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This study investigated the multiple-choice test of understanding of vectors (TUV), by applying item
response theory (IRT). The difficulty, discriminatory, and guessing parameters of the TUV items were fit
with the three-parameter logistic model of IRT, using the PARSCALE program. The TUVability is an ability
parameter, here estimated assuming unidimensionality and local independence. Moreover, all distractors of
the TUV were analyzed from item response curves (IRC) that represent simplified IRT. Data were gathered
on 2392 science and engineering freshmen, from three universities in Thailand. The results revealed IRT
analysis to be useful in assessing the test since its item parameters are independent of the ability parameters.
The IRT framework reveals item-level information, and indicates appropriate ability ranges for the test.
Moreover, the IRC analysis can be used to assess the effectiveness of the test’s distractors. Both IRT and
IRC approaches reveal test characteristics beyond those revealed by the classical analysis methods of tests.
Test developers can apply these methods to diagnose and evaluate the features of items at various ability
levels of test takers.
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I. INTRODUCTION

The test of understanding of vectors (TUV), developed
by Barniol and Zavala in 2014, is a well-known standard
multiple-choice test of vectors for an introductory physics
course at the university level. The TUV consists of 20 items
with five choices for each test item, and covers ten main
vector concepts without a physical context. A source of
strength for the TUV is that the choices were constructed
based on responses to open-ended questions, posed to over
2000 examinees. The TUV assesses more vector concepts
than other previous standard tests of vectors and its
reliability as an assessment tool has been demonstrated
by five classical test assessment methods: the item diffi-
culty index, the item discriminatory index, the point-
biserial coefficient, the Kuder-Richardson reliability index,
and the Ferguson’s delta test [1]. However, the framework
of classical test theory (CTT) for test assessment has some
important limitations. For instance, the item parameters
depend on the ability distribution of examinees and the
ability parameters depend on the set of test items. To
overcome these shortcomings, the item response theory
(IRT) was introduced [2–5].

Therefore, the purpose of this study is to explore the
20-item TUV based on the framework of IRT. We will first
present the key concepts of IRT, focusing on the three-
parameter logistic (3PL) model used in the study (Sec. II).
Since IRT displays only the functionality of correct answers
to items, wewill also investigate distractors of theTUVitems
using the item response curves (IRC) technique (Sec. III).
Section IV is data collection of the TUV Thai language
version from first-year university students (N ¼ 2392).
Section V (results and discussion) will be divided into three
main parts. In part A, we will present some limitations of
CTT, advantages of IRT, and the significance of using
3PL-IRT analyzed by our data. Parts B and C address the
results and discussion of 3PL-IRTanalysis and IRC analysis,
respectively. Last, in Sec.VI, wewill summarizewhatwe did
and found in this study.

II. ITEM RESPONSE THEORY (IRT)

The IRT framework rests on the assumption that the
performance of an examinee on a test item can be predicted
from the item’s typical features and the examinee’s latent
traits—often called abilities or person parameters. The
relationship between the examinees’ performance on an
item and their ability is described by an item characteristic
function (or item response function), which quantitates how
the probability of a correct response to a specific item
increases with the level of an examinee’s ability. The graph
of this relationship is known as the item characteristic
curve (ICC). The empirical ICCs in prior published
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research, of relevance to IRT, tend to be S shaped or
sigmoidal. As the ability increases, the empirical ICC rises
slowly at first, more sharply in the middle, and again slowly
at very high levels of ability. In its early days, the normal
ogive function was commonly used to model the ICC,
while nowadays the logistic function is a popular alter-
native, as shown in Eq. (1). An example of the ICC from
our data, established by fitting a logistic function, is shown
in Fig. 1.
In item response function models, the ability parameter

is usually standardized to zero mean and unit standard
deviation (SD), and is commonly denoted by the Greek
letter theta (θ). Theoretically, ability can range from −∞
to ∞, but its values in practice are usually in the interval
½ − 3; 3�. This interval would contain 99.7% of cases if
the standardized variable is normally distributed, i.e.,
a z score. We assumed unidimensionality, meaning that
a single dominant ability characteristic in the students
influences their test performances. We then defined
“TUV ability” as the single trait influencing a student’s
performance in the test of understanding of vectors,
similar to the FCI ability reported in a study by Scott
and Schumayer in 2015 [6]. Moreover, we made the local
independence assumption that performance on one item is
independent of that on another item, and only depends on
the ability.
The TUV consists of multiple-choice questions with

responses sometimes based on guessing, and the three-
parameter logistic (3PL) model of IRT is appropriate for
the investigation of the related item parameters (i.e.,
difficulty, discriminatory, and guessing parameters). In
the item response function, the probability of answering
item i correctly for an examinee with the ability θ is
given by

PiðθÞ ¼ ci þ ð1 − ciÞ
1

½1þ expf−Daiðθ − biÞg�
; ð1Þ

where bi is the item difficulty parameter (θ at the inflection
point of the ICC), and ai is the slope of the ICC at that
inflection point, called the item discriminatory parameter.
The lower asymptote level ci of the ICC, which corresponds
to the probability of a correct answer at very low-ability
levels, is referred to as the pseudo-chance level or some-
times as the guessing parameter. The constant D normally
equals 1.7, and is used to make the logistic function as close
as possible to the normal ogive function. The 3PLmodel can
be reduced to the two-parameter logistic (2PL) model by
setting c ¼ 0. The 2PL model is most plausible for open-
ended questions, in which responses are rarely guesses.
Moreover, this can be further reduced to a one-parameter
logistic (1PL) model by considering only the b parameter at
which the probability of a correct response is 0.5, while
holding a fixed [2,7–8]. The special cases with D ¼ 1.0,
c ¼ 0, and a ¼ 1.0, are known as Rasch models [9].
In this study, we applied the PARSCALE program, written

by Muraki and Bock (1997), to fit the 3PL model to the
dichotomous TUV data. PARSCALE uses the expected
a posteriori (EAP) on estimating the ability, and marginal
maximum likelihood (MML) to estimate the item parame-
ters. The estimated abilities are scaled tomean0 andunit S.D.
The numeric search for optimum parameters uses Newton-
Raphson iterations, and the program outputs both numerical
results (parameters and diagnostics) and graphs [10].

III. ITEM RESPONSE CURVES (IRC)

Introduced by Morris and colleagues in 2006, IRC
analysis is a simplification of IRT for evaluating multiple-
choice questions and their options [11–12]. It relates the
percentage of students (on the vertical axis) to each ability
level (on the horizontal axis), separately for each choice in a
given item of the test. Unlike IRT, which only considers
whether the correct choice was made, IRC analysis displays
the effectiveness of every choice. In other words, the
information provided by wrong answers is also put to use.
Moreover, it is easy to use and its results are easy to interpret.
The IRC technique can help test developers improve their
tools by identifying nonfunctioning distractors that can then
be made more appropriate to the examinees’ abilities.
This study approaches IRC analysis in a slightly different

way from prior analyses [11–12], but without essential
differences. These prior studies used the total score for the
test as an estimate of the ability level across the students,
and they are indeed strongly correlated. However, the
strong correlation between total score for the test and
ability is not necessarily equivalent for individual items of
the test, nor for right or wrong responses to specific items—
as also mentioned in Refs. [11–12]. Therefore, on applying
the IRC technique, the ability of each examinee was
estimated by the PARSCALE program, which uses optimality
criteria instead of using the total score as a surrogate for
ability.
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FIG. 1. Item characteristic curve (ICC) of item 1 in the TUV,
modeled from data on Thai students (N ¼ 2392).
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IV. DATA COLLECTION

The 20-item TUV was translated into Thai and validated
by a group of Thai physics professors. The professors were
asked to perform the TUV in both English and Thai within
a 2-month period. The test was revised based on sugges-
tions from the professors, with regard to technical terms
and translations of English to Thai. We applied the TUV to
2392 science and engineering first-year students at three
universities. These students had learned vector concepts
through lectures and integrated video demonstrations
and group discussions, with approximately 300 students
in each class. The participants took 25 min to complete
the TUV, a month after the end of the classes. We used
the Kuder-Richardson reliability index to measure the
whole-test self-consistency of the TUV Thai version, and
Ferguson’s delta test for the discriminatory power of
the whole test. The obtained indicator values, 0.78 for the
KR-20 index and 0.97 for Ferguson’s delta, are within the
desired ranges [13]. The collected data were analyzed using
the 3PL model in IRT and IRC plots.

V. RESULTS AND DISCUSSION

A. Significance of using 3PL-IRT

In the context of the data on Thai students, CTT
presented some shortcomings and IRT analysis some
advantages. We demonstrate these observations via the
item difficulty index (P) and the point-biserial coefficient
(rpbs) of the CTT framework. The difficulty index of an
item (P) measures the proportion of students who answer
correctly. The point-biserial coefficient (rpbs) measures the
Pearson correlation of scores for a single item to the whole
test scores, to reveal the discrimination information of that
item. When we calculated P and rpbs of our TUV data, we
found that certain items showed outside the criterion
ranges of P ¼ ½0.3–0.9� and rpbs ≥ 0.2 [1,13]. Only the
results for items 1, 2, and 3 are shown in Table I, attached
for discussion in this part. Item 2 ðP ¼ 0.12Þ and item 3
ðP ¼ 0.24Þ appear to have been somewhat difficult, and
item 2 ðrpbs ¼ 0.17Þ was less useful in discriminating Thai
students who know the cross product of vectors from those
who do not.

To explore the invariance of item indices within the
sample group when the ability of test-takers changes, we
divided the Thai students into three groups by ability level.
Overall, the Thai students’ TUV ability (θ) varied from
−1.7 to 3.1 with mean 0 and S.D. 1, as provided by the
PARSCALE program for a single-trait model in IRT [10].
Using ranges below, within, and above the interval
[mean� 0.5S:D:] in TUV ability (θ), we partitioned the
Thai students into low-ability (N ¼ 799), medium-ability
(N ¼ 833), and high-ability (N ¼ 760) groups. As shown
in Table I, both P and rpbs values of each item changed
when ability levels of the students changed. The P and rpbs
values calculated from the low-ability group of examinees
are likely to disagree with the norm values more than the
other groups. This indicates that the item difficulty and
discriminatory indices analyzed by the framework of CTT
depend on a particular group of examinees. This is one
important shortcoming of CTT. Moreover, in CTT, an
examinee’s ability being defined by the observed true score
of the test depends on the item features. Simply, the item
parameters depend on the ability distribution of examinees
and the person parameters depend on the set of test items.
Furthermore, CTTmakes the assumption of equal errors for
all ability parameters. There is no probability information
available about how examinees of a specific ability might
respond to a question. Generally, CTT focuses on test-level
information, and depends on a linear model [2–5].
As mentioned earlier, IRT is an alternative that over-

comes some disadvantages of CTT. The IRT is based on
nonlinear models, makes strong assumptions, and focuses
on item-level information. An ability parameter and its
individual error are test independent, and are estimated
from the patterns in the test responses. The item and ability
parameters should be invariant if the model optimally fits
the test data and the sample size is large enough [2–3,7–8].
These are theoretical advantages of IRT over CTT: how-
ever, some empirical studies have reported that the item
and person parameters derived by the two measurement
frameworks are quite comparable [4–5].
Using the IRT framework, we explored the invariance

of item parameters relative to abilities of the test takers by
applying the 3PL model to the data on Thai students taking
the TUV test. Taking item 1 of the test as an example

TABLE I. Item difficulty index (P) and point-biserial coefficient (rpbs) from CTT analysis for items 1, 2, and 3 in the TUV for overall
and for three ability levels of Thai students.

Item 1 Item 2 Item 3

P rpbs P rpbs P rpbs

Overall θ ¼ ½−1.7; 3.1� (N ¼ 2392) 0.39 0.48 0.12a 0.17a 0.24a 0.36
Low ability θ ¼ ½−1.7;−0.6� (N ¼ 799) 0.15a 0.17a 0.11a 0.18a 0.14a 0.25
Medium ability θ ¼ ½−0.5; 0.5� (N ¼ 833) 0.34 0.13a 0.11a 0.25 0.20a 0.28
High ability θ ¼ ½0.6; 3.1� (N ¼ 760) 0.70 0.24 0.16a 0.27 0.39 0.38

aOutside the criterion range.

ANALYSIS TEST OF UNDERSTANDING … PHYS. REV. PHYS. EDUC. RES. 12, 020135 (2016)

020135-3



(Fig. 1), the 3PLmodel fit to response data can be displayed
as the item characteristic curve (ICC), representing the
probability of correct response [PðθÞ] across various TUV
abilities (θ). The parameters for item 1, when fit to the
entire data (N ¼ 2392), are a ¼ 0.91, b ¼ 0.76, and
c ¼ 0.13, and these were computed by the PARSCALE

program. When we separately fit the logistic model to
subset data for the low-ability, the medium-ability, and
the high-ability groups, the item parameters remained
unchanged. This indicates invariance of the item parame-
ters, relative to the subject population tested, which is
desirable.
This can be simply explained by revising the logistic

model of Eq. (1) into linear form. It can be rewritten as

ln½1−PðθÞPðθÞ−c� ¼ αθ þ β, where α ¼ −Da and β ¼ Dab. This

linearization has slope α and intercept β, while ln½1−PðθÞPðθÞ−c� is
the log odds ratio at given θ. Indeed, the same linear model
should apply to any range for θ, giving the same values α
and β, and therefore unchanged a and b. A single 3PL-IRT
model for item 1 corresponds to a linear relationship, valid
for any range of θ (low-ability, medium-ability, or high-
ability groups) with fixed slope and intercept. However,
this invariance property only holds when the model fits the
data exactly in the population [2–3,7].
Several prior PER studies have applied the IRT framework

to examine concept tests. For example, in 2010, Planinic and

colleagues reported using the one-parameter logistic model
in IRT to explore the function of the ForceConcept Inventory
(FCI) [14]. In the same year, the FCI was analyzed by Wang
and Bao using the three-parameter logistic model in IRT,
assuming the single-trait model [15]. However, in 2012, the
study of Scott and colleagues showed that a five-trait model
in IRTwas suitable for analysis of the FCI [16]. Recently, the
FCI has been analyzed using multitrait item response theory
[6]. Aside from concept tests, IRT has also been applied to
general online questions with large numbers of participants
[17–18].

B. Analysis of 3PL-IRT

In applying IRT to the data gathered on Thai first-year
university students (N ¼ 2392), we used the PARSCALE

program to fit the three-parameter logistic (3PL) models,
one for each TUV item. We assumed a single ability, named
the TUV ability, which represents the latent traits in each
student that affect performance in the TUV. Each logistic
model is determined by identifying its three parameters:
discrimination a, difficulty b, and guessing c. These
identified parameters are shown in Table II for the 20
TUV items, categorized by their concepts. Moreover, the
item difficulty index (P) and the point-biserial coefficient
(rpbs) from the CTT framework are included as the last
columns of Table II. The criterion ranges of the item

TABLE II. The model parameters identified in IRT analysis, namely, discrimination a, difficulty b, and guessing c, for the 20 items in
TUV categorized by concepts, along with the item difficulty index (P) and the point-biserial coefficient (rpbs) from CTT analysis.

IRT CTT

a b c P rpbs
Vector concept Item [0,2] ½ − 2; 2� [0,0.3] [0.3,0.9] ≥0.2

1. Direction 5 0.84 0.18 0.40a 0.67 0.39
17 0.93 1.54 0.14 0.26a 0.39

2. Magnitude 20 0.84 −0.26 0.10 0.61 0.49
3. Component 4 0.88 0.57 0.33a 0.57 0.41

9 1.18 1.09 0.28 0.42 0.42
14 0.69 0.56 0.26 0.53 0.40

4. Unit vector 2 1.12 2.82a 0.11 0.12a 0.17a

5. Vector representation 10 0.65 0.67 0.23 0.50 0.37
6. Addition 1 0.91 0.76 0.13 0.39 0.48

7 0.96 0.25 0.24 0.57 0.47
16 0.97 0.91 0.15 0.37 0.47

7. Subtraction 13 1.07 0.78 0.08 0.34 0.53
19 1.12 0.86 0.05 0.30 0.54

8. Scalar multiplication 11 1.08 0.62 0.13 0.40 0.53
9. Dot product 3 1.04 1.70 0.14 0.24a 0.36

6 0.75 −0.45 0.16 0.67 0.43
8 0.59 0.83 0.00 0.26a 0.49

10. Cross product 12 1.02 1.74 0.08 0.17a 0.39
15 0.60 0.74 0.00 0.29a 0.49
18 1.17 1.16 0.12 0.28a 0.48

aOutside the criterion range.
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parameters are shown by interval bounds in square
brackets.
The item difficulty b is the ability θ at the inflection point

of ICC. In the logistic model, at this point, the probability
of correct answer is ð1þ cÞ=2, midway between the
asymptote levels, as seen by substituting θ ¼ b in
Eq. (1). When c ¼ 0, as in the 1PL and 2PL models,
the probability of a correct answer is 0.5 and this could be
used to identify b. Parameter b is named “difficulty”
because a harder test item requires higher ability b for
probability 0.5 of a correct answer. The criterion range for b
is chosen to be ½ − 2; 2� [2]. Clearly, an item with b close to
−2 is very easy, while b close to 2 is very difficult for the
sample population of examinees.
The results in Table II show that item 2, involving the unit

vector concept, was the most difficult question for the group
of Thai students, with the maximum b ¼ 2.82. Item 2 in the
TUV is displayed in Fig. 2. Only 12% of the students
correctly answered item 2 (choice C) (P ¼ 0.12). The most
popular distractor for the students was choice B (61%).
Interview results showed that these students understand that a

unit vector of ~A has magnitude 1 and points to the same
direction, but they thought the îþ ĵ vector in choice B has
magnitude 1. It indicates that they did not have difficulties in
the unit vector direction, but did not know the basic
mathematics for calculating vector magnitude. The same
misconception was reported in the study of Barniol and
Zavala [19]. Since only a few students from the high-ability
group understood both the direction and the mathematics to
determine themagnitude of a vector, item 2 clearly presented
the most difficulty to the normal-ability students.
Although difficulty b from the IRT analysis and the

P value from the CTT analysis differ in their theoretical
interpretations, they tend to be in good agreement. For
example, item 12 for the cross product (b ¼ 1.74) and item
3 for the dot product (b ¼ 1.70) were somewhat difficult

for the students, according to IRT. Their correct response
rates were only 17% and 24%, respectively, indicating
them as hard items according to the P values also. Further
agreement was found in item 6, whose P value indicated an
easy question, with about 67% correct answers, consistent
with difficulty b ¼ −0.45. However, the two measures of
difficulty seem to disagree on items 8 and 15. Viewed
through CTT, they appeared to be quite difficult items with
correct answer rates below 30%, but their respective
b values were 0.83 and 0.74, quite far from the upper
bound of 2 for the difficulty parameter of IRT. As discussed
earlier, this is one downside of the CTT approach, whose
results depend on the examinees’ ability. The Thai students
had low-ability levels with two-thirds of them below ability
0.5, as shown in Table I. Then the P values are biased
downwards, and this bias favors labeling items as hard or
difficult.
The discriminatory parameter a for an item is related to

the slope of ICC at point b: for the 3PL model, the slope of
the ICC at θ ¼ b is actually Dað1 − cÞ=4. Items with high
a values, or steeper slopes, are more useful for distinguish-
ing between examinees with closely similar abilities near b.
The typical values of a are in the interval [0, 2] [2,8].
Several TUV items displayed very high a values, such as
items 9, 2, 19, and 18, and these provide discrimination
around the respective b values. In contrast, viewed through
the CTT framework, the point-biserial coefficient of item 2
(rpbs ¼ 0.17) indicates low discrimination power.
The guessing parameter c of an item represents the

probability that an examinee with very low-ability level
answers correctly. This may relate to the attractiveness of
the answer choices and/or the guess behavior of the
examinees. Its value is equal to the level of a lower
asymptote for the ICC, and it ranges from 0 to 1.
Typically, c should be less than 0.3 [8]. Table II shows
that, overall, the very low-ability students had less than a

(a) (b) (c) (d) (e)

FIG. 2. Item 2 in the TUV, relating to the graphical representation of a unit vector in the direction of ~A ¼ 2îþ 2ĵ.
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30% chance of choosing the correct option for most TUV
items, with the exception of items 4 and 5. Item 5 involves
selecting a vector with a given direction from among
several in a graph, and very poorly performing students
had a 40% chance to answer or guess correctly (c ¼ 0.40).
Possibly the correct choice was the most attractive to the
very low-ability students. The most usual incorrect
response (choice A) and the correct response (choice C)
share the belief that vectors pointing to the same quadrant
(northeast) have the same direction [1,20]. This may enable
the low-ability students to score by chance in item
5 (c ¼ 0.40).
In contrast, the probability that a student with very low-

ability would correctly answer item 8 or item 15 was nil
(c ¼ 0.00). It is an indication that there are strongly held
misconceptions represented in the distractors that appear as
answer choices in these questions. Item 8 and item 15

involve the calculation of the dot product (~A · ~B), and the

cross product (~A × ~B) of the vectors ~A ¼ îþ 3ĵ and
~B ¼ 5î, respectively. Our results show that choice C,
5îþ 3ĵ, was the distractor most commonly chosen in both
item 8 (41%) and item 15 (35%). The misconception is that
the dot or cross product of two vectors with identical unit
vector is the same unit vector and can be combined with
other vectors [1]. Low-ability students, who have difficul-
ties with calculations of the dot and cross product that
involve unit vector notation, have no chance (c ¼ 0.00) to
score from both items. In fact, they have a better chance if
they just guess and do not read the question, as this would
give the correct choice with probability 1=m in a multiple-
choice question with m options, as explained by the CTT
framework. That probability is 0.2 in these TUV items with
five choices in each.
Let us assess some sets of questions that measured the

same vector concept, categorized previously in Table II. In
items testing for the component of vector concept, items 4
and 14 gave quite similar model parameters. Item 4 had
higher discrimination power than item 14, but larger
guessing value. These items separate the examinees around
the same ability level b, so they can be considered parallel
questions for one concept at a fixed difficulty level. Items 1,
7, and 16, testing the addition of vectors in different
contexts, display very similar a values, or sensitivities
around ability ¼ b, so we can select to use an item based on
the b value (or the ability) we focus around.
To show how the probability of correct response for a

specific item depends on the ability of an examinee, we
build the item characteristic curve (ICC). The ICC of a
well-designed question should have a sigmoidal S shape
[2,7]. Then the probability of a correct response would
consistently increase with ability, and a high slope at the
inflection point would indicate sharp separation by ability
around that point. As shown by the solid line in Fig. 3, item
19 of the TUV mostly agrees with these criteria in our data

on Thai students. It has high discrimination power
(a ¼ 1.12) for separating examinees at medium-ability
level near b ¼ 0.86, and very low-ability students have a
5% chance to correctly answer the item (c ¼ 0.05).
This item asks students to choose the vector difference
~A − ~B of two vectors (~A ¼ −3î; ~B ¼ 5î) in the arrow
representation. The most frequent error is adding instead of

subtracting, and choosing the ~Aþ ~B option (choice B).
They just overlap two arrows, cancel a part of opposite
direction and answer the remaining part. In some sense,
many students seem to believe that the opposite arrow has
already accounted for the subtraction, then they just add it
with another arrow instead of subtracting it [1,21]. The low-
ability students may hold such a misconception and have a
lower scoring probability (5%) than they would have from a
random guess, while the high-ability students easily master
the concept of graphical subtraction of vectors in one
dimension. Item 19 was then considered as the most
appropriate question in the TUV for separating low- and
high-ability students (b ¼ 0.86).
Moreover, the steepness of ICC for items 9, 11, 13, and

18 (multiple choice items not shown here) was very similar
to that of item 19, but with different ability thresholds or
guessing parameters. Simply, a curve with greater b value is
shifted further to the right (items 9 and 18), while a greater
c value raises the bottom of the curve up (item 9). As shown
in Fig. 3, the ICC of item 2 had the same slope as item 19,
but it discriminates at a very high-ability level (b ¼ 2.82).
The curve of item 2 is very flat at the low-ability levels with
θ < 0 and rapidly rises at the high-ability levels. Also the
ICCs of items 3 and 12 were similar to that of item 2, but
moved further to the left. Roughly, the ICC of item 17 is
flatter than that of item 19 owing to the smaller a parameter,
which is similar to items 1, 7, 16, and 20. The slope of item
5’s curve at its inflection point is close to that of item 17,
but the curve is “lifted up” by its greater guessing parameter
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FIG. 3. The ICCs for items 2, 5, 8, 17, and 19 in the TUV,
according to data on Thai students.
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(c ¼ 0.40). This is similar to item 4, but with different
b values. As shown in Fig. 3, the ICC of item 8 is flatter
than those of other items of the TUV and has the lowest
a value. TUV items with low discrimination power can still
be in the criterion ranges, such as items 15, 10, 14, and 6,
and present ICCs similar to that of item 8.
Overall, the results show that each TUV item has proper

discrimination power at its specific difficulty (or ability
level). Clearly, the steepness of the curve demonstrates the
capability of the item to discriminate in the ability domain
between examinees who understand the concept targeted
by the item and those who do not. In general, a set of test
items or questions should cover a range of ability domains
in which the test takers are expected to differ. To determine
how well the TUV does in testing adoption of the vector
concept by the examinees at their various ability levels, the
test information function was investigated in IRT frame-
work. The information function for a test at θ, denoted IðθÞ,
is defined as the sum of the item information functions at θ:

IðθÞ ¼
Xn

i¼1

IiðθÞ ¼
Xn

i¼1

½PiðθÞ0�2
PiðθÞQiðθÞ

; ð2Þ

where IiðθÞ is the item information function of item i,
PiðθÞ0 is the derivative of PiðθÞ with respect to θ for item i,
andQiðθÞ is 1 − PiðθÞ [2,7]. In Eq. (2), clearly information
of one item is independent of other items in the test. This
feature is not available in CTT. For example, the point-
biserial coefficient for an item is influenced by all items in
the test. A plot of IðθÞ for the 20-item TUV across ability
levels is shown in Fig. 4. The information curve peaks
sharply to its maximum value 7.5 at θ ¼ 1.1. This indicates
that the TUV test provides information about the vector
concepts most effectively when the examinees have abil-
ities roughly in the range from 0.1 to 2.1 (medium to high).
For cases with abilities less than 0, the TUV test provides
very little information that would distinguish their
differences, while the results of the 20-item TUV test

are highly sensitive to ability differences around ability 1.1.
In general, the purpose of the test decides what type of
information curve would be desired. For example, a flat
curve over the whole range of abilities indicates that the
component items are sensitive to variations at different
ability levels, so the test information obtained by summing
the item information becomes evenly distributed. This is
desired if the test serves to assess a wide variety of abilities.
In contrast, a sharply peaked curve sensitively reports
differences of the test takers only around that peak, else-
where it acts like a pass or fail threshold. This may be
desirable when the purpose of the test is to provide eventual
pass or fail labels. Test developers can benefit from these
item and overall test information curves, to revise tests with
such considerations of purpose in mind.
However, we have only analyzed data on test responses

by Thai students. The item parameters of the TUV reported
in Table II specifically apply to Thai first-year science and
engineering students. When the TUV test is administered in
another language to a different group of students, the item
parameters will likely change from those obtained in the
current study. Simply calibrating item parameters using
IRT does not automatically make them universal. An
equating or scaling procedure is needed to transform the
item parameters of a test from one group of examinees to
another, or for a given group of examinees the ability may
be needed to transform from one test to another. Such
equating usually assumes a linear relationship in the
transformation of parameters.
There is some arbitrariness to the ability scale, and

rescaling it gives an equally valid but different ability scale.
We now examine such scaling along with transformations.
Using the 3PL model in IRT, the probability of a correct
response to item i by a person with ability θ is
Piðθ; ai; bi; ciÞ, as shown in Eq. (1). On linearly trans-
forming the IRT ability, the probability of a correct response
must not change, so Piðθ; ai; bi; ciÞ ¼ Piðθ�; a�i ; b�i ; ciÞ,
with the transformed parameters indicated by stars.
Notice that the guessing ci is on the probability unit of
measurement, so no transformation is necessary. The trans-
formation equations are b�i ¼ Abi þ B, θ� ¼ Aθ þ B, and
a�i ¼ ai=A, where A and B are the scaling constants of the
linear transformation. These transformations do not change
aiðθ − biÞ, which is the invariant property of the item
response function [2,9,22]. Researchers can apply the trans-
formation equations to transform the item parameters of the
TUV reported in this article to another group of students.
Mathematical methods introduced to estimate the A and B
scaling constants include regression, the mean and sigma
method, the robust mean and sigma method, and the
characteristic curve method [2,9,22].

C. Analysis of IRC

To show how well choices of an item function are
distributed, we will now assess the item response curves
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FIG. 4. Test information curve of the 20-item TUV across
ability levels of the Thai students tested.
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(IRCs), in which the vertical axis represents the percentage
of respondents, and the horizontal axis represents the
ability level as created by the PARSCALE program; the
total score is not used as a surrogate for ability, as in
Refs. [11–12]. Students with the same overall test score
need not share an ability level, because the pattern of their
answers still can differ, but the total score and the ability
typically have a robust correlation in a well-designed test.
To check whether this makes a difference, a linear model
was fit to predict the ability θ from the TUV raw score.
The model θ ¼ 4.84ðraw scoreÞ − 6.76, with coefficient
of determination R2 ¼ 0.98, can be used to estimate the
ability from the total TUV raw score (within the data on
Thai students, not necessarily in general). To display
example IRC plots against the ability and the total score,
the curves for item 1 are shown in Fig. 5. Each of the five

choices in the item gets its own IRC, with symbols
⋄ ¼ choice A, □¼ choice B, Δ¼ choice C, o¼ choice D,
and × ¼ choice E. The graphs are very similar, demon-
strating the tight relation of the ability and the total score as
mentioned before. In this paper, we chose to present the
IRCs plotted against the ability, in order to easily compare
with results of IRT analysis.
The correct response in item 1 is choice E, which in the

IRC plots has a consistently increasing steady trend. In
other words, higher ability corresponds to higher proba-
bility of the correct answer to item 1, which is desirable.
This indicates suitable discrimination power of choice E
in item 1, consistent with the results of IRT analysis
(a ¼ 0.91, in Table II). The ICC shown in Fig. 1 is the
logistic curve fit to the IRC for choice E. The most popular
distractor in item 1 was D, which also has discrimination

FIG. 5. The IRC of item 1, showing the percentage of respondents by choice, with symbols for the choices being ⋄ ¼ A, □ ¼ B,
Δ ¼ C, o ¼ D, and × ¼ E. The correct choice was E. The horizontal scale is the ability in plot 1(a), and the total test score in plot 1(b).

FIG. 6. IRCs for items 2, 3, 5, and 10, representing the fractions of respondents at any given ability that chose option ⋄ ¼ A,□ ¼ B,
Δ ¼ C, o ¼ D, or × ¼ E.
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power: many low-ability students selected D, and the
frequency of this choice consistently decreases with ability.
The other distractors in item 1 function quite well. This IRC
pattern is similar to those of items 8, 11, 13, 15, 17, and 19.
In the IRC for item 2 shown in Fig. 6 the correct choice C

has a relatively flat graph at low-ability levels and starts to
increase around ability 1.5. This agrees with IRT analysis
that only considers the correct option in an item, in showing
discrimination power only at high-ability levels. Moreover,
the IRC shows that the students were attracted to choose
option B in item 2 almost uniformly across the ability
levels. This distractor had poor discriminating power, as did
the other distractors in item 2. The correct choice C in item
3 had discrimination power at abilities exceeding 1, which
agrees with IRT analysis (a ¼ 1.04), while its distractors
drew about equal attention from the low-ability students
(ability < 1). This is similar to item 12. In item 5, the
correct option C and the distractor A function very well, but
the other distractors do not: they attracted few students
from any ability level, with flat response curves. The IRCs
of the remaining TUV items are similar to item 10, in which
all choices functioned quite well: the distractors were more
popular among the low-ability students, and their curves
gently decreased with ability, while the trend for the correct
choice was increasing with ability.

VI. CONCLUSIONS

Results in this study indicate that the 20-item TUV test,
with 5 choices per item, is most useful for testing the vector
concepts when the ability of the examinees is from medium
to high. It can be applied as a pass or fail threshold
instrument at a somewhat high-ability value (θ ≈ 1.1). This
insight is clearly provided by the test information function.
Items 2, 3, and 12 are useful for separating examinees at
high-ability levels. There is a very strongly held miscon-
ception represented in the distractors of items 8 and 15,
shown by the biased preferences of low-ability students for
these distractors. Because of this attraction bias of a

distractor, the low-ability students have poorer performance
in items 8 and 15 than random guessing would give. In
contrast, the correct choices of items 4 and 5 are the most
attractive responses to the very low-ability students, who
have a >30% chance of answering each item correctly.
Moreover, the IRC analysis covering all distractors dis-
closed that some distractors in the TUV did not function
well. For example, choice B of item 2 had a flat response to
ability, indicating it discriminates poorly. The students were
equally likely to choose distractor B, regardless of their
ability level. The distractors B, D, and E of item 5 did not
function well either, attracting few students overall.
However, as mentioned, the item and ability parameters
reported in this study only pertain to the TUV responses by
Thai first-year science and engineering students. Rescaling
may be required for transfer of the current results to other
groups of examinees.
Overall, the approach and findings of the current study

may be used to develop and improve testing, and enhance
its sensitivity and effectiveness within a given range of
abilities. Test developers can analyze item and ability
parameters using IRT, and distractors in an item can be
assessed with the IRC technique. Moreover, using IRTwith
the item parameters held constant, the same group of
students can be tested before and after instruction to
determine the learning gains in ability. Further studies of
TUV or its modifications could, in particular, explore the
dimensionality of latent traits and implement the multitrait
model of item response theory. The current results and
approach can directly benefit anyone who uses the TUV, to
gain improved accuracy of diagnosis.
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