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In experiments including over 450 university-level students, we studied the effectiveness and time
efficiency of several levels of feedback complexity in simple, computer-based training utilizing static
question sequences. The learning domain was simple vector math, an essential skill in introductory physics.
In a unique full factorial design, we studied the relative effects of “knowledge of correct response” feedback
and “elaborated feedback” (i.e., a general explanation) both separately and together. A number of other
factors were analyzed, including training time, physics course grade, prior knowledge of vector math, and
student beliefs about both their proficiency in and the importance of vector math. We hypothesize a simple
model predicting how the effectiveness of feedback depends on prior knowledge, and the results confirm
this knowledge-by-treatment interaction. Most notably, elaborated feedback is the most effective feedback,
especially for students with low prior knowledge and low course grade. In contrast, knowledge of correct
response feedback was less effective for low-performing students, and including both kinds of feedback did
not significantly improve performance compared to elaborated feedback alone. Further, while elaborated
feedback resulted in higher scores, the learning rate was at best only marginally higher because the training
time was slightly longer. Training time data revealed that students spent significantly more time on the
elaborated feedback after answering a training question incorrectly. Finally, we found that training
improved student self-reported proficiency and that belief in the importance of the learned domain
improved the effectiveness of training. Overall, we found that computer based training with static question
sequences and immediate elaborated feedback in the form of simple and general explanations can be an
effective way to improve student performance on a physics essential skill, especially for less prepared and
low-performing students.
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I. INTRODUCTION

Computer-based instruction has proven to be effective in
a variety of contexts, with effect sizes typically ranging
from 0.3 to 0.5 [1–4], yet there is still a wide variation in
effectiveness, particularly in studies investigating different
methods of feedback. Numerous reviews have noted—
perhaps to be expected—that there is no single best
prescription for feedback, rather the effectiveness of feed-
back depends on a number of potentially interacting
factors. Examples of these factors include the type and
level of knowledge or skill to be learned, the type (e.g.,
complexity) of feedback, timing of the feedback, prior
knowledge of topic, student achievement, correctness of
and confidence in responses, interest in topic, self-efficacy,
and other attitudinal factors; for reviews, see Refs. [4–9].
The sheer complexity of numerous potentially interact-

ing factors compels one to simplify the issue by focusing on
specific cases that are general enough to be applicable to

some important educational contexts, but constrained
enough that results will be generalizable within those
contexts. Therefore, in this study, we will focus on a
specific but important physics learning domain, namely,
basic vector math skills essential for success in an intro-
ductory physics course. We will also focus on factors
important for practical instructional implementation.
Essentially, we are addressing three questions: (i) Which

level of feedback complexity is most effective and time
efficient for this domain? (ii) To what extent do the factors
of prior knowledge, student achievement, and attitudinal
factors such as perceived importance of the topic for the
course interact with the effectiveness of different levels of
feedback for this domain? (iii) What insights do the timing
data (during training) tell us about how students are using
the most effective feedback levels?
The format of the learning task was a self-contained

online computer-based practice module on vector math
skills for university-level introductory physics. Naturally,
determining optimal feedback for this domain is relevant
and applicable to common and current educational con-
texts. Furthermore, this study is consistent with several
reviews which made calls for research expanding and
exploring the space of possible factors influencing (and
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improving) the effectiveness of feedback [8–10]. The
factors we are investigating can help to gain insight into
both practical instructional questions and provide empirical
results to advance theoretical models of computer-based
instruction.

A. Varying complexity of feedback

While there are numerous ways to characterize feedback
complexity, we will focus on a framework commonly used
by many researchers in which feedback can be broken into
five types of increasing complexity (cf. Ref. [11]):
(1) No feedback.
(2) Knowledge of results (KR): user is informed of

whether the answer is right or wrong.
(3) Knowledge of correct response (KCR): user is

informed of the correct answer.
(4) Knowledge of correct response and elaborated feed-

back (KCRþ EF): user is informed of the correct
answer and further information such as an explan-
ation is given.

(5) Knowledge of correct response and interactive
teaching (KCRþ IT).

A number of studies have investigated the relative
effectiveness of various combinations of these feedback
types, with most finding that higher complexity results in
higher learning (see, e.g., Refs. [4,5,11–13]), while some
others find no such differences [14,15]. Once again, these
studies represent a significant variation in other factors, so
it is difficult to generalize.
In a recent meta-analysis, Van der Kleij et al. [4] found

that EF tends to be more beneficial than KR and KCR,
especially for higher level learning outcomes (e.g., apply-
ing knowledge rather than recalling it). However, there are
two issues with these results. First, the meta-analysis
reveals a wide range of outcomes, both positive and
negative depending on a variety of factors; and while
one might reasonably expect to find similar results, it is not
clear that they apply to the domain and context studied
here. Second, rather than explicitly varying learning out-
comes in this study, we will investigate the pedagogically
important issue of how variations in prior knowledge may
affect learning.
In this study, we are interested in learning via simple

computer feedback (and not interactive teaching), and as
such we will only consider complexity types 2, 3 and 4. In

order to better understand any possible interaction between
KCR and EF, we will study the effectiveness of KCR and
EF separately and together—always providing KR—in a
specific science, technology, engineering, and mathematics
(STEM) essential skill learning domain. Note that in this
study, EF will be in the form of general topic-contingent
explanations describing the relevant procedural rule in the
format of words, equations, and/or diagrams. The EF is
general and topic contingent in the sense that it is not
specific to the numerical values of a specific problem, but
rather can be applied to a class of similar problems.
There are both practical and theoretical reasons for

exploring a full factorial analysis of KCR and EF feedback
methods, which—to our knowledge—has not been pre-
viously attempted. From the practical standpoint, when
designing computer-based instruction modules for a par-
ticular learning domain, one must make decisions (either
implicitly or explicitly) about the feedback provided to the
learner. Naturally, an empirical determination of the most
effective and/or efficient feedback is the most useful.
From a theoretical standpoint, one can test predictions of

simple models, though in some cases existing models
produce conflicting predictions. Empirical results can help
to resolve ambiguities. First, let us start with predictions
from the simple model that prior knowledge plays a critical
role in determining the effectiveness of different levels of
feedback; see, e.g., Refs. [10,16–18]. Specifically, learners
with low prior knowledge tend to need more complex
feedback and support while learners with high prior
knowledge do not benefit from such extra feedback, e.g.,
Refs. [19,20]. In short, feedback must provide sufficient,
useful information to the learner, but the notions of
sufficiency and usefulness depend on the amount of prior
knowledge of the learner.
One useful way to investigate the effects of prior

knowledge is to compare the performance of participants
with relatively high vs low levels of relevant prior knowl-
edge after training with one of the four conditions in a full
2 × 2 (KCR × EF) design (once again noting that all
training conditions also include KR). Table I summarizes
the hypothesized relative benefits of each condition, fol-
lowing the arguments outlined below.
For the KR only (KCR and EF absent) condition, students

only receive information about the correctness of the answer.
If a participant has no prior knowledge of the rule, then KR

TABLE I. Hypothesized relative benefit from the four training conditions according to prior knowledge level.

Relative prior knowledge

Training condition Low High

KR Minimal benefit Moderate benefit
KRþ KCR Minimal benefit Moderate benefit
KRþ EF Moderate benefit Moderate benefit
KRþ KCRþ EF Conflicting predictions Conflicting predictions
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alone would naturally seem to have little—if any—benefit,
since this is likely not enough information to determine the
correct response, rule, or procedure—even in a multiple
choice format [11,12]. However, if the participant has
significant prior knowledge of the rule, then providing
KR may help the participant to reverse engineer the answer
using a partially recalled rule, and repair the mistake.
In this framework, how would the benefits of KRþ KCR

vs KRþ EF feedback compare? Since both present more
complex feedback than KR, but they are different kinds of
feedback, it is difficult to quantify the relative complexity of
these feedbacks and predict which may be more beneficial.
Nonetheless, one can argue the following for the KRþ KCR
condition: if the participant has low prior knowledge,
then since the skill to be learned is not a trivial fact and
cannot be deduced from the remaining multiple-choice
options, knowing the correct answer is not likely to help
them much more than KR alone. However, if the participant
has relatively high prior knowledge, then KCR may help
them to reconstruct the correct application of the rule. On the
other hand, in the case of relatively high prior knowledge,
this feedback may be of marginal additional benefit com-
pared to knowing the correctness of the response alone.
The KRþ EF condition is different; in this case the

explanation in EF can help the participant with no prior
knowledge of the rule to apply the rule and find the correct
answer. In this condition even participants with no prior
knowledge will have increased learning compared to KR.
However, for participants with high prior knowledge, the
benefit of this condition (albeit moderate) will not be
different from the KR alone condition (since they already
know the rule). Rather, the benefit for these high-performing
students will accrue from the KR provided.
Finally, for the KRþ KCRþ EF condition, the level of

benefit is not clear a priori. On the one hand, one could
argue that the benefits of KCR and EF could add, resulting
in higher learning than KCR or EF alone. On the other
hand, several studies have shown that too much feedback
information may inhibit learning (cf., Refs. [21–23]) or it
may have little to no effect at all [5,24]. Therefore, it is an
empirical question as to the extent to which these effects
compete and which may be dominant in the learning
domain of this study.
Therefore, this simple model of the effect of prior

knowledge produces several testable predictions. Most
notably, for participants with relatively low prior knowledge,
KR and KRþ KCR conditions will have the same (minimal)
benefits and the KRþ EF condition will have moderate
benefits. For participants with relatively high prior knowl-
edge, KR, KRþ KCR, and KRþ EF will all have similar
moderate benefits, thus only the simplest feedback is needed.
For the KRþ KCRþ EF condition it is an open question as
to the benefits to either high- or low-performing students.
Note that this model is somewhat consistent with Van der
Kleij et al. [4], since they found the EF is best for higher

level learning outcomes which, here, might be interpreted as
relevant for students with low prior knowledge.

B. Learning domain: The physics essential skill
of vector math

The learning domain in this study is a set of specific
“essential skills” which are not highly complex. Rather,
they are elementary procedural skills used as a necessary
part of problem-solving tasks that instructors often
assume students have mastered with high accuracy and in
relatively little time (e.g., Refs. [25–29]). Often to the
surprise or chagrin of the instructor, students—especially
low-achieving students—typically do not have these skills
or they are far from fluent in their use. As such, correcting
these issues would serve to widen a critical bottleneck to
student problem-solving success. Designing specific train-
ing to address these skills is in line with the theoretical
frameworks of deliberate practice, in which expert perfor-
mance in a domain is the result of focused efforts to improve
performance [30], and reduction of cognitive load, [25,26].
While we stress that learning these basic procedural skills is
not sufficient for succeeding in more complex problems,
mastering such skills is presumed necessary.
The STEM essential skill used in this study is simple

vector math, specifically the two kinds of vector products—
dot and cross products—which are commonly used in
university-level introductory physics, especially in the
second semester. In fact most, if not all, relevant physics
textbooks include an early chapter on vector math, but it is
clear that this is not sufficient. A number of studies have
documented significant and somewhat alarming student
difficulties with vector operations, such as vector addition,
subtraction, dot or cross products, as well as vector
decomposition (e.g., Refs. [31–34]), showing that—even
post-instruction—typically only 50%–70% of calculus-
based physics students can correctly perform these basic
vector arithmetic operations.

II. PARTICIPANTS AND DESIGN

A. Student populations and data collection

For both experiments in the study, a total of N ¼ 456
(287 male, 169 female) students attending a large public
university participated in the study, which took place over
the course of two semesters. The participants were enrolled
in introductory physics, either calculus-based mechanics
(experiment 1, N ¼ 206) in the first semester or calculus-
based electromagnetism (experiment 2, N ¼ 250) in the
second semester. Participants were selected from a pool of
all students enrolled in these courses (N > 1000 for each
course, with 6 to 7 lecture sections per course), and were
randomly assigned to this study and into its conditions, the
remaining students participated in other physics education
studies. No participants were in both experiments. A vast
majority (444=456) of these students completed both
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training (if applicable) and the assessment. A 1-way
ANOVA of student grades in the course—normalized as
z scores of all students within each lecture section (includ-
ing ones who were not in this study)—showed no depend-
ence of grade on condition [Fð4Þ ¼ 1.352, p ¼ 0.250].
Students participated in the study as part of a special

homework assignment (assigned to all students in the
course) for a small amount of course credit. The option
of an alternative written assignment was given to students if
they chose not to participate in a PER study, though more
than 95% of all students participated in the assignment. The
special homework assignment consisted of completing
various physics tasks, sometimes including those in this
study, for a total time not exceeding 50 min. Full credit was
given for participation, regardless of performance. Our
observations and poststudy debriefing interviews with all
students indicated that virtually all participants performed
the tasks earnestly.

B. Procedure and design

All computer training for both experiments used the lab
software EPrime, and participants sat in individual carrels—
each with a computer—in a quiet room. Each training
session consisted of brief instruction slides followed by a
series of training questions. After each response, the system
provided immediate feedback varying by condition. Timing
data were collected, including response times, correct answer
viewing times, and time spent viewing the EF. Participants
were assigned to training conditions, summarized in Table II.
The final assessment (described in Sec. II. D) was in paper-
and-pencil format for all conditions.
The training conditions were control (no training),

KR (only correct or incorrect feedback), KRþ
KCR (correct or incorrectþ correct response), KRþ EF
(correct or incorrectþ explanation), and KRþ KCRþ EF
(correct or incorrect þ correct response þ explanation).
Examples of the EF feedback are shown in Sec. II C. All
computer training conditions used the same training ques-
tions and differed from each other only by the type of
answer-based feedback given to the student. Examples of
training and each type of feedback type can be found in the
Supplemental Material [35].

Note that, as indicated in Table II, participants in
experiment 1 had received very little (if any) explicit
classroom instruction on dot and cross products, as they
are not emphasized in the first semester, though some
students may have had instruction in other previous physics
or math courses in high school or college. However, the
participants in experiment 2 did receive explicit dot
and cross products instruction in the classroom, since it
is emphasized much more in the second semester.
Immediately after training, participants completed unre-

lated physics tasks that lasted approximately 20 min. After
this unrelated task, participants completed the final assess-
ment with no feedback. Participants in the control condition
also received the assessment after 20 min of unrelated tasks,
but with no prior vector training. Assessment completion
times were typically about 10–15 min.

C. Materials: Topic and question types

A correct determination of a vector product requires
finding the magnitude and either the direction (cross
product) or the sign (dot product). Because our own pilot
research and previous research by others [31,32] found that
students have difficulties with each of these subtasks,
the training included practice on these subtasks (scores
in control conditions in this study verify this issue).
Specifically, training included six question types, three
for each vector product type: dot product (determine sign,
determine magnitude, compare magnitudes) and cross
product (determine direction, determine magnitude, com-
pare magnitudes). See Fig. 1 for examples of the training
question types. Each of these question types varied the
magnitude and/or direction of the vectors between ques-
tions. The training consisted of four blocks of six questions
(one for each question type) for a total of 24 questions. The
last block replaced the two compare magnitude questions
with dot product direction and cross product sign because
of the higher relative importance of the latter. The training
typically took about 10–15 min (more details provided
in Sec. IV).
The elaborated feedback for the EF condition consisted

of explanations specific to a given question type. As an

TABLE II. Experimental design. Note that numbers are counts of participants.

Conditions

Training topic n
Student

population

Dot or cross
classroom
instruction

Attitudes
& beliefs
items

Control
(no training) KR KRþKCR KRþEF KRþKCRþEF

Dot or cross
products
experiment 1

206 Calc-based
mechanics

No No 53 55 47 51 � � �

Dot or cross
products
experiment 2

250 Calc-based
electromag.

Yes Yes 50 49 49 51 51
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example, the EF for dot product sign and cross product
compare magnitudes questions are shown in Fig. 2.
When KR or KCR feedback was used in conjunction

with EF, the KR and/or KCR feedback was shown prior to
the EF. The EF images used in training obscured (was
placed over) only the multiple choice options, meaning the
students could still see the problem statement and accom-
panying figure while studying the EF. To draw attention to
the contrast between similar operations, all dot product EF
images contained an orange border, and cross product EF
images contained a purple border.

D. Materials: Assessment

Two assessments were used in this study. The first is an
instrument we constructed in pilot studies, called the
DotCross assessment, used as the content assessment for

experiments 1 and 2. The DotCross assessment consisted of
14 items and measured participant ability to determine the
sign and magnitude of the dot product of two vectors
(8 items) and the direction and magnitude of the cross
product of two vectors (6 items). See the Supplemental
Material [35] for the full DotCross assessment. The assess-
ment items were similar—though not identical to—the
training questions, and covered all training question types.
The reliability of this instrument is fairly high, with a
Cronbach’s α ¼ 0.88, and all items had mean scores in the
range of about 0.3–0.7 (most around 0.5) and good point-
biserial correlations in the range of 0.4–0.7, with the
exception of one item which had a very high mean score.
The validity of the DotCross assessment is supported in

four ways. First, the items were modeled after straightfor-
ward questions in textbooks and relevant items from other

FIG. 1. Examples of each question type used during training. From left to right, top to bottom: Dot product determine sign, dot product
determine magnitude, dot product compare magnitudes, cross product determine direction, cross product determine magnitude, and
cross product compare magnitudes.

FIG. 2. Examples of EF images used in dot or cross product training.
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validated vector assessment instruments [31,32]. Second,
the items used were also based on over 5 years of pilot
testing in our education research lab, including modifica-
tions based on student testing and postinterviews. Third,
the instrument is significantly (albeit relatively weakly)
correlated with the course grade (r ¼ 0.22, p ¼ 0.03).
Finally, the items were constructed by two instructors
(Heckler and Mikula) with, combined, over 20 years
experience teaching the topic; during the research phase,
other instructors were also involved in the process.
The second assessment used was a very brief assessment

of student attitudes and beliefs, which was administered only
in experiment 2. This assessment was not designed to be an
extensive measurement of attitudes and beliefs. Rather the
assessment consisted of several Likert-scale items intended
to obtain a simple measure of the general sense of participant
ratings of their own proficiency, importance of the topic, and
beliefs about the how much they learned from the training
(see Sec. IV. C for more details).

III. CONTENT ASSESSMENT SCORE RESULTS

We are interested in determining differences in scores for
the various training conditions and how this may interact
with prior knowledge. Specifically, we would like to test
the predictions discussed earlier in Table I.

A. Experiment 1: Scores, feedback complexity, and
prior knowledge

Experiment 1 mean scores for each condition (Fig. 3)
reveal two important results. First, all training conditions
resulted in significantly higher scores compared to control
[ANOVA Fð3Þ ¼ 9.8, p < 0.001, post hoc comparisons
against control using Dunnett’s t test, p ≤ 0.04 for all

conditions]. Specifically, the effect sizes (gains over con-
trol) range from d ¼ 0.5 for KR to d ¼ 1.0 for KRþ EF.
Second, the scores appear to increase with the increased

complexity of training feedback. To gain more insight into
this apparent signal, let us consider the factor of prior
knowledge. In Sec. I. A we hypothesized that more feed-
back information is more beneficial for participants with
relatively low levels of prior knowledge. Thus training with
KRþ EF should be the most effective, while KR and
KRþ KCR should be the least effective (and probably
similar to each other). In contrast, for participants with
relatively high levels of prior knowledge, only minimal
feedback is needed to remind the learner of the correct
method, thus KR, KRþ KCR, and KRþ EF would all be
about equally and moderately effective. We can test these
hypothesized effects of prior knowledge on training, by
considering two different measures of (or proxies for) prior
knowledge.
The first proxy we use for prior knowledge is course

grade (though one might also argue that this is also a
measure of aptitude). Figure 4 presents the scores broken
down by students above and below the median grade,
providing evidence for the claim that students with a higher
course grade have higher prior knowledge. The scores for
students in the control condition with course grades above
the median are about d ¼ 0.7 standard deviations
higher than for students with grades below the median
[tð51Þ ¼ 2.6 p ¼ 0.013].
A close examination of Fig. 4 reveals that the results

support our prediction in Table I that the high and low grade
students responded differently to the training feedback.
Specifically, as expected, for students below the median
(low prior knowledge), the KRþ EF condition scores are
higher than KR or KRþ KCR. Both Fig. 4 and a post hoc
analysis confirm this [ANOVA Fð2Þ ¼ 5.2, p < 0.01, post
hoc comparing KRþ EF against other two: Dunnett’s
t test, p ¼ 0.02 for KR and p ¼ 0.03 for KRþ KCR].
Also as expected, for students above the median there are
no significant differences in the scores for KR, KRþ KCR,
and KRþ EF [Fð2Þ ¼ 1.1, p ¼ 0.34].
The second proxy for prior knowledge is perhaps a more

direct measure of vector prior knowledge. In the training
conditions, the first 6 training questions are all different
question types. Therefore, the score on these 6 questions
(“prescore”) could be used as a simple measure of the prior
knowledge of the participant. In fact, the mean prescores
were 36% and 49% for experiments 1 and 2, respectively—
these scores were similar across conditions and were
similar to the DotCross assessment means for the respective
control conditions. Futhermore, perhaps as to be expected,
there are only weak correlations between the prescore and
the course grade (r ¼ 0.17, p < 0.05 for both experi-
ments), thus they are not measuring the same ability.
In order to allow for comparisons across experiments, we

used the median pre score for the pooled populations of

FIG. 3. Experiment 1 mean assessment scores for each
condition.
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experiments 1 and 2 to determine the cutoff between high
and low pre scores. This resulted in 60% of experiment 1
and 40% of experiment 2 participants below the pooled
median (low pre scores). This difference is also to be
expected, since the students in Experiment 2 have had more
practice with vector products.
The results using the prescores (Fig. 5) are similar to the

results from the high-low grade student analysis. For
students below the median on the first 6 training questions,
the KRþ EF scores are higher than the KR and KRþ KCR
scores [ANOVA Fð2Þ ¼ 3.2, p ¼ 0.046, post hoc compar-
ing KRþ EF against other two: Dunnett’s t test, p ¼ 0.037
for KR and p ¼ 0.022 for KRþ KCR]. For students

above the median, there were no significant differences
in the scores for KR, KRþ KCR, and KRþ EF [Fð2Þ ¼
2.0, p ¼ 0.14].
In sum, we used two different measures (or proxies) for

prior knowledge, namely grade in course and score on the
first 6 training questions. In both cases we found the same
pattern: students with low prior knowledge benefitted
significantly more from KRþ EF feedback compared to
KR or KRþ KCR feedback, and students with high prior
knowledge benefited equally from all three of these training
conditions. These results confirm the model that, for this
learning domain, increased feedback complexity—namely,
providing explanations (EF)—helped students with low
prior knowledge significantly more than simple feedback
such as providing the correct answer.

B. Experiment 2: EF and KCR, a full factorial design

The results of experiment 1 confirmed that among the
training types KR, KRþ KCR, and KRþ EF, the most
complex feedback was most beneficial to participants with
low prior knowledge. One could increase the complexity
yet more with the feedback condition KRþ KCRþ EF,
but as discussed in Sec. I. A, there are conflicting pre-
dictions as to whether such additional information will
increase learning or will cause overload and decrease
learning. In experiment 2, we implemented a 2 × 2 design
(KCR × EF) (and KR always present) to determine whether
any interactions occur between KCR and EF for this
learning domain. Recall also that the participants in
experiment 2 were enrolled in the semester 2 course
(electromagnetism), in which dot and cross products are
explicitly addressed in class.
The mean scores for each condition are presented in

Fig. 6. Similar to experiment 1, all training conditions
resulted in significantly higher scores compared to control

FIG. 4. Experiment 1 mean assessment scores for each
condition, for students with high and low course grades.

FIG. 5. Mean assessment scores for experiment 1 feedback
conditions, split by high and low scores on the first six training
questions. The dotted line represents the mean control score.

FIG. 6. Experiment 2 mean assessment scores for each
condition.
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[ANOVA Fð4Þ ¼ 9.0, p < 0.001, post hoc comparing
against control Dunnett’s t test, p ≤ 0.01]. The effect
sizes (gains over control) are also similar to experiment
1, ranging from d ¼ 0.46 for KR to d ¼ 1.1 for
KRþ KCRþ EF.
However, there are some important differences from

experiment 1. First, participants in experiment 2 (semester
2) scored higher than those in experiment 1 (semester 1) in
all comparable conditions (t test p ≤ 0.006). The effect size
between control scores for experiment 1 and experiment 2
is d ¼ 0.7. The higher score is to be expected since the
participants in experiment 2 received more explicit course
instruction and practice in dot and cross products in
semester 2.
Perhaps the most important difference from experiment 1

is the pattern of the training condition means. To compare
directly with experiment 1, let us first only consider KR,
KRþ KCR, and KRþ EF for experiment 2. An ANOVA
and post hoc analysis reveals that there were no significant
differences in mean scores for these three training con-
ditions [Fð2Þ ¼ 1.575, p ¼ 0.211]. Furthermore, separat-
ing out high and low course grade students or high and low
prescores reveals the same result, namely, that there were
no significant differences in scores between KR,
KRþ KCR, and KRþ EF feedback conditions for either
high- or low-performing students (p ¼ 0.503, 0.096 for
low- and high-performing grades and prescores, respec-
tively). The lack of difference in scores for these three
conditions in experiment 2 is consistent with our hypoth-
esis since, as discussed earlier, the participants in experi-
ment 2 (semester 2) have relatively high prior knowledge
on average, and there should be less added benefit of
adding either KCR or EF to the feedback.
Nonetheless, this brings us to the question of whether

including both KCR and EF (i.e., KRþ KCRþ EF)
accrued additional benefit, or if the additional feedback
impedes learning. Examination of Fig. 6 reveals that
KRþ KCRþ EF certainly does not perform worse than
KRþ KCR or KRþ EF, and, in fact, there is evidence for
some added benefit to including both KCR and EF in the
feedback for this learning domain. An ANOVA analysis on
all four training conditions confirms that the means are
different [Fð3Þ ¼ 3.039,p ¼ 0.030] and a Tukey (post hoc)
multiple comparison shows that the only significant
pairwise difference between conditions is between
KRþ KCRþ EF and KR (p ¼ 0.016); all other pairwise
comparisons show no significant differences.
We can gain insight into the nature of the benefit of

KRþ KCRþ EF by comparing performance for partic-
ipants with high or low scores on the prescore (i.e., high or
low prior knowledge). Figure 7 shows the results. The
results clearly show that students with high prior knowl-
edge did not gain any added benefit from increased feed-
back complexity [ANOVA Fð3Þ ¼ 1.24, p ¼ 0.3], but
there was a difference between conditions for students

with low prior knowledge [ANOVA Fð3Þ ¼ 2.85,
p ¼ 0.04], and the only significant pairwise difference is
between KRþ KCRþ EF and KR (Tukey, p < 0.05).
Therefore, once again, the benefit of the complex feedback
stems from students with low prior knowledge.
Finally, in order to gain more insight into the results, we

completed a univariate ANOVA with two factors—KCR
(present or absent), EF (present or absent)—and two
covariates—course grade and prescore. We included all
main effects and two-way interactions. All main effects and
significant interactions are shown in Table III. All main
effects were significant except for KCR, which had
marginal benefits. There was no significant interaction
between KCR and EF; rather, it appears that in this learning
domain the two effects are simply additive.
The only significant interactions were between EF and a

measure of prior knowledge—student performance on the
first 6 questions of the training—and between KCR and
course grade. Thus we have evidence of a knowledge-by-
treatment interaction, namely, that students with low prior
knowledge on average benefit from EF while high prior
knowledge students on average do not benefit from EF,

FIG. 7. Mean assessment scores for experiment 2 students for
each training condition, split by high or low scores on the first six
training questions (prescores). The dotted line represents the
mean control score.

TABLE III. Experiment 2 univariate ANOVA results, excluding
control. Note that R2 ¼ 0.39.

Factor Fð1Þ p Partial η2

KCR 2.17 0.14 0.012
EF 13.8 <0.001 0.070
Course grade 5.95 0.016 0.032
Prescore 67.2 <0.001 0.270
EF×Prescore 10.1 0.002 0.053
KCR×Course grade 6.14 0.014 0.033
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perhaps because they are at ceiling (see Fig. 8). The
KCR-course grade interaction reveals that students with
low course grades tend to benefit from KCR more than
students with high course grades.

IV. TRAINING AND TIMING DATA RESULTS

In this section we examine the amount of time learners
spent on various parts of the training. The training times are
analyzed for two reasons: to gain insight into the relative
efficiency of the feedback conditions and to gain insight
into how students are using the elaborated feedback in
conditions containing that feedback, which were often the
highest scoring conditions. The timing data considered here
are the total training time and the time spent viewing the EF
(explanation time). Note that timing data analyzed in this
section only considers the training conditions and excludes
the control (no training) condition.

A. Total training time and efficiency

There are several important observations about the total
training time. First, the total training time was not corre-
lated with either of our proxies of prior knowledge.

However, the total time was weakly correlated with score
for experiment 1 (r ¼ 0.25, p < 0.01) and this correlation
was about this same size for each condition. On the other
hand, in experiment 2, the correlations were not significant
(r ¼ 0.05, p > 0.4). The correlation of score with training
time for experiment 1 but not experiment 2 may indicate
that the less prepared students tend to get more benefit by
spending more time with training.
Second, in Sec. III we determined which feedback

conditions were the most effective in terms of obtaining
the highest scores. However, we would also like to
determine which feedback conditions are the most efficient.
Naturally, there are a variety of ways to define efficiency
of an instructional intervention, usually including informa-
tion on the amount of learning as well as time spent
on learning. Here we will define efficiency ε as a rate of
gain of score. That is, for the ith student, εi ¼
ðScorei −MeanScoreControlÞ=ðStDevControl × TrainTimei).
It is important to note that the time unit is scaled to

1000 sec in order to make the values of ε easily readable.
Thus, efficiency ε may be interpreted as the number of
control standard deviations gained per thousand seconds
spent training.
The total training times and efficiencies for each con-

dition are shown in Table IV (mean and median times are
shown because the distributions are right-skewed). The
training times showed significant differences for experi-
ment 1 (Kruskal-Wallis K ¼ 7.3, p ¼ 0.03) but not for
experiment 2 (Kruskal-Wallis K ¼ 3.0, p ¼ 0.39). For
both experiments, training time increased by about
10%–20% (1–2 min) when EF is included in the feedback.
Interestingly, for experiment 2, the total training time for
KRþ KCR was slightly less than for KR alone, possibly
because without KCR, students would have to take time to
determine the correct answer.
As for efficiency, there were no significant differences

between conditions for each experiment (Kruskall-Wallis
K ¼ 3.3, p ¼ .19 for exp. 1, and K ¼ 5.6, p ¼ .13 for
Exp. 2). However, taken together the trends are in the same
direction, namely, that conditions with EF tended to have
higher efficiencies but, again the significance is marginal at
best (Mann-Whitney U ¼ 3031, p ¼ 0.076 for exp. 1, and
U ¼ 5443, p ¼ .22 for Exp. 2), with an effect size of
d ¼ 0.25. Therefore, while the scores for EF training are

FIG. 8. Experiment 2 mean scores for EF present or absent and
for students with high or low score on the first six questions of
training.

TABLE IV. Mean and median total training times and mean efficiencies for each condition in each experiment. Times are listed in
seconds.

Experiment 1 Experiment 2

Feedback condition Mean time (SD) Median time Mean efficiency (SE) Mean time (SD) Median time Mean efficiency (SE)

KR 563 (249) 511 .70 (.28) 563 (233) 509 .91 (.29)
KRþ KCR 655 (307) 585 .73 (.26) 481 (148) 454 1.24 (.27)
KRþ EF 672 (224) 625 1.24 (.23) 530 (169) 542 1.20 (.24)
KRþ KCRþ EF � � � � � � � � � 518 (154) 519 1.65 (.24)
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significantly higher than KCR training, there is at best only
marginal evidence that the efficiency (learning rates) of EF
are higher than KCR. With such a relatively small effect
size, a larger sample size is needed to determine whether
this possible higher learning rate is statistically reliable.
Finally, while the above result confirms that EF training

results in relatively higher scores, it is important to note that
for the less effective feedback conditions, many students
tended to finish them quickly with very little learning.

B. Explanation viewing time

We have shown that EF training resulted in the highest
scores; therefore this kind of feedback is of high interest. In
order to gain more insight into how students progress
through the EF training and how they are using this
feedback, we examined the amount of time spent viewing
the explanations.
If providing explanations improves learning, then one

would expect to see evidence for this causation in the
explanation viewing times. Specifically, participants who
answered a given training question incorrectly would be
expected to view the explanations longer than those who
answered correctly. Figure 9 presents the trial-by-trial
median explanation viewing times for participants answer-
ing correctly or incorrectly for all six question types
(medians are used to depict central tendency because
distributions are right skewed). Recall that training con-
sisted of several blocks, interleaving the six question types
in each block. Note that, because of limitations for some
question types, the last couple of blocks did not include all
question types.
Figure 9 reveals two important patterns. First, it confirms

the causal expectation that participants answering incor-
rectly tended to view the explanations significantly longer
than those answering correctly. One might argue, however,

that Fig. 9 confounds results, since it does not account for
the longitudinal progress of the participants. For example,
for a given question type, for participants answering the
second trial incorrectly, it is not clear from the figure how
many of these participants also answered the first question
incorrectly or correctly.
To address this, in Fig. 10 we present an example for one

of the question types in which student responses to the first
three training trials of each question type were categorized
according to their scoring pattern. That is, within each
question type, students were categorized as “Right-Right-
Right” if they got all three questions right, “Wrong-Right-
Right” if they got the first question wrong and the second
and third questions right, and so on. We include the four
most-populated categories in the figure, which account for
81% of the participants. Explanation times for each
category were then compared for the first three trials.
The results further support the expectation that explan-

ation times are relatively high when the question was
incorrectly answered and low when correctly answered.
Figure 10 presents this result visually, andWilcoxon signed
rank tests showed that in all four answer patterns in this
figure the explanation viewing time was significantly
longer after incorrect answers than after correct answers
(p < 0.05). For example, the Wrong-Right-Right category,
the explanation time is largest for the first then smaller for
the second (Z ¼ 2.4, p ¼ 0.02) and third (Z ¼ 3.0,
p < 0.01) trials, whereas for the Right-Wrong-Right cat-
egory, the explanation viewing times are largest for the
second trial and significantly smaller for the first (Z ¼ 3.0,
p < 0.01) and third (Z ¼ 3.0, p ¼ 0.01) trials, as expected.
Further, for the Wrong-Wrong-Right category, the viewing
times for the first and second trials were not significantly
different (Z ¼ 1.4, p < 0.16), but they were for the first
and third (Z ¼ 2.1, p < 0.04) and second and third

FIG. 9. Median explanation times for each training trial within a question type and for correct or incorrect responses in each trial.
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(Z ¼ 2.2, p < 0.03) trials. This explicitly shows that
students in the EF condition are spending time to read
the explanations when they get a training question incor-
rect, and that is why the EF condition has high learn-
ing gains.
The second important pattern in Fig. 9 is that, within

each question type, explanation viewing times for partic-
ipants answering incorrectly typically decreased somewhat
rapidly as the training trials advanced, and is approximately

equal to the explanation viewing times for correct answer-
ers by the third or fourth trial. It is important to keep in
mind that typically only ∼10% of the participants are
answering incorrectly by the fourth trial, so this typically
represents only a small portion of the population. However,
this does indicate that after a certain number of trials,
students answering incorrectly tended to ignore the EF.
Possible explanations for this could include the following:
(i) students have read the EF earlier, and found it unhelpful,
(ii) students have read the EF earlier and found it helpful
but no longer necessary to read again, and (iii) students lose
(or never had) interest and/or motivation in how to
determine the correct answer.

C. Data on beliefs of proficiency, learning, and
importance of topic

After training and the content assessments, the partic-
ipants in experiment 2 were given a brief survey including
items pertaining to their beliefs about their proficiency in
the topic, how much they learned in training, and the
importance of the topic. The text of these items and
summary of results are shown in Table V.
There are several important results from the combination

of survey performance and content performance data. First,
as seen in Table V, all training conditions but KR
significantly raised self-reported proficiency compared to
Control, with more effective training conditions—as mea-
sured by scores on the assessment—showing the largest
increases (compared to control) in self-reported profi-
ciency. Specifically, a Kruskal-Wallis test revealed signifi-
cant differences between the conditions for the self-
reported proficiency item [Kð4Þ ¼ 20.5, p < 0.001], with
follow-up post hoc comparisons only showing significantly
higher self-reported proficiency for KRþ KCRþ EF com-
pared to both control and KR.
One possible explanation for highest self-reported pro-

ficiency for KRþ KCRþ EF is that this condition
improved their performance the most, and this in turn
improved their self-reported proficiency the most. This

FIG. 10. Box plots indicating 1st, 2nd, and 3rd quartiles of
explanation times on the first three cross product compare
magnitudes questions, split by student response patterns on the
first three questions.

TABLE V. Mean student scores (percent correct) and mean student responses to attitudes and beliefs survey questions. Note that
numbers in parentheses represent standard deviations.

Control KR KRþ KCR KRþ EF KRþ KCRþ EF

Average percent correct on assessment questions 61% (30%) 74% (27%) 81% (21%) 82% (20%) 87%(17%)

Survey question

Rate your proficiency with using (and knowledge of)
dot and cross products. (1 ¼ low profic.; 5 ¼ high profic.)

3.0 (1.0) 3.1 (1.0) 3.5 (1.0) 3.5 (1.0) 3.8 (0.9)

How much did you learn from the training on dot
and cross products? (1 ¼ nothing new;
5 ¼ many new things)

n/a 2.6 (0.9) 2.6 (1.1) 3.1 (1.2) 2.8 (1.0)

How important do you think it is to understand how
to use dot and cross products for [this course]?
(1 ¼ not at all important; 5 ¼ very important)

4.4 (0.9) 4.4 (0.9) 4.3 (0.9) 4.1 (0.8) 4.4 (0.8)
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would imply that the students were fairly good judges of
their own proficiency. In fact, this is supported by a high
correlation between self-reported proficiency and perfor-
mance (r ¼ 0.63 in the control condition; other conditions
had very similar correlations). This is in the high end of the
range reported in a meta-analysis by Zell and Krizan [36],
on a range of skills, but the high number may be expected
since they report higher correlations between perceived
ability and performance when tasks are well constrained
and simple.
Second, there was no significant correlation between

self-reported learning and assessment score within any
of the training conditions. However, the conditions with EF
had higher self-reported learning than conditions with no
EF (mean ratings of 2.95 and 2.61 out of 5, respec-
tively; Mann-Whitney U ¼ 5269, p ¼ 0.034, d ¼ 0.3).
Furthermore, for conditions with EF, there was a significant
positive correlation between the self-reported learning and
explanation viewing time (r ¼ 0.3, p ¼ 0.003).
Finally, while there was no significant difference in mean

ratings on the importance of understanding vectors for
the course among conditions, the self-reported importance

rating appears to play a role in the effectiveness of the
training. A univariate ANOVA similar to the analysis in
Sec. III. B was performed, adding the importance rating as
a factor. Table VI shows the results for significant main
effects and interactions. The results are similar to the earlier
results in Table III, additionally showing that student
perception of importance of the topic influences the final
score, and that there is an interaction between perception of
importance and prescore on the first six training questions.
Specifically, for students with low prescores, those who
perceive the topic as important benefit more from the
training than those students who do not report the topic
as important (see Fig. 11). These results suggest that it is
important that the students—particularly lower-performing
students—believe in the importance of the skills to be
trained in order to maximize learning gains.

V. SUMMARY AND GENERAL DISCUSSION

Even though there are currently considerable efforts to
develop relatively complex intelligent tutoring systems,
results from this study demonstrate that simple computer-
based training utilizing a variety of relatively simple
answer-based feedback methods can be effective in improv-
ing student accuracy with essential STEM procedural skills
such as evaluating dot or cross vector products. Compared
to research findings on computer-based instruction with
college students [2,37,38], effect sizes from training in this
study were large, ranging from 0.5 to 1.1.
As mentioned in the introduction, there are numerous

studies and several reviews on the many factors affecting
computer-based learning with feedback. Here, we help in
the much-needed empirical and systematic exploration of
the factor space to provide guidance for optimal training
design. These results are helpful not only in the specific
domain of the STEM essential skill of vector math, but also
in providing evidence and arguments for a more general
framework to guide the design of computer-based training
with simple feedback in similar domains. Note that while
this study investigates factors effecting learning of a simple
and essential procedure skill for physics, there have been
other relatively recent lab studies in the physics education
domain for improving student knowledge of specific topics
[39,40] and conceptual reasoning in problem solving [41]
that also show promise for application in a course.
With a full factorial design studying KCR feedback and

EF, a more detailed analysis reveals that EF has a
significant impact above and beyond KR, while KCR
had a more marginal impact beyond KR. An explanation
of this lesser benefit of KCR (compared to EF) may be
related to the findings of Narciss and Huth [22], who found
that omitting KCR may compel students to think deeper (to
find the correct answer).
Furthermore, in agreement with our hypothesis that the

effectiveness of feedback improves with an increase in
sufficiency and usefulness of feedback information, the

FIG. 11. Experiment 2 mean assessment scores by score on first
6 training questions (prescore), separated by perceived impor-
tance of the topic for the course.

TABLE VI. Experiment 2 univariate ANOVA results, including
the factor of importance rating. Note that R2 ¼ 0.46.

Factor Fð1Þ p Partial η2

KCR 3.09 0.08 0.019
EF 17.8 <0.001 0.099
Course grade 7.72 0.006 0.046
Prescore 57.0 <0.001 0.260
Importance rating 3.77 0.012 0.065
EF×prescore 13.2 <0.001 0.076
Importance rating×prescore 3.34 0.038 0.040
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impact of training methods was modulated by prior knowl-
edge. Namely, EF helped the most for students with the
least amount of relevant prior knowledge of the topic—
whether measured by scores on the first few training
questions or by student grade in the course—while students
with more prior knowledge achieved significant gains even
from the lowest levels of feedback. Note also, as mentioned
in Sec. I. A, that the explanations in the EF condition were
not specific to the question, but were general to the question
type. Our finding that EF results in the highest learning
gains is somewhat consistent with the meta analysis of Van
der Kleij et al. [4], but they found wide variations depend-
ing on numerous factors. Not only do our results directly
validate the use of EF for an essential skills domain in
introductory physics, but it also adds insight into the types
of students benefiting the most.
It is interesting to note that, contrary to many previous

studies mentioned in the introduction, in our study KR did
often have a significant positive impact on performance.
However, this improvement in performance is almost
certainly not due to Skinnerian conditioning—which was
tested and rejected by earlier studies (e.g., Refs. [11,12])—
since it would be difficult to infer the abstract rules of
vector math from KR feedback alone. Rather, consistent
with our hypothesis of sufficient and useful information, it
is more likely that KR improves performance because—
even in the low-prior-knowledge cases—at least some
subpopulation of students will still have some relevant
prior knowledge of the rules (e.g., from previous courses).
For these students, even the minimal KR feedback provides
enough information to help them to recall the rule or repair
any faulty or incomplete recollection.
We found that students tended to spend relatively more

time viewing explanations after incorrect answers, but that
overall, explanation viewing times decreased dramatically
after the first one or two viewings within each question
type. While these results helped to empirically confirm the
assumption that students were attending to the explanations
provided, it also raises question as to how to best sequence
training questions and explanations, and why students who
persist with incorrect answers ignore the explanations in the
later training trials. For example, is it better to provide more
difficult questions in which students answer incorrectly
early rather than later? This would be consistent with
models of productive failure [42] and impasse-driven
learning [43], in which early struggles with difficult
problems lead to stronger learning later on, despite the

initial failure. Nonetheless, our study was not designed to
answer such questions which must be left to future studies.
Notably, we found that the training not only improved

performance but also improved students’ beliefs about their
own proficiency in the topic, with more effective training
conditions showing higher self-reported proficiencies. Such
improvements to self-efficacy-related beliefs can be an
important part of STEM learning [44,45].
Furthermore, we found that student belief in the impor-

tance of the topic can play an important role in the
effectiveness of training for lower performing students.
That is, when low-performing students were neutral or
negative about the importance of the topic, the positive
effects of EF and KCR feedback vanish. However, it is not
proven from these correlational results that this relation is
causal, namely that increasing a student’s perception of the
importance of a topic will increase the effectiveness of
training, though this is a compelling and interesting
question to pursue.
Overall, results of this study suggests that computer-

based practice to improve performance in a relatively
simple STEM essential skill should include both KR and
a brief general explanation (EF) relevant to the question
type. One might also include information about the correct
response in the feedback, but this extra information may not
be necessary, and—as mentioned in other studies—may be
distracting or otherwise inhibit improvement in some cases
(e.g., Ref. [8]). Nonetheless, in our study, providing KCR
in addition to EF did not appreciably increase or decrease
learning.
Finally, it is important to consider that while students in

this study had significant learning gains, they only com-
pleted one training session. In order for such gains in these
essential skills to be retained over an academically relevant
time interval, it is likely that repeated, distributed practice is
necessary (e.g., Ref. [46]). We do have evidence in another
STEM essential skill domain that successful retention
occurs with such practice [28,29]. Retention of these
essential skills is important, as these skills are necessary
for success in solving more complex problems.

ACKNOWLEDGMENTS

Funding for this research was provided by the Center
for Emergent Materials: an NSF MRSEC under Grant
No. DMR-1420451.

FACTORS AFFECTING LEARNING OF VECTOR … PHYS. REV. PHYS. EDUC. RES. 12, 010134 (2016)

010134-13



[1] C.-L. C. Kulik and J. A. Kulik, Effectiveness of computer-
based instruction: An updated analysis, Comput. Hum.
Behav. 7, 75 (1991).

[2] R. Niemiec and H. J. Walberg, Comparative effects of
computer-assisted instruction: A synthesis of reviews, J.
Educ. Comput. Res. 3, 19 (1987).

[3] R. M. Tamim, R. M. Bernard, E. Borokhovski, P. C.
Abrami, and R. F. Schmid, What forty years of research
says about the impact of technology on learning a second-
order meta-analysis and validation study, Rev. Educ. Res.
81, 4 (2011).

[4] F. M. Van der Kleij, R. C. W. Feskens, and T. J. H. M.
Eggen, Effects of feedback in a computer-based learning
environment on students’ learning outcomes a meta-
analysis, Rev. Educ. Res. 85, 475 (2015).

[5] R. L. Bangert-Drowns, C.-L. C. Kulik, J. A. Kulik, and M.
Morgan, The instruc- tional effect of feedback in test-like
events, Rev. Educ. Res. 61, 213 (1991).

[6] J. Hattie and H. Timperley, The power of feedback, Rev.
Educ. Res. 77, 81 (2007).

[7] B. J. Mason and R. Bruning, Providing feedback in com-
puter-based instruction: What the research tells us, http://
dwb4.unl.edu/dwb/Research/MB/MasonBruning.html.

[8] E. H. Mory, Feedback research revisited, in Handbook of
Research on Educational Communications and Technol-
ogy, 2nd ed., edited by D. H. Jonassen and M. P. Driscoll
(Taylor and Francis, London, 2004), pp. 745–783.

[9] V. J. Shute, Focus on formative feedback, Rev. Educ. Res.
78, 153 (2008).

[10] J. Hattie and M. Gan, Instruction based on feedback, in
Handbook of Research on Learning and Instruction, edited
by R. A. Mayer and P. A. Alexander (Routledge, New York,
NY, 2011), pp. 249–271.

[11] W. J. Roper, Feedback in computer assisted instruction,
Programmed learning and educational technology 14, 43
(1977).

[12] D. A. Gilman, A comparison of several feedback methods
for correcting errors by computer-assisted instruction,
ERIC Clearinghouse (1968).

[13] R. W. Kulhavy and W. Wager, Feedback in programmed
instruction: Historical context and implications for prac-
tice, in Interactive Instruction and Feedback edited by J.
Dempsey and G. Ales (Educational Technology Publica-
tions, Englewood Cliffs, 1993), pp. 3–20.

[14] J. Gordijn and W. J. Nijhof, Effects of complex feedback
on computer-assisted modular instruction, Comput. Educ.
39, 183 (2002).

[15] F. M. van der Kleij, T. J. H. M. Eggen, C. F. Timmers,
and B. P. Veldkamp, Effects of feedback in a computer-
based assessment for learning, Comput. Educ. 58, 263
(2012).

[16] E. R. Fyfe, B. Rittle-Johnson, and M. S. DeCaro, The
effects of feedback during exploratory mathematics prob-
lem solving: Prior knowledge matters, J. Educ. Psychol.
104, 1094 (2012).

[17] M. J. Hannafin, K. M. Hannafin, and D.W. Dalton, Feed-
back and emerging instructional technologies, in Interac-
tive Instruction and Feedback, edited by J. V. Demposey
and G. C. Dales (Educational Technology, Englewood
Cliffs, 1993), pp. 263–286.

[18] R. E. Snow and D. F. Lohman, Toward a theory of
cognitive aptitude for learning from instruction, J. Educ.
Psychol. 76, 347 (1984).

[19] S. Kalyuga, Expertise reversal effect and its implications
for learner-tailored instruction, Educ. Psychol. Rev. 19,
509 (2007).

[20] S. Tobias, An eclectic appraisal of the success of failure of
constructivist instruction, in Constructivist Theory Applied
to Education: Success of Failure? edited by S. Tobias and
T. D. Duffy (Routledge, Taylor and Francis, New York,
2009), pp. 335–350.

[21] R. W. Kulhavy, M. T. White, B. W. Topp, A. L. Chan, and
J. Adams, Feedback complexity and corrective efficiency,
Contemp. Educ. Psychol. 10, 285 (1985).

[22] S. Narciss and K. Huth, How to design informative tutoring
feedback for multimedia learning, in Instructional Design
for Multimedia Learning, edited by H.M. Niegemann, D.
Leutner, and R. Brunken (Waxman, Munster, NY, 2004),
pp. 181–195.

[23] G. D. Phye and T. Bender, Feedback complexity and
practice: Response pattern analysis in retention and trans-
fer, Contemp. Educ. Psychol. 14, 97 (1989).

[24] A. N. Kluger and A. DeNisi, The effects of feedback
interventions on performance: A historical review, a
meta-analysis, and a preliminary feedback intervention
theory, Psychol. Bull. 119, 254 (1996).

[25] J. J. Van Merriënboer and P. A. Kirschner, Ten Steps
to Complex Learning: A Systematic Approach to Four-
Component Instructional Design (Routledge, New York,
2012).

[26] J. J. Van Merrienboer and J. Sweller, Cognitive load theory
and complex learning: Recent developments and future
directions, Educ. Psychol. Rev. 17, 147 (2005).

[27] J. R. Hartman and E. A. Nelson, “Do we need to memorize
that?” or cognitive science for chemists, Found. Chem. 17,
263 (2015).

[28] A. F. Heckler, B. Mikula, and R. Rosenblatt, Student
accuracy in reading logarithmic plots: the problem and
how to fix it, Proceedings of the 2013 IEEE Frontiers in
Education Conference, pp. 1066–1071.

[29] B. D. Mikula and A. F. Heckler, The effectiveness of
brief, spaced practice on student difficulties with basic
and essential engineering skills, Proceedings of the
2013 IEEE Frontiers in Education Conference,
pp. 1059–1065.

[30] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer, The
role of deliberate practice in the acquisition of expert
performance, Psychol. Rev. 100, 363 (1993).

[31] P. Barniol and G. Zavala, Test of understanding of vectors:
A reliable multiple- choice vector concept test, Phys. Rev.
ST Phys. Educ. Res. 10, 010121 (2014).

[32] R. D. Knight, The vector knowledge of beginning physics
students, Phys. Teach. 33, 74 (1995).

[33] B. D. Mikula and A. F. Heckler, Student difficulties with
trigonometric vector components persist in multiple pop-
ulations, Proceedings of the 2013 Physics Education
Research Conference, Portland, OR, pp. 253–256.

[34] A. F. Heckler and T. M. Scaife, Adding and subtracting
vectors: The problem with the arrow representation, Phys.
Rev. ST Phys. Educ. Res. 11, 010101 (2015).

HECKLER and MIKULA PHYS. REV. PHYS. EDUC. RES. 12, 010134 (2016)

010134-14

http://dx.doi.org/10.1016/0747-5632(91)90030-5
http://dx.doi.org/10.1016/0747-5632(91)90030-5
http://dx.doi.org/10.2190/RMX5-1LTB-QDCC-D5HA
http://dx.doi.org/10.2190/RMX5-1LTB-QDCC-D5HA
http://dx.doi.org/10.3102/0034654310393361
http://dx.doi.org/10.3102/0034654310393361
http://dx.doi.org/10.3102/0034654314564881
http://dx.doi.org/10.3102/00346543061002213
http://dx.doi.org/10.3102/003465430298487
http://dx.doi.org/10.3102/003465430298487
http://dwb4.unl.edu/dwb/Research/MB/MasonBruning.html
http://dwb4.unl.edu/dwb/Research/MB/MasonBruning.html
http://dwb4.unl.edu/dwb/Research/MB/MasonBruning.html
http://dwb4.unl.edu/dwb/Research/MB/MasonBruning.html
http://dwb4.unl.edu/dwb/Research/MB/MasonBruning.html
http://dx.doi.org/10.3102/0034654307313795
http://dx.doi.org/10.3102/0034654307313795
http://dx.doi.org/10.1080/1355800770140107
http://dx.doi.org/10.1080/1355800770140107
http://dx.doi.org/10.1016/S0360-1315(02)00025-8
http://dx.doi.org/10.1016/S0360-1315(02)00025-8
http://dx.doi.org/10.1016/j.compedu.2011.07.020
http://dx.doi.org/10.1016/j.compedu.2011.07.020
http://dx.doi.org/10.1037/a0028389
http://dx.doi.org/10.1037/a0028389
http://dx.doi.org/10.1037/0022-0663.76.3.347
http://dx.doi.org/10.1037/0022-0663.76.3.347
http://dx.doi.org/10.1007/s10648-007-9054-3
http://dx.doi.org/10.1007/s10648-007-9054-3
http://dx.doi.org/10.1016/0361-476X(85)90025-6
http://dx.doi.org/10.1016/0361-476X(89)90028-3
http://dx.doi.org/10.1037/0033-2909.119.2.254
http://dx.doi.org/10.1007/s10648-005-3951-0
http://dx.doi.org/10.1007/s10698-015-9226-z
http://dx.doi.org/10.1007/s10698-015-9226-z
http://dx.doi.org/10.1037/0033-295X.100.3.363
http://dx.doi.org/10.1103/PhysRevSTPER.10.010121
http://dx.doi.org/10.1103/PhysRevSTPER.10.010121
http://dx.doi.org/10.1119/1.2344143
http://dx.doi.org/10.1103/PhysRevSTPER.11.010101
http://dx.doi.org/10.1103/PhysRevSTPER.11.010101


[35] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevPhysEducRes.12.010134
for examples of training materials for vector essential skills
and the DotCross vector assessment.

[36] E. Zell and Z. Krizan Do people have insight into their
abilities? A metasynthesis, Perspect. Psychol. Sci. 9, 111
(2014).

[37] J. A. Kulik Integrating findings from different levels of
instruction, http://files.eric.ed.gov/fulltext/ED208040.pdf
(1981).

[38] R. P. Niemiec and H. J. Walberg The effects of computers
on learning, Int. J. Educ. Res. 17, 99 (1992).

[39] N. Schroeder, G. Gladding, B. Gutmann, and T. Stelzer,
Narrated animated solution videos in a mastery setting,
Phys. Rev. ST Phys. Educ. Res. 11, 010103 (2015).

[40] G. Gladding, B. Gutmann, N. Schroeder, and T. Stelzer,
Clinical study of student learning using mastery style
versus immediate feedback online activities, Phys. Rev.
ST Phys. Educ. Res. 11, 010114 (2015).

[41] J. L. Docktor, J. P. Mestre, and B. H. Ross, Impact of a
short intervention on novices’ categorization criteria, Phys.
Rev. ST Phys. Educ. Res. 8, 020102 (2012).

[42] M. Kapur, Productive failure, Cognit. Instr. 26, 379
(2008).

[43] K. VanLehn, S. Siler, C. Murray, T. Yamauchi, and W. B.
Baggett, Why do only some events cause learning during
human tutoring?, Cognit. Instr. 21, 209 (2003).

[44] S. Lau and R. W. Roeser, Cognitive abilities and motiva-
tional processes in high school students’ situational
engagement and achievement in science, Educ. Assess.
8, 139 (2002).

[45] V. Sawtelle, E. Brewe, and L. H. Kramer, Exploring
the relationship between self-efficacy and retention in
introductory physics, J. Res. Sci. Teach. 49, 1096
(2012).

[46] N. J. Cepeda, N. Coburn, D. Rohrer, J. T. Wixted, M. C.
Mozer, and H. Pashler, Optimizing distributed practice,
J. Exp. Psychol. 56, 236 (2009).

FACTORS AFFECTING LEARNING OF VECTOR … PHYS. REV. PHYS. EDUC. RES. 12, 010134 (2016)

010134-15

http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.12.010134
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.12.010134
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.12.010134
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.12.010134
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.12.010134
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.12.010134
http://link.aps.org/supplemental/10.1103/PhysRevPhysEducRes.12.010134
http://dx.doi.org/10.1177/1745691613518075
http://dx.doi.org/10.1177/1745691613518075
http://files.eric.ed.gov/fulltext/ED208040.pdf
http://files.eric.ed.gov/fulltext/ED208040.pdf
http://files.eric.ed.gov/fulltext/ED208040.pdf
http://files.eric.ed.gov/fulltext/ED208040.pdf
http://files.eric.ed.gov/fulltext/ED208040.pdf
http://dx.doi.org/10.1016/0883-0355(92)90045-8
http://dx.doi.org/10.1103/PhysRevSTPER.11.010103
http://dx.doi.org/10.1103/PhysRevSTPER.11.010114
http://dx.doi.org/10.1103/PhysRevSTPER.11.010114
http://dx.doi.org/10.1103/PhysRevSTPER.8.020102
http://dx.doi.org/10.1103/PhysRevSTPER.8.020102
http://dx.doi.org/10.1080/07370000802212669
http://dx.doi.org/10.1080/07370000802212669
http://dx.doi.org/10.1207/S1532690XCI2103_01
http://dx.doi.org/10.1207/S15326977EA0802_04
http://dx.doi.org/10.1207/S15326977EA0802_04
http://dx.doi.org/10.1002/tea.21050
http://dx.doi.org/10.1002/tea.21050
http://dx.doi.org/10.1027/1618-3169.56.4.236

