are the same across clusters. Gan et al. [47], Celeux and
Govaert [49], and Everitt et al. [53] discuss the details and
mathematics behind applying these models in model-based
cluster analysis.
We chose the best solution by considering several mea-

sures of fit. The first of these measures is the Bayesian
information criterion (BIC). The BIC “is a likelihood
criterion penalized by the model complexity” (p. 646)
[54]. The model and cluster number to give the highest
BIC is likely the best solution [54]. In the learning profile
research conducted by Shell and Soh [14] and Nelson et al.
[16], they also use a likelihood-based similarity measure in
their clustering process. Furthermore, Nelson et al. [16]
considered several other fit statistics in conjunctionwith BIC
values when choosing the best cluster solution: the sums of
squares within (SSW), the sums of squares between (SSB),
and the silhouette coefficient. SSW and SSB are defined in
the same way as in a one-way ANOVA [55]. Similarly, we
consider the SSW and SSB but also felt it appropriate to
consider a validity index that takes into account not only the
cohesion (compactness) and separation of the resulting
clusters (as a silhouette coefficient does) but also the
probabilistic and fuzzy nature of the cluster membership
results (something the SSW, SSB, and silhouette do not).
Such a validity index is the fuzzy index of Xie-Beni [47,56].
This validity index has been shown to perform well in
validation of the results ofmodel-based cluster analysis using
mixture models [57,58]. Here, we denote this fuzzy validity
index as S (the same notation used by Xie and Beni [56] and
Gan et al. [47]); the smaller the S value, the more compact
and separate the clusters are in the clustering solution. When
evaluating the various cluster solutions produced by the
model-based cluster analysis, we consider all four of these fit
measures (BIC, SSW, SSB, and S) together, along with
theoretical considerations, to choose the clustering solution
that best fits our observations.

2. Variable reduction for cluster analysis

Though there is no consensus on the minimum sample
size needed for cluster analysis, Formann [59] suggests a
minimum sample size of 2d, where d is the number of
clustering variables; this minimum sample size condition is
often referred to as Formann’s criteria [59,60]. To use all of
our 17 scales as potential clustering variables, we would
need a minimum sample size of 131 072. Since our sample
size is only 900, we wish to reduce the number of clustering
variables (ideally to around 9 variables or less; 29 ¼ 512).
Our goal of variable reduction is twofold: we are taking
sample size restrictions into consideration, and we are
working to identify the most informative variables and
reduce the length of our survey for later distributions.
Sarstedt and Mooi [60] provide guidelines for selecting

clustering variables to make the clustering results as
meaningful as possible. We operationalized these guide-
lines into the following three rules to decide which
variables to retain for clustering:

(i) We assess the quality of variables using the ordinal α
reliability measure. Ordinal α values between 0.70
and 0.79 are sufficient to evaluate measures on a
group level, while ordinal α values of 0.80 or greater
are high enough to measure qualities of individuals
[43]; thus, we retain only those variables with
ordinal α values of 0.80 or higher for clustering,
while variables with ordinal α values between 0.70
and 0.79 are considered for comparisons between
clustered groups in follow-up analyses.

(ii) To reduce the possibility of overrepresented varia-
bles, we consider the correlation matrix between all
variables retained after reliability considerations,
and make note of those scales that possess both a
moderate to strong (r ¼ 0.50 to r ¼ 1.00) correla-
tion (statistical correlation) and considerable overlap
in content assessed by the variables (theoretical
correlation). As an additional constraint, since hav-
ing distinct strategic self-regulatory and motivational
variables are important to resolving the five learning
profiles [14], we compare variables within their
respective categories, so as to not convolve them.

(iii) We aim to select scales that will be the most
informative to clustering and can give us the richest
interpretation of resulting clusters. This rule can be
used when deciding which of a pair of variables
identified by step 2 to retain.

To apply our first rule, we examined the ordinal α values
of each scale (listed in Table S1 of the Supplemental
Material [41]), eliminating those with ordinal α values less
than 0.80 and single-item scales for which an ordinal α
could not be computed. This step eliminated seven scales
from the cluster analysis. EBAPS: structure of scientific
knowledge, future time perspective, performance approach,
deep approach, and exogenous instrumentality (five total)
were eliminated because their ordinal α values were less
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than 0.80. Furthermore, since study time and study effort
are each based on a single item and their reliability cannot
be calculated, they were also removed at this step.
Next, to apply our second rule, we considered statistical

and theoretical correlations between the remaining ten
scales to remove redundant information. Out of all the
possible pairings, two pairs showed both considerable
correlations and topical overlap among the constituent
items. The low-level question asking and high-level ques-
tion asking scales show a strong, significant correlation
(Pearson’s r ¼ 0.81, p < 0.001). This indicates that a
student’s use of low-level questioning is a good predictor
of their use of high-level questioning. Given low-level
question asking’s slightly higher reliability, we retained
low-level question asking as a clustering variable. The self-
regulation and strategic approach scales also showed a
moderate, significant correlation (Pearson’s r ¼ 0.62,
p < 0.001), and the topics of the items comprising these
two scales overlap. Items in self-regulation address both
students’ study strategies and self-regulation, while items in
strategic approach mainly focus on study strategies only.
Hence, since self-regulation is a more informative scale
[rule (iii)], we retained it as a clustering variable.
We note there are two scale pairs with Pearson’s r values

higher than 0.50, but that do not display substantial topical
overlap: self-regulation and knowledge building (Pearson’s
r ¼ 0.56, p < 0.001) and self-regulation and low-level
question asking (Pearson’s r ¼ 0.52, p < 0.001). While
these pairs have moderate correlations, there is little
conceptual overlap between the core student characteristics
probed by these scales. Thus, we chose to retain self-
regulation, knowledge building, and low-level question
asking as distinct clustering variables.
Concluding our variable reduction, we are left with eight

clustering variables. We retained the strategic self-regula-
tory scales of self-regulation, knowledge building, low-
level question asking, collaborative learning, and surface
approach, and the motivational scales of learning approach,
task or work avoid, and endogenous instrumentality. Using
Formann’s criteria, a set of eight clustering variables calls
for a minimum sample size of N ¼ 28 (256) students,
which our data set exceeds. We can now proceed with these
eight scales as cluster variables and use the remaining nine
scales in postcluster analyses. To increase interpretability of
the clustering results, scales are globally standardized to z
scores prior to cluster analysis.

C. Institutional context and participants

Survey responses were collected from SCALE-UP-style
[7] studio-mode courses at three large universities,
described as “highest research activity” by the Carnegie
classifications [61]. University A and University B are both
public and primarily nonresidential, while University C is
private not for profit and highly residential. All three
universities have renovated classrooms specifically

dedicated to SCALE-UP courses, featuring tables with
movable chairs to facilitate small group interaction, white-
boards, and access to computers and lab equipment. The
maximum class size varied from 54 at Institution B to 99 at
Institution A. At the department level, the intention was for
integrated course components at each of the three univer-
sities, although individual instructors had autonomy to
decide how to spend class time, and some dedicated
specific days to extended experiments. Additionally, the
department-level intention was for reduced lecture time at
all three universities, but individual instructors varied in
how frequently they lectured. As described in our prior
work, we conducted observations at Institutions A and C
and found that lecture occurred with similar frequency
across universities (22% versus 20%), but that individual
instructors varied in their use, from 7% to 43% at
University A and 7% to 36% at University C [62].
Instructors also had autonomy to decide how to structure
groups and reported following a variety of practices. Some
instructors carefully crafted groups, following recommen-
dations that groups should have a student from the “top,
middle, and bottom” of the class based on performance
and/or that groups should not have a single woman or
student from an under-represented racial or ethnic back-
ground. On the other hand, some instructors reported
abandoning those practices and began randomly creating
groups or allowing students to self-select groups. In this
paper, our focus is at the department level; future work will
explore instructor-level differences.
Survey responses were collected at all three institutions

in the Spring 2015 semester, at Institution A in the Fall
2015 semester, and at both Institutions A and B in the
Spring 2016 semester. Table I gives a breakdown by
institution and semester of the number of course sections
reporting data and the number of survey respondents. The
survey was distributed online, and most students were
offered a small amount of extra credit for their participa-
tion. Only those completing the survey, correctly answering
two attention-check questions, and consenting to research
participation are considered in the data analysis.
Additionally, survey responses from students who took

TABLE I. Respondent breakdown by institution. (Percent of
students participating is estimated by the maximum class size).

A B C

Spring 2015
No. of Sections 3 4 2
Survey 199 (∼67%) 119 (∼51%) 123 (∼75%)

Fall 2015
No. of Sections 4 � � � � � �
Survey 121 (∼30%) � � � � � �

Spring 2016
No. of Sections 4 3 � � �
Survey 246 (∼62%) 92 (∼57%) � � �
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the survey more than once were removed from the analysis
so as to not violate any independence of observations
assumptions in analyses conducted later. Ultimately, a total
sample size of 900 valid responses to the SCS was
collected.

IV. MODEL-BASED CLUTERING RESULTS

A. The best clustering solution: Five clusters
in the VVE model

Figure 1 displays the BIC for models with various size,
shape, and orientation restrictions for one through six
clusters. Examining Fig. 1, we find that the VVE model
results in the highest BIC value overall (at six clusters), in
addition to giving relatively and consistently high BIC
values. In addition, the VVE model gives the clustering
algorithm the most freedom (allowing the shape and size of
clusters to vary) while supplying enough constraint (in the
cluster orientation) to allow for high BIC values. As one
can see in Fig. 1, models with variable cluster orientation,
those acronyms ending in a V, provide consistently low BIC
values. Thus, in order to find an appropriate solution, we
vary the number of clusters within the VVE model and
compare the various measures of fit (BIC, SSW, SSB,
and S). Table II gives these fit measures for several cluster
solutions within the VVE model. Following the lead of
previous researchers applying the profile approach (e.g.,
Shell and Soh [14] and Nelson et al. [16]), we compare
solutions for two through six clusters.
The six-cluster solution gives the highest BIC; however,

its SSW value is not the lowest, its SSB value is not the
highest, and its S value is relatively large. Furthermore,
while the two-cluster solution has the smallest S value, this

solution’s BIC, SSW, and SSB values are not desirable.
Overall, the five-cluster solution possesses the best set of fit
measures: the lowest SSW, the highest SSB, a relatively
high BIC, and a relatively low S. The five-cluster solution
also has the best theoretical backing, as it is supported by
previous research also using survey instruments to probe a
similar wide range of self-regulatory and motivational
student characteristics [14–16]. Thus, we continue our
analysis by interpreting the five-cluster solution, inspecting
the resulting groups for similarities to the five learning
profiles found in previous studies [14–16].

B. Interpreting the best clustering solution:
Identification of the five learning profiles

Since we chose a model-based clustering method with
mixture models, each respondent is given a probability of
belonging to each cluster. In order to include only those
students who have a high probability of possessing the
characteristics necessary to be placed in one cluster over
another, we retained only students with 0.75 or greater
probability of being placed in a specific cluster. This
reduced the sample size from N ¼ 900 to 535. We chose
to analyze data from students whose probability of mem-
bership in a particular cluster was 0.75 or greater as this
level provided a balance of high similarity with others in a
cluster and enough flexibility to retain the majority of our
sample (60%). We explored this analysis with more
restrictive (0.95 probability of membership, retaining just
20% of the population) and more flexible (0.50 probability
of membership, retaining 92% of the population) cutoffs
and did not observe changes in cluster interpretation. For
example, comparing the means for the five profiles across
the 17 scales with 0.50 and 0.75 cutoffs revealed only six
(out of 85) changes in absolute ranking of clustering
variables across clusters and all changes were within
overlapping confidence intervals. Table III gives the cluster
means and half-widths of their 95% confidence intervals for
each standardized clustering and nonclustering variable
for the five-cluster solution. For each cluster, these values
were attained by calculating the averages and their
95% confidence intervals for each variable within each
cluster using only those individuals placed in a cluster with
0.75 probability. In addition, for reference, the overall
sample means used to globally standardize the scales prior

FIG. 1. Bayesian information criterion (BIC) values for various
model-based clustering solutions.

TABLE II. Measures of fit for several cluster solutions in the
VVE model.

Cluster number BIC SSW SSB S

2 −18 735 6381 810 1.4
3 −18 707 5771 1420 2.0
4 −18 700 5374 1817 2.3
5 −18 732 4751 2440 1.9
6 −18 631 5094 2097 2.2
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to cluster analysis (and the half-widths of their 95% con-
fidence Intervals) are given in the right column of Table III.
For example, the mean standardized self-regulation value
for cluster 1 is 1.19� 0.10: meaning cluster 1’s members
possess, on average, a self-regulation scale value that is
likely between 1.09 and 1.29 standard deviations above the
overall sample mean of 3.75. Thus, members of cluster 1
have self-regulation scale values that are largely above
average.
To assist in the interpretation of the clusters, within each

scale, we compared the standardized cluster means (and
their 95% confidence intervals) across the five clusters and
ranked the clusters relative to each other. Table IV gives
these ranking results. Clusters given “high” and “low”
rankings within a scale possess relatively high and low
means, respectively, compared to the other clusters; those
given a “moderate” ranking have means somewhere in
between. Clusters given the same ranking typically have
overlapping confidence intervals.
Table IV also includes the learning profile interpretation

for each of the clusters. Overall, the five clusters found in
this study closely resemble the five learning profiles found
by Shell and his colleagues [14–16]: the strategic, knowl-
edge building, learned helpless, surface, and apathetic
learning profiles.
Strategic students are characterized by high levels of

self-regulated strategy use, knowledge building, and col-
laboration, in addition to low levels of task avoidance and
relatively low levels of surface approach (the surface
approach scale here is mainly a measure of students’

inabilities to handle the course material and regulate their
studying). Furthermore, strategic students possess desirable
motivations, with high levels of learning (or mastery)
approach and endogenous instrumentality. These are stu-
dents who strongly feel that their current actions affect their
future success, put much time and effort into the course,
and want to understand the material on a deep level.
Knowledge building students are similar to strategic
students when it comes to their motivations; knowledge
building students also feel that physics will be useful for
their future. In contrast to strategic students, knowledge
building students are less engaged with the course, having
moderate levels of self-regulation, question asking, col-
laborative learning, study time, and study effort, but
knowledge building students still tend to want to better
understand the material (high learning approach) and use
metacognitive techniques to do so (high deep and strategic
approach). Thus, the knowledge building students appear to
interact with their peers and instructors less, but are still
intrinsically motivated to learn physics and excel at it.
Strategic and knowledge building students also differ in
their levels of surface approach, and this is a characteristic
that makes the strategic profile here unique from that found
by Shell and Soh [14] and Nelson et al. [16]. In the works
of Shell and Soh [14] and Nelson et al. [16], students in the
strategic profile have lack of regulation (or surface
approach) levels that are just as low as the knowledge
building students. Though strategic students in this sample
exhibit excellent levels of self-regulated strategies and
supportive motivations, they possess a moderate level of

TABLE III. Standardized cluster means (and the half-width of their 95% confidence intervals) for the five-cluster solution. The overall
sample means used to standardize data for each sale (and the half-width of their 95% confidence intervals) are given in the right column
for reference.

Cluster number 1 2 3 4 5 Sample mean

Students in cluster 81 121 144 99 90
Clustering variables
Self-regulation 1.19 (0.10) 0.37 (0.11) 0.16 (0.11) −0.45 (0.21) −1.17 (0.25) 3.75 (0.05)
Knowledge building 1.30 (0.13) 0.59 (0.09) −0.50 (0.13) −0.15 (0.16) −1.18 (0.20) 3.17 (0.06)
Low-level question asking 1.30 (0.10) 0.30 (0.12) −0.22 (0.16) −0.76 (0.17) −0.69 (0.25) 3.36 (0.06)
Collaborative learning 1.01 (0.06) 0.27 (0.11) 0.57 (0.09) −1.15 (0.22) −0.80 (0.25) 4.10 (0.05)
Surface approach −0.54 (0.23) −0.96 (0.10) 0.48 (0.14) 0.40 (0.18) 0.31 (0.23) 2.94 (0.07)
Learning approach 0.51 (0.14) 0.74 (0.08) −0.36 (0.10) 0.30 (0.15) −1.71 (0.28) 3.94 (0.05)
Task or work avoid −0.42 (0.24) −0.28 (0.15) 0.01 (0.15) −0.12 (0.19) 0.69 (0.25) 2.65 (0.06)
Endogenous instrumentality 0.59 (0.17) 0.79 (0.09) −0.47 (0.13) 0.49 (0.13) −1.45 (0.16) 3.30 (0.07)
Nonclustering variables
High-level question asking 1.25 (0.12) 0.43 (0.13) −0.27 (0.15) −0.53 (0.17) −0.77 (0.23) 3.29 (0.06)
Strategic approach 0.86 (0.14) 0.56 (0.13) −0.13 (0.15) −0.40 (0.21) −0.79 (0.22) 3.62 (0.05)
Deep approach 0.71 (0.21) 0.40 (0.14) −0.22 (0.15) 0.01 (0.20) −0.89 (0.23) 3.49 (0.04)
Study time 0.45 (0.27) −0.14 (0.15) 0.04 (0.17) 0.03 (0.21) −0.52 (0.18) 2.00 (0.07)
Study effort 0.41 (0.20) 0.14 (0.17) 0.04 (0.14) −0.01 (0.23) −0.47 (0.25) 3.20 (0.07)
Performance approach 0.42 (0.21) 0.30 (0.18) −0.13 (0.15) 0.01 (0.20) −0.56 (0.24) 3.10 (0.06)
Exogenous instrumentality 0.53 (0.16) 0.38 (0.15) −0.14 (0.17) 0.14 (0.19) −0.86 (0.22) 4.12 (0.05)
Future 0.50 (0.18) 0.18 (0.16) 0.11 (0.15) −0.08 (0.22) −0.52 (0.25) 3.86 (0.04)
Structure of scientific knowledge 0.14 (0.23) 0.38 (0.19) −0.22 (0.15) 0.07 (0.18) −0.07 (0.23) 3.34 (0.05)

POND and CHINI PHYS. REV. PHYS. EDUC. RES. 13, 010119 (2017)

010119-8



surface approach. Although this level of surface approach is
still less than the overall global average, it is worth keeping
in mind that the strategic students in this sample exhibit a
slightly higher level of difficulty handling the course
compared to the knowledge builders. Possibilities for this
difference will be discussed in Sec. V.
Learned helpless students exhibit similar levels of

engagement as knowledge building students; however, they
possess high levels of surface approach and low levels of
knowledge building, indicating that their attempts to
engage with the course are at odds with their feelings of
being unable to properly manage the material in the course.
In addition, learned helpless students have some of the
lowest levels of sophistication in views on the structure of
scientific knowledge and exhibit only moderate levels of
endogenous instrumentality and learning approach. This
adoption of less than desirable motivations and views of
physics knowledge could possibly be the cause for such
struggling, or, conversely, the result of it.
Surface and apathetic learners have the lowest levels of

engagement in the examined studio-mode, introductory
physics courses. Both profiles have low levels of self-
regulation, question asking, and collaborative learning, in
addition to both having high levels of surface approach,
showing that these students, like learned helpless students,
may feel intimated by the course. Furthermore, apathetic
students have the lowest levels of motivations, with low
learning approach and low endogenous instrumentality.
Also, apathetic students possess the lowest performance
approach and exogenous instrumentality scores, indicating
that these students care the least about looking intelligent

and value their grade minimally. In addition, apathetic
students have the highest of the task or work avoid levels
and lowest study time and effort levels, indicating their
desire to get through their physics courses with as little
work as possible. In contrast, despite surface students’ low
engagement levels, they exhibit more desirable motivations
for their physics courses, having high levels of endogenous
instrumentality and learning approach. Hence, it appears
that surface students do find the material in their physics
classes to be useful to them, but they are not attempting to
understand the material on a deeper level, as indicated by
their low self-regulation and moderate strategic and deep
approaches.
In summary, given the results of the model-based cluster

analysis, the five-profile solution is the best fit for our
population of algebra-based, studio-mode introductory
physics students. Furthermore, this coherent set of learning
profiles is similar to those found by Shell and Soh [14] and
Nelson et al. [16]. Table V gives a synthesis of the key
characteristics of the five learning profiles.

C. Interactions between learning profiles and
demographics

1. Demographic information

In addition to strategic self-regulatory and motivational
information about students, the SCS also collects demo-
graphic information. Table VI displays the levels and
percentage of students within each level for the demo-
graphic variables.

TABLE IV. Comparative scale rankings across clusters and learning profile interpretations.

Cluster 1 2 3 4 5

Profile interpretation Strategic Knowledge building Learned helpless Surface Apathetic
Students in cluster 81 121 144 99 90
Clustering variables
Self-regulation High Moderate Moderate Low Low
Knowledge-building High High Low Moderate Low
Low-Level question asking High Moderate Moderate Low Low
Collaborative learning High Moderate Moderate Low Low
Surface approach Moderate Low High High High
Learning approach High High Moderate High Low
Task or work avoid Low Low Moderate Moderate High
Endogenous instrumentality High High Moderate High Low
Nonclustering variables
High-level question asking High Moderate Moderate Low Low
Strategic approach High High Moderate Moderate Low
Deep approach High High Moderate Moderate Low
Study time High Moderate Moderate Moderate Low
Study effort High Moderate Moderate Moderate Low
Performance approach High High Moderate Moderate Low
Exogenous instrumentality High High Moderate Moderate Low
Future High Moderate Moderate Moderate Low
Structure of scientific knowledge Moderate High Low Moderate Moderate
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In addition, students were asked to report their SAT and/
or ACT scores. Particularly, we are interested in students’
math standardized test scores. Of the 900 students, N ¼
481 reported valid SAT math scores and N ¼ 344 reported
valid ACT math scores. The average SAT math score of
these student respondents is 605 (out of 800) with a
standard deviation of 103; the average ACT math score
of these student respondents is 24 (out of 36) with a
standard deviation of 7.
In the next section, we investigate the interactions

between demographics and learning profile adoption to
see how different demographic groups are distributed
among the five learning profiles that emerged from the
cluster analysis.

2. Interactions between learning profiles
and demographics

We investigated interactions between learning profile and
the demographic variables described in Table VI as well as
student self-reported SATor ACT scores. Since this involved
running twelve statistical tests, we reduced our risk of type 1
error by applying aBonferroni correction to our initial critical
alpha value of α ¼ 0.05 and obtained a corrected critical
alpha value of α� ¼ 4.17 × 10−3. We ran a chi-square test
[63] for association for each demographic variable in
Table VI and learning profile. The results are given in
Table VII. The four demographic variables showing signifi-
cant associations with learning profile are gender, high
school physics experience, major, and grade expectation.
Table VIII displays contingency tables for learning

profile and the significant variables identified in

Table VII. Row percentages are given in each cell,
indicating the percentage of students within a demographic
level belonging to a learning profile. In addition, within
each cell, the adjusted residuals are given in parentheses.
We examine the adjusted residuals to understand which
cells contributed to the significant difference in profile
adoption among the levels of each variable. Adjusted
residuals are a measure of the difference between the
observed and expected values for a cell, similar to a z
score but standardized by the square root of the expected
cell value; the larger the magnitude of a cell’s adjusted
residual, the larger its contribution to the overall chi-
squared value for the contingency table [64]. The sign
of the adjusted residual indicates if the observed value is
above or below expected. For comparisons with ten or
fewer cells (here, gender and high school physics experi-
ence), we consider adjusted residual values of�2 or greater
to indicate a significant deviation from expectation.
Following Sharpe [64], when the comparison involves
more than ten cells (here, major and grade expectation),
we increase the level for significance to �3 or greater to
lower our type 1 error rate.
For gender, we find that men are more likely to adopt the

apathetic and knowledge building profiles and less likely to
adopt the learned helpless profile compared to women. This
suggests men are somewhat more likely to adopt one of the
adaptive and one of the very maladaptive profiles and that
women are more likely to experience difficulties regulating
their learning in this course.
For high school experience, we find that students with

prior high school experience with physics are more likely to
adopt a knowledge building profile and less likely to adopt

TABLE V. Synthesis of learning profile key characteristics.

Learning profile Key characteristics

• Strategic • High levels of self-regulated strategy use, knowledge-building, and course engagement
(i.e., time and effort spent on studying, asking questions, and working with classmates),
and moderate levels of surface approach (i.e., lack of managing subject material).

• Highly motivated to learn and feel physics is important for their future career.
• Knowledge building • High levels of knowledge-building, but moderate levels of self-regulated strategy

use and course engagement (levels lower compared to Strategic student),
and low levels of surface approach.

• Highly motivated to learn and feel physics in important for their future career.
• Learned helpless • Moderate levels of self-regulated strategy use and course engagement, but low levels

of knowledge-building and high levels of surface approach. This suggests that these students
attempt to regulate learning, but have difficulties doing so.

• Moderate levels of motivation to learn and moderate opinions of physics in as important
for their future career.

• Surface • Moderate levels of knowledge-building, but low levels of self-regulated strategy use
and course engagement, accompanied by high levels of surface approach.

• Motivated to learn and feel physics is important for their future career. This suggests that these
students find physics useful, but do not attempt to understand it deeply.

• Apathetic • The lowest levels of knowledge-building, self-regulated strategy use, and course engagement,
accompanied by high levels of surface approach.

• Not motivated to learn and feel physics is unimportant for their future career.
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TABLE VI. Overall demographics breakdown of SCS sample.

Demographic variable
Levels within

variable
Number

of students Percentage Additional details

Gender Woman 587 65.3%
Man 310 34.4%

No response 3 0.30%
Ethnicity or race Majority (MAJ) 531 59.0% Students identifying as White (N ¼ 402)

or Asian (N ¼ 129)
Underrepresented (UR) 307 34.1% Students identifying as American Indian

or Alaskan Native (N ¼ 4), Native Hawaiian
or Other Pacific Islander (N ¼ 2), Black
or African American (N ¼ 139), and Hispanic
or Latino (N ¼ 162)

Not categorized 62 6.90% Students identifying as nonresident aliens (N ¼ 3)
or multiple ethnicities or other (N ¼ 59)

High school physics
experience (HPSE)

HSPE 380 42.2%
No HSPE 520 57.8%

First generation (1st Gen)a 1st gen 267 41.8% Neither of student’s parents or guardians attained
a bachelor’s degree

Not 1st gen 192 58.2% One or more of student’s parents or guardians
attained a bachelor’s degree

Employment Employed 580 64.4%
Not employed 320 35.6%

Residence On campus 200 22.2%
Off campus 700 77.8%

Math background
(Math BG)

Calculus experience 465 54.0%

No calculus experience 396 46.0%
Grade expectation
(Grade Exp)

A 364 40.4%
B 376 41.8%
C 150 16.7%

D or F 10 1.1%
Major Health science 308 34.2% E.g., health sciences-preclinical track, sport

and exercise science, athletic training
Life sciences 311 34.6% E.g., biology, biomedical sciences, biotechnology

Life sciences–pre health 117 13.0% E.g., biology or biomedical sciences majors
preparing for medical careers

Social sciences 49 5.4% E.g., psychology, sociology
Other category 115 12.8%

aOnly asked in Fall 2015 and Spring 2016 surveys.

TABLE VII. Results of chi-squared tests for learning profile interactions with other categorical variables.

Variable χ2 Statistic Degrees of freedom p value Cramer’s V (95% CI) Size of effect

Employment 0.63 4 0.960 0.034 (0.032–0.155) Small
1st gen 1.00 4 0.911 0.060 (0.048–0.221) Small
Residence 2.55 4 0.636 0.069 (0.041–0.175) Small
Ethnicity 5.83 4 0.212 0.108 (0.059–0.214) Small
Math BG 6.54 4 0.162 0.113 (0.062–0.216) Small
HSPEa 15.46 4 3.84 × 10−3 0.170 (0.104–0.267) Small
Majora 30.62 12 2.25 × 10−3 0.148 (0.125–0.218) Small
Gendera 17.11 4 1.85 × 10−3 0.179 (0.117–0.272) Small
Grade expa 74.08 12 5.48 × 10−11 0.215 (0.180–0.274) Medium

aSignificant after Bonferroni correction.
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a strategic profile than students who did not take a physics
course in high school. This result may suggest that these
studio-mode physics courses are supportive of students
who did not take physics in high school, as adoption of the
strategic profile suggests good use of metacognitive tech-
niques and high motivation to learn physics. Students who
have taken a physics course in high school may be more
likely to adopt a knowledge building profile if they
maintain intrinsic motivation to learn physics but do not
have to put in as much time and effort as their peers to learn
the material because they have already been exposed to it.
For Major, only the adjusted residuals for health science

majors rise to the corrected level of �3. We find that
students in the health sciences majors are more likely to
adopt a learned helpless profile and less likely to adopt a
knowledge building profile than their peers in other majors.
To try to understand potential reasons for this difference,
we explored the curricular requirements across these
majors. We found that students in the health sciences
category are not required to take as many credits in upper-
level physical and life sciences compared to students in the
life sciences and life sciences–prehealth categories. Such
courses (including organic chemistry, biochemistry, and
immunology) are suggested as electives for health science
students, but are required for life sciences and life sciences–
prehealth students. Additionally, students in the health
sciences category are not required to take as many credits
of statistical and research methods courses compared to
students in the social sciences category. Thus, this intro-
ductory physics course, which is required for the health
sciences majors, may be one of the more challenging
courses that these students take. Since the students are
required to take it, they likely feel the need to perform well,
but may not be intrinsically motivated or understand how
the course will connect to their future. These feelings
combined with the difficulty of the physics course

compared to their other required courses may combine
and lead to the higher adoption of the learned helpless
profile and lower adoption of the knowledge building
profile.
For grade expectation, the main differences we find are

within the learned helpless and knowledge building pro-
files. Students in the learned helpless profile are more likely
to expect to earn a B and less likely to expect to earn an A
compared to their peers. Students in the knowledge build-
ing profile are much more likely to expect to earn an A and
less likely to expect to earn a B or C compared to their
peers. Overall, these results suggest that those adopting the
knowledge building profile are more likely to be confident
in their performance in the course. This result is consistent
with the other results found thus far and with the descrip-
tion of the knowledge building profile; students in this
profile are more intrinsically motivated and likely to have
had previous physics experience in high school, possibly
leading to self-evaluations of performing well in the course.
Furthermore, the result that those students expecting to
achieve a B in the course are more likely to be in the learned
helpless profile suggests that these students are less likely
to be confident in their performance in the course. From the
description of learned helpless students, who attempt to
regulate themselves but have difficulty in doing so, it
follows that such individuals may struggle with the course,
leading to lower self-evaluations with respect to course
grade achievement. Given the more confident and moti-
vated characterization of the knowledge building profile, it
makes sense that those students expecting to achieve a C in
the course are not well represented in this profile, as these
students are likely encountering issues in the course that
affect their ability to perform. We also find that students
expecting to fail the course (achieving a D or F) adopt the
surface profile more often than expected; however, this
result should be interpreted with caution, as there are very

TABLE VIII. Contingency tables for demographic variables with significant interactions with learning profile. Row percentages and
adjusted residuals (in parentheses) given in each cell.

Strategic
Knowledge
building

Learned
helpless Surface Apathetic

Overall N ¼ 535 15.2% 22.7% 26.9% 18.4% 16.7%
Gender Man (N ¼ 190) 16.3% (.5) 27.9% (2.1)a 17.4% (−3.7)a 17.4% (−.5) 21.1% (2.0)a

Woman (N ¼ 342) 14.6% (−.5) 19.9% (−2.1)a 32.2% (3.7)a 19.0% (.5) 14.3% (−2.0)a

HSPE Yes HSPE (N ¼ 215) 11.2% (−2.1)a 30.2% (3.5)a 23.3% (−1.6) 17.2% (−.6) 18.1% (.7)
No HSPE (N ¼ 320) 17.8% (2.1)a 17.5% (−3.5)a 29.4% (1.6) 19.4% (.6) 15.9% (0.7)

Major Health Science (N ¼ 200) 17.0% (.4) 13.5% (−3.9)a 34.5% (3.2)a 17.0% (−.9) 18.0% (1.1)
Life Sciences (N ¼ 177) 14.1% (−1.0) 27.1% (2.0) 22.0% (−1.9) 23.2% (1.9) 13.6% (−1.0)

Life Sciences–Pre Health (N ¼ 68) 22.1% (1.4) 27.9% (1.2) 22.1% (−1.0) 11.8% (−1.6) 16.2% (.1)
Social Sciences (N ¼ 23) 8.7% (−1.0) 43.5% (2.5) 13.0% (−1.5) 21.8% (.4) 13.0% (−.4)

Grade
expectation

A (N ¼ 226) 18.1% (1.7) 36.7% (6.7)a 17.3% (−4.3)a 13.7% (−2.4) 14.2% (−1.4)
B (N ¼ 214) 13.1% (−1.1) 14.5% (−3.7)a 35.5% (3.7)a 21.0% (1.2) 15.9% (−.5)
C (N ¼ 88) 13.6% (−0.4) 8.0% (−3.6)a 31.8% (1.1) 20.5% (.5) 26.1% (2.6)

D or F (N ¼ 7) 0% (−1.1) 0% (−1.4) 14.3% (−.8) 71.4% (3.6)a 14.3% (−.2)
aSignificant deviation from expectation.
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few individuals expecting to fail. Conducting this test after
the removal of those expecting to fail does not affect our
other results.
To explore whether students within different learning

profiles share similar standardized test scores (a continuous
variable), we utilize the Kruskal-Wallis test [65], which is a
nonparametric version of the analysis of variance
(ANOVA) test. We do not find a statistically significant
relationship between learning profile adoption and either
SAT math score [Hð4Þ ¼ 6.5, p ¼ 0.16] or ACT Math
score [Hð4Þ ¼ 7.4, p ¼ 0.12]. Thus, students’ perfor-
mance on standardized tests does not appear to predict
the way they are engaging with their studio-mode intro-
ductory physics course.

D. Interactions between learning profiles and institution

Since the goal of our overarching project is to explain the
variable success of studio-mode physics across institutions,
we also explored whether the rate of profile adoption varied
across the three institutions. A chi-squared test finds a
significant association with a small to medium effect size
between institution and learning profile [χ2ð8Þ ¼ 45.5,
p ¼ 2.92 × 10−7, V ¼ 0.21 (0.16, 0.28)]. Table IX dis-
plays the contingency table for institution and learning
profile. We find that Institution A has more students
adopting the learned helpless profile and fewer adopting
the knowledge building profile, which may indicate that
more students at Institution A are struggling to regulate
their learning in the course. We find the opposite at
Institution B, where more students have adopted the
knowledge building profile and fewer have adopted the
learned helpless profile, suggesting that the students at
Institution B are more motivated to learn, but are still not
engaging or self-regulating to the highest degree. As seen in
Table VIII, difference in adoption of the knowledge
building versus learned helpless profiles may be explained
by gender and major. Comparing demographics across
institutions, we find no significant association between
gender and institution [χ2ð2Þ ¼ 1.1, p ¼ 0.58]. However,
we do find differences in major across institutions [χ2ð6Þ ¼
177.8, p ¼ 9.83 × 10−36], with students at Institution A
more likely to declare a health sciences major (53.3%) and
less likely to declare a life sciences (28.2%) or social
sciences (2.1%) major, and the converse is true for
Institution B (health sciences, 11.0%; life sciences,

65.9%; social sciences, 11.0%). Thus, it is unclear whether
the difference in profile adoption is more likely due to
differences in student population or the actual instructional
methods used in the studio course. Finally, we find that
students at Institution C are more likely to adopt the surface
profile, possibly indicating students are less engaged with
the course. It seems likely that this difference is due to the
instructional methods used at Institution C since surface
profile adoption was not significantly associated with the
other demographic variables measured (with the exception
of grade expectation).

V. DISCUSSION AND IMPLICATIONS

We find that the five learning profiles found in previous
studies in other disciplines [14–16] are also useful in
describing how students in algebra-based, studio-mode
physics courses approach this class. We note that there is
a difference between the description of the strategic profile
in our study compared to that of prior studies, in that students
in our strategic profile exhibit a higher level of surface
approach as compared to students in the knowledge building
profile. The surface approach scale in this study assesses the
difficulty students havemanaging the material in the course.
We hypothesize that this increased difficulty handling the
course material could be due to the student-centered nature
of studio-mode courses and may suggest that even students
with an effective approach to the course would benefit from
better support in planning their study approach.
Two of the five profiles, knowledge building and

strategic, are considered “adaptive,” as students in these
profiles exhibit high levels of motivation and connection
building. A major difference between these two adaptive
profiles is their level of engagement with the course, with
students in the knowledge building profile exhibiting lower
levels of question asking, collaborative learning, time spent
studying, and self-regulating but retaining the high levels of
intrinsic motivation for building connections between
physics and other subject material (compared to students
in the strategic profile). The interaction of previous high
school physics experience with profile adoption suggests a
possible explanation for these differences. Students who
had previous experience in high school with physics were
more likely to be in the knowledge building profile; it is
possible these students’ prior exposure to the content
reduced their need to engage at the highest level while

TABLE IX. Frequency of learning profiles across institutions. Row percentages and adjusted residuals (in parentheses) given in each
cell.

Strategic Knowledge building Learned helpless Surface Apathetic

Inst. A (N ¼ 346) 15.6% (.4) 16.2% (−4.8)a 31.8% (3.4)a 17.3% (−.9) 19.1% (1.9)
Inst. B (N ¼ 124) 16.9% (.6) 40.3% (5.4)a 16.9% (−2.9)a 14.5% (−1.3) 11.3% (−1.9)
Inst. C (N ¼ 65) 9.2% (−1.4) 23.1% (.1) 20.0% (−1.3) 32.3% (3.1)a 15.4% (−.3)

aSignificant deviation from expectation.

EXPLORING STUDENT LEARNING PROFILES IN … PHYS. REV. PHYS. EDUC. RES. 13, 010119 (2017)

010119-13



still succeeding in the course. This hypothesis is further
supported by the finding that students in the knowledge
building profile were more likely than their peers to expect
to earn an A in the course. We found that students without
prior experience with physics in high school were more
likely to adopt the strategic profile. We interpret this as
possible support for the studio-mode course for algebra-
based students as this adaptive profile is accessible to
students without prior experience who are enrolled in this
type of course. However, we also find that this is the least
populated profile, describing only 15% of our students (in
the reduced population of students with high probability of
placement in only one profile). Overall, only 38% of
students were identified as adopting either of the two
adaptive profiles. This suggests that instructors of algebra-
based studio-mode physics courses may need to offer more
support to help students appropriately approach learning in
the course.
The remaining three profiles, surface, learned helpless,

and apathetic, are considered “maladaptive.” However,
there are important differences between these profiles.
We find that the Learned Helpless profile is the most
highly populated, with 27% of our reduced population and
43% of those adopting a maladaptive profile. Students in
this profile are putting in nearly as much study time and
study effort as those in the adaptive profiles, but are marked
by a lack of connection building, as seen by low scores on
the knowledge building and structure of scientific knowl-
edge scales and high scores on the surface approach scale.
This implies that learned helpless students are trying to
study for their physics courses, but they are not using the
best strategies and are often left overwhelmed by the
amount of material present in the course. It seems likely
that these students would benefit from and be open to an
intervention helping them understand how to approach
learning in this course. We find that adoption of the learned
helpless profile correlates with major, with students in a
health sciences major more likely to adopt this profile and
less likely to adopt a knowledge building profile compared
to their peers. Anecdotally, we have heard colleagues
discuss students with health sciences majors struggling
in studio-mode courses; this profile analysis suggests a
reason for this enhanced struggle may be a lack of
appropriate strategies for more independent learning in a
challenging course.
Additionally, we find that women are more likely to

adopt the learned helpless profile in their studio-mode
physics course. This is a somewhat surprising result, as
previous research on SCALE-UP physics has found that it
is more supportive for women than traditional lectures, with
women 4 to 5 times less likely to fail a SCALE-UP than
traditional physics course [4]. Beichner has argued that
women may benefit from SCALE-UP instruction since
research has shown women’s confidence may increase
when clear expectations are presented and from

collaborative learning, which he reasons is consistent with
Bandura’s theory of social cognition [66], which predicts
increased confidence will lead to improved performance
and resilience. On the other hand, an attitude survey and
follow-up interviews by Laws revealed that junior and
senior women in a Workshop Physics course had more
negative attitudes towards required collaborative work due
to time demands and personal departures from their
instructor’s understanding of the nature of learning [2].
Laws also found that women students reported more
involvement in extracurricular activities compared to
men, which may influence the amount of time women
can devote to out of class activities. A meta-analysis on
gender effects in introductory physics found that most
approaches to decreasing the gap between men and
women’s performance had varied success across imple-
mentations [67]. One reason for this variable success,
supported by the profile approach, is the extent to which
instruction encourages use of metacognitive techniques and
addresses students’ perceptions of the utility of physics, as
these strategies have the potential to decrease the adoption
of the learned helpless and apathetic profiles. Future work
should investigate the frequency of learned helpless profile
adoption in more traditional courses to establish a baseline
for comparison. It is possible that the frequency observed
here is actually a reduction from that which would be
observed in a more traditional course.

VI. LIMITATIONS AND FUTURE WORK

We point out notes of caution in interpreting and
extending these results. The 900 student database collected
in this study is large enough to serve as a reference for
further cluster analyses on similar populations of algebra-
based, studio-mode introductory physics courses. However,
when attempting to extend the model-based cluster analysis
to different student populations, such as those in a different
course context, like a traditional lecture course, or a
different discipline, such as a studio-mode biology course,
it is likely that a new reference database must be collected,
in addition to validity and reliability of the SCS being
reevaluated for that particular course context. Additionally,
we caution instructors against “labeling” individual stu-
dents in a particular way, since a student’s approach to a
course is likely to be context dependent and fluid. However,
the cross section of the ways students are approaching a
course and the frequency of adoption of the various
approaches should provide valuable feedback to instructors
about the types of support that may help their students
approach the class productively.
This work is part of a project to investigate the nuances

of and model success in algebra-based, studio-mode
introductory physics courses across universities. In future
studies, we will investigate how learning profiles and
demographic data collected by the SCS affect student
outcomes measured in algebra-based, studio-mode
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introductory physics courses. Additionally, we will expand
the institutions where we collect SCS data to further
investigate the predictive power of student characteristics
within and across various institutions. Ultimately, we aim
to describe how students differ within an institution and
across institutions and to identify which characteristics are
better predictors for studio success at one institution
compared to another, if such differential behavior exists.
Overall, the person-centered profile approach presented
here helps to characterize students and gives a basis to
investigate what students themselves bring to the class-
room. Identifying learning profiles and their adoptions

among different types of students gives insight into
students’ classroom motivations and study behaviors and
allow us, as educators, to better understand and respond to
their needs.
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