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Problem solving, which often involves multiple steps, is an integral part of physics learning and
teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly
pursued by students while solving mathematically based physics problems: the analytical derivation game.
This game involves deriving an equation through symbolic manipulations and routine mathematical
operations, usually without any physical interpretation of the processes. This game often creates cognitive
obstacles in students, preventing them from using alternative resources or better approaches during problem
solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory
physics students. Students were asked to solve four “pseudophysics” problems containing algebraic and
graphical representations. The problems required the application of the fundamental theorem of calculus
(FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We
show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based
physics problems, specifically those involving graphical representations.
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I. INTRODUCTION

One of the most prevailing and widely accepted objec-
tives of physics education is promoting students’ problem-
solving skills. A student’s strategy for solving a physics
problem is often based on his or her prior knowledge
and patterns of his or her reasoning. In physics, problems
are often presented as situations that require resolution.
Generally, the resolutions are not trivial and require the use
of some thinking process(es), skills, prior knowledge, and
strategies.
Mathematics is an important aspect of physics problem

solving. Students often learn most of the mathematical
concepts and skills that are required to solve physics
problems in their mathematics classes. However, numerous
studies suggest that they fail to access and/or apply their
previously acquired mathematics knowledge in given
physics contexts [1–4]. Previous studies have established
various factors that contribute to this failure, such as
representational inconsistencies between mathematics

and physics. Students perceive two mathematically analo-
gous problems completely differently when the problems
are presented in physics and mathematical contexts,
respectively [1,5,6]. Problem solving in physics often
requires identification of the relationships between the
physics and the mathematics that are built into the
representation as well as subsequent interpretation and
application of the related mathematical concepts [5,7,8].
Mathematics provides logical paths and methods to solve
complex physics problems. Thus, students are expected
to have a good grasp of at least basic mathematical skills
in order for them to be able to apply these skills during
problem solving. There has been little research on the
mathematical aspect of physics problem solving [5,9–11].
Previous studies have shown a positive correlation between
student difficulties with physics concepts and those
with either the mathematics concepts, application of those
concepts, or the representations used to connect the
mathematics and the physics. Students lacking and/or
failing to apply relevant mathematical knowledge and skills
have shown difficulties with reasoning and/or solving
problems in physics contexts [2,3,12,13].
A few models have been proposed in physics education

research to explain the properties of a normative problem
solving process. Redish proposed a four-step model for
solving a physics problem [5]. The four steps include
(i) modeling the physical system to mathematical repre-
sentation, (ii) processing the mathematical operations,
(iii) interpreting the results of the mathematical operations
in terms of the physical system, and (iv) evaluating the
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results to justify the initial modeling. Wilcox and col-
leagues refined Redish’s model to explain students’use of
mathematics in upper-division physics [10]. Their frame-
work also contains four elements in the problem-solving
process including activation of mathematical tools, con-
struction of mathematical models, execution of the math-
ematics, and reflection on the results (ACER).
As a part of our ongoing disciplinary-based education

research program, we have been studying student inter-
pretation and application of graphical representations at
the mathematics-physics interface. In this study, we inves-
tigated student strategies for solving physics problems
with graphical representations that require the use of the
fundamental theorem of calculus (FTC). In addition,
we also studied how students invoked and applied their
mathematical knowledge and skills while solving the
problems. The complexity of the physical contexts of
the problems was reduced as much as possible to keep
the students focused on the mathematical aspects, and to
make their application of mathematics more apparent.
However, the physics contexts we used were chosen for
their familiarity in instructional situations. Because our
intent was to study student problem-solving behavior, we
found the perspectives of epistemological framing and
epistemic games to be helpful and relevant lenses through
which to analyze and interpret the observed student
problem-solving approaches. Our analysis led us to pro-
pose a new epistemic game that was commonly observed in
this study—the analytical derivation game. We establish
the parameters for analytical derivation and provide
evidence for those parameters. We also show how ana-
lytical derivation is different from existing, seemingly
similar epistemic games, and how students enter and exit
the game from other existing games. Finally, we argue that
analytical derivation is a broad, large-scale epistemic game
that is played by students in many problem-solving tasks.

II. BACKGROUND

In this section, we present a brief review on the relevance
of the FTC in physics problem solving, previous studies on
student understanding of the FTC and the definite integral
in physics and mathematics education, and the epistemic
game and epistemological framing frameworks and their
relevance to this study.

A. Student understanding of the
fundamental theorem of calculus

The fundamental theorem of calculus is one of the most
frequently applied mathematical tools in physics reasoning
and/or problem solving. The FTC has the following two
parts, typically referred to as the first and second funda-
mental theorems [Eqs. (1) and (2)]. The first FTC states that
if a function fðxÞ is continuous on [a, b], then

R
x
a fðtÞdt is

differentiable on (a, b) and

d
dx

Z
x

a
fðtÞdt ¼ fðxÞ: ð1Þ

The second FTC states that if FðxÞ is an antiderivative of
fðxÞ, that is, F0ðxÞ ¼ fðxÞ, then

Z
b

a
fðxÞdx ¼ FðbÞ − FðaÞ: ð2Þ

Although a few studies in undergraduate mathematics
education have explicitly explored student understanding
of and difficulties with FTC concepts, they do not attend
to specific aspects of the FTC that may be important to
physics problem solving, such as the specific form of the
representation and the context [14,15]. Most of the research
in undergraduate mathematics education on the FTC
focuses on the integral function [Eq. (1), the first FTC],
whereas most physics problems require finding specific
values using a definite integral [Eq. (2), the second FTC],
in particular physical situations. For example, defining
the electric field in one dimension as the negative rate of
change of electric potential with respect to position, one can
write the potential difference between two any points as

VðbÞ − VðaÞ ¼ −
Z

b

a

~Eð~rÞ · ~dr; ð3Þ

where

EðrÞ ¼ −
dV
dr

: ð4Þ

Because this study focused exclusively on the physical
application of the relationship between the definite integral
and the antiderivative difference as in Eq. (3), we use the
term “FTC” to refer the second fundamental theorem of
calculus.
Despite its relevance to a wide range of physics content,

e.g., kinematics, dynamics, thermodynamics, and quantum
mechanics, there have not been explicit studies on student
application of the FTC (except a few on definite integrals)
in physics education that probe students’ abilities to
connect the definite integral, the antiderivative difference,
and the area under the curve, and to apply them in physics
contexts. A few studies in PER implicitly indicate that
students have difficulties with various facets of the FTC,
such as the definite integral and its graphical representation
(area under the curve) in physics contexts [16,17].
Beichner showed implicitly that student have difficulties

connecting two important facets of the second FTC,
namely, the difference of a physical quantity at two given
points [e.g., vðt2Þ − vðt1Þ] and the graph of its rate (e.g.,
a − t) [16]. Similarly, our own previous study on student
interpretation of the signs of definite integrals showed that
students inappropriately used the FTC [i.e.,

R
b
a fðxÞdx ¼

fðbÞ − fðaÞ] to determine the signs of integrals [18].
Previously, we identified a number of difficulties that
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students have with understanding and applying the FTC
[19]. However, deeper questions emerged as we analyzed
student problem-solving behavior, such as (a) What are
the origins of the observed difficulties? (b) How deeply
are they rooted? and (c) How do the students’ difficulties
affect their problem-solving strategies? While analyzing
student problem-solving strategies for the FTC-based
physics problems in graphical representations, we found
that students commonly used one particular strategy even
when the strategy did not result in an adequate answer. We
analyzed this particular strategy deeply using the perspec-
tive of epistemic games.

B. Epistemic games

Epistemic games are the generalization of problem-
solving processes directed by a targeted outcome. The
framework originated in the field of the learning sciences.
According to Collins and Ferguson [20], epistemic games
are sets of rules and strategies that are guided by a specific
purpose, e.g., learning a concept. Depending on his or her
pre-existing knowledge, an individual may use, and fre-
quently switch among, various strategies while solving a
problem, until he or she obtains a desired result. Collins and
Ferguson proposed three general types of epistemic games:
structural analysis, functional analysis, and process analy-
sis. The purpose of structural analysis games is to discover
the components or elements of a system. For example, the
list making game, which is a type of structural analysis
game, involves identifying a task and its target entities,
making a list of target entities, combining two or more of
the entities, removing unwanted entities, and forming a
final list. The objective of functional analysis games is to
demonstrate how the elements in a system are associated
with each other, e.g., making a causal-chain diagram or
creating a hierarchical chart. Process analysis games are
intended to illustrate the behavior of a system, e.g.,
graphing the change in a system over time or drawing a
program flowchart.
Tuminaro and Redish adopted the epistemic games

perspective in physics education research to explain student
strategies for solving algebra-based physics problems [9].
Unlike Collins and Ferguson’s normative (expert-based)
epistemic games, Tuminaro and Redish used this notion
to account for ordinary students’ (nonexperts’) problem-
solving strategies. They classified individual epistemic
games as comprised of four components: epistemic form,
knowledge base, entry and exit conditions, and moves. The
epistemic form is the target structure that helps to guide
inquiry during a problem-solving process. A periodic table,
squares in a tic-tac-toe game, a flow chart of an algorithm,
equations, maps, etc. are a few examples of epistemic
forms. The knowledge base in an epistemic game (e-game)
is the collection of all the resources (content knowledge,
concepts, mathematical skills, epistemology, etc.) that an
individual uses during the process. The entry and exit

conditions are the conditions that an individual recognizes
to begin and end a particular e-game. The entry condition
is often guided by the individual’s initial framing of the
problem, e.g., conceptual versus analytical. The moves in a
game consist of all the steps the individual undertakes
during the problem-solving process. Tuminaro and Redish
identified and characterized six types of epistemic games
for students’ application of mathematics in algebra-based
physics contexts: (a) pictorial analysis, (b) physical mecha-
nism, (c) recursive plug-and-chug, (d) transliteration to
mathematics, (e) mapping [from] meaning to mathematics,
and (f) mapping [from] mathematics to meaning. Figure 1
depicts Tuminaro’s schematics for recursive plug-and-
chug.
In recursive plug-and-chug, students plug numbers to

an equation and produce a numerical answer without
meaningfully understanding the equation. Students playing
this game generally do not exhibit conceptual understand-
ing of the situation. In this game, students generally execute
the following steps:
(1) Identify a target quantity (e.g., ΔE).
(2) Find an equation relating the target quantity to other

quantities, e.g., E ¼ 1
4πϵ0

q
R3 r.

(3) Determine what quantities are unknown and sub-
stitute the values of the known quantities,
e.g., E1 ¼ 1

4πϵ0

q
ð1Þ3 ð0.2Þ.

(4) If one or more quantities, called subtargets, in the
equation are unknown, look for additional equation(s)
to find the unknowns, e.g., assume q

4πϵ0
¼ c, a place

holder for the unknowns.
(5) Once one or more subtargets have been figured out,

return back to their main equation and plug in the
values to get a final answer, e.g., ΔE ¼ cð0.6Þ.

Students pursuing the recursive plug-and-chug game
often possess incomplete and/or inaccurate understanding
of the mathematical aspects underlying the problem.
Students playing this game exhibit what Vinner refers to
as pseudoconceptual behavior [21]. According to Vinner, a
student is said to have exhibited conceptual behavior if
his or her response to a question involves conceptual
understanding and a genuine traceable thought process.
However, if the student’s response to a question does not

FIG. 1. Tuminaro’s schematic diagram for the recursive plug-
and-chug epistemic game. From Ref. [9].
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involve any thought process, but is basically a superficial
response containing only memorized information, the behav-
ior is said to be pseudoconceptual. Although this type of
behavior may look like conceptual behavior on the surface, it
does not carry any of the traits of conceptual behavior. Often
pseudoconceptual behavior is the result of students’ diffi-
culties with communication in the discipline, where they use
minimal effort to respond in the hopes of satisfying the
teacher [21,22]. Pseudoconceptual behavior makes it diffi-
cult for both teachers and researchers to assess students’true
understanding. Often it is a challenging task for researchers
to identify and analyze participants’ pseudoconceptual
behavior in their research, particularly in written responses,
because it is often difficult to analyze whether or not the
responses involve genuine conceptual thinking.
Gire et al. defined an e-game for describing the way

students analyze graphs during problem solving [23]. In
this game, labeled the graphical analysis game, the target
form is one or more graphs. The knowledge base may
include reasoning, lexical or symbolic, formal computa-
tional, and conceptual resources. The entry condition is the
presence of information in a graph or the requirement to
produce a graph. Graphical analysis may include several
possible moves such as interpreting lexical information
(legend, axes, titles, units), creating a story, readout values,
comparing data sets, identifying features, extrapolating or
interpolating, making an estimation, calculating slope,
calculating area, and translating to a new representation.
This framework was also used recently at a larger grain

size of problem solving in physics. Chen et al. described
and distinguished the two ways students partake in
“answer-making” instead of sense-making or problem-
solving behaviors when working on physics problems,
and defined the answer making e-game to show this [24].
They argue that this e-game has two alternate paths
depending on whether students’ intuition or memory
provides a satisfactory answer for the posed question. In
one case, either memory or intuition serves the students,
and they provide an answer and then justify that answer,
with the justification step or move consisting of recursive
sets of “conceptual reasoning” and “do math”moves. In the
other case, neither intuition nor memory suffice, and
students start with conceptual reasoning and do math to
arrive at an answer. The primary finding here is to formalize
the large-grain-sized strategies of answer-then-justify or
reason-then-answer that form the two major routes to
answering questions. Chen et al. point out that answer
making is “like a super game” [24] [p.12] that leads to the
use of other, existing e-games.

C. Epistemological framing

A student may possess a completely different mind set in
a physics classroom as compared to a mathematics class-
room. Similarly, a student may perceive two similar stimuli,
with the same theme but varied contexts, such as the

FTC-based problems in the contexts of temperature and
electrostatics, quite differently. Not only might a student
exhibit varied attitudes from one classroom to another or
from one context to another, but two students may perceive
a single stimulus quite differently. These types of diverse
student reactions to a single situation have been explained
by Hammer and colleagues using the term framing [25].
According to Hutchison and Hammer [26], framing is one’s
generalization of knowledge from one’s former experiences
to interpret and make sense of the phenomena in the
situations one considers to be equivalent. According to
Hammer et al., students’framing of a situation may have
various aspects, such as social, affective, and epistemo-
logical. This study focuses only on the epistemological
aspect of framing. The term epistemology pertains to the
question, “How dowe come to know what we know?” [25].
In a study of epistemological framing that investigated

student application of mathematical knowledge and skills
in physics problem solving, Tuminaro found that students’
strategies for solving physics problems are often deter-
mined by their initial framing of the problem [27].
He showed three types of student framings that students
used while solving algebra-based physics problems:
(a) rote equation chasing, (b) qualitative sense-making,
and (c) quantitative sense-making. Similarly, Bing and
Redish [11] described four types of epistemological fram-
ings that students exhibited while dealing with the math-
ematical aspects of upper-division physics problems:
(a) calculation, (b) physical mapping, (c) invoking author-
ity, and (d) math consistency. Bing and Redish claim that a
student’s epistemological framing may shift during prob-
lem solving, sometimes on a moment-to-moment basis.
They also argue for two signs of expertise in framing: first,
the dynamical blending of the 4 major framings they
identified in the course of solving a problem; and second,
a “more expansive framing that allows students to access
and interact [with] the resources” they describe [[11], p. 9].
Thus, an epistemic game that captures expert problem
solving may not be tied to a single frame, but may involve
multiple frame shifts.

III. METHODS

We conducted semistructured individual interviews with
14 undergraduate students at a Northeast public research
university, all of whom had completed at least two
semesters of calculus. All the participants were enrolled
in second semester calculus-based introductory physics;
seven were also enrolled in multivariable calculus. The
students were recruited on a voluntary basis. We collected
course grades for the introductory calculus and calculus-
based physics sequences for the interview participants; the
range of subjects’ grades in these courses indicates that the
subjects can be considered representative of the student
population of these courses. Of the 14 interview partic-
ipants, five were female and nine were male students. Each
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interview lasted for about 1 h ð15 minÞ. All interview
sessions were videotaped using a digital camcorder.

A. Interview tasks

Four analogous problems with similar mathematical
theme but different physics contexts were asked during
the interviews. The solution of the problems required the
application of single variable integral concepts, particularly
the definite integral, which the participants were already
familiar with. Despite the varied physics contexts, these
questions share a common underlying mathematical theme
based on the fundamental theorem of calculus: finding the
change in a quantity (e.g., Δx) from the graph of its rate
(e.g., v versus t). The purpose of the physics contexts used
in the problems were to mask the common mathematical
theme; thus the problems could be solved by using and
applying calculus concepts and skills without any physics
knowledge. Although not demanded by the questions, if
participants wanted to make sense of the physics contexts,
they could do that using either their formal physics
knowledge (e.g., velocity is the rate of change of displace-
ment) or their real-life experience (e.g., a car moves faster
when it speeds up).
Several short and situational (depending upon the

student response) follow-up questions were asked follow-
ing the participants’ responses to each of the principal
questions. Although the follow-up questions were based
mostly on the participants’ responses, some were designed
to probe their understanding of the specific elements of the
FTC including the concept of a Riemann sum, the meaning
of the differential dx, and the relationship between a rate
and its integral. Student understanding of these specific
concepts was examined by analyzing the specific (relevant)
moments in the video data. The results from all the four
problems were consistent with each other. So we focus on
only two problems in this paper that we referred to as the
temperature and the electrostatics problems.
The temperature problem (Fig. 2) involved the graph of

rate of change of temperature (dT=dt) with respect to time
(t); students were asked to find the change in temperature
between two specific times from the given graph. Although
students usually do not deal with any temperature related
context in introductory calculus-based physics, the solution
to this problem did not require any formal physics
reasoning. One can solve the problem simply by recogniz-
ing that the required temperature difference (ΔT) is given
by the integral

R t2
t1

dT
dt dt.

The electrostatics problem (Fig. 3) asked to find the
potential difference (ΔV), given the EðrÞ graph and the
definition of electric field as E ¼ − dV

dr . Study participants
had recently dealt with electrostatics in their introductory
physics class. Because the participants were enrolled in
introductory physics, the electrostatic problem was asked in
a one-dimensional context involving spherical symmetry.
Because of this, we did not emphasize the vector signs in

the problem and student solutions. In order to evaluate the
potential difference (ΔV), students were expected to find
the connections between ΔV, E ¼ − dV

dr , and the EðrÞ
graph, in particular the area under the curve. Because
our focus was mostly on student application of the FTC
within the graphical representation, we introduced only a
thin layer of physics by using the electrostatics context.
Given E ¼ − dV

dr , one can evaluate ΔV either analytically
using ΔV ¼ −

R
r2
r1
Edr or graphically recognizing

R
r2
r1
Edr

as the area under the EðrÞ curve without understanding the
actual physics context. The required potential difference
ΔV in the electrostatics problem could be evaluated
analytically using the expression for electric field.
Although the expression for the electric field
[EðrÞ ¼ 1

4πϵ0

q
R3 r] was provided in the problem, no infor-

mation about charge and ϵ0 was provided. Thus, to
determine a numerical answer for ΔV, the area under
the curve needed to be evaluated. This could be achieved by
estimating the number of squares under the curve.
However, we expected that this would not be obvious to
the targeted students because previous studies in math-
ematics and physics education have shown that students
have difficulties connecting integrals and their graphical
representations, such as area under the curve and the
Riemann sum [2,18,28,29].

B. Interview analysis

Initially, the interview data were analyzed on the basis
of grounded theory [30]. We started the analysis by
writing memos describing and interpreting (making sense
of) the student responses in the interviews. Memos were
written during and immediately after the data collection
process (interviewing) to document some of the

FIG. 2. The interview problem on temperature.
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observations made during the process. The postinterview
memos were written by watching and rewatching the
recordings several times both individually and with
another researcher. The second researcher confirmed
the features and patterns in student responses identified
by the first researcher. The individual interviews were
turned into textual material, which became the primary
data for subsequent analysis. The transcription of the
audio-visual data was carried out in a commercially
available software called Inqscribe®. The audio visuals
were watched several times to assure the correctness of
the transcripts. Because of the technical nature of the
research, the transcripts were not created completely
verbatim. Technical terms (e.g., delta, integral, plus) were
presented in the conventional form (e.g. Δ,

R
, þ) to make

the interview transcripts more readable. In addition,
nonverbal communication such as gesture, laughter, or
sighing was not included in the transcript.
Using grounded theory-based analysis, we found that

students used three types of mathematical skills, sepa-
rately or in combination, to solve the interview problems.
These skills include using algebraic, graphical, and
integration skills [19]. However, this classification of
student strategies did not inform us much about students’
epistemological stance while solving these mathemati-
cally based physics problems, specifically problems so
centered on graphical representations. Thus, we used
the analytical framework of epistemological framing to

investigate student epistemology while dealing with FTC-
based physics problem solving. Furthermore, we found all
four components that constitute an epistemic game in
almost all the student problem-solving strategies includ-
ing knowledge base, epistemic forms, starting and ending
conditions, and moves. This motivated us to use epistemic
games as a guiding framework for analyzing the data.
Nevertheless, our research methods (e.g., clinical inter-
views) also satisfy the requirement for using both of these
perspectives as analytical frameworks; the frameworks
chosen best fit our data because of the nature of analysis,
such as an individual’s application of knowledge resour-
ces in problem solving. As mentioned above, these
frameworks have been used by previous researchers in
similar studies, i.e., student application of mathematics in
physics problem solving.
In order to identify and categorize the epistemic games

played by students during problem solving, we focused
on the following five components in individual problem-
solving strategies:

• Epistemic form—The target structure that guides the
inquiry, e.g., equations, graphs, pictures, a flow chart.

• Knowledge base—Knowledge elements and/or
skills used by students during problem solving, such
as simple algebraic skills, graphical reasoning, or
integral concepts.

• Entry and exit conditions—Specific element(s) in a
problem that motivate students to choose a particular
strategy, such as rate and/or integral equations, pres-
ence of graph, specific physics terms.

• Moves—Steps students make to fill the epistemic
forms, such as equation rearranging, physical or
graphical interpretation, use of mathematical opera-
tions, number substitution.

• Constraints—Either explicit or implicit conditions
imposed by the problem or a problem solver, such
as linearity of the function (E ¼ 1

4πϵ0

q
R3 r). When a

constraint is not explicitly indicated in the problem,
the problem solver may impose one by making certain
assumptions or approximations, such as constancy of
the integrand EðrÞ.

Our primary goal for using the perspective of epistemic
games was to identify specific patterns and components of
student strategies for solving mathematically based physics
problems. With some modification of the relevant games,
we were able to label most—but not all—of the observed
student strategies as existing games. In particular, the
structures of epistemic games proposed by Collins and
Ferguson [20], Tuminaro and Redish [9], and Gire et al.
[23] matched very closely with the structures of some of the
strategies manifested in this study. One particular student
strategy that was commonly manifested by students while
dealing with mathematically based physics problems did
not fit into any of the previous e-games. Thus we propose

FIG. 3. The interview problem on electrostatics.
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a new e-game, the analytical derivation game, to describe
this strategy.

IV. RESULTS

Our analysis based on grounded theory revealed that
the majority of the students in this study solved both the
temperature and the electrostatics problems analytically
by rearranging the given equations and then performing
integration on both sides of the equations. Using the
epistemic games perspective, we refer to this analytical
problem-solving mode as the analytical derivation game.
Only a few students identified that the problem could
alternatively be solved by evaluating the area under the
curve, and even these students initially chose to play the
analytical derivation game because they considered that
this game would yield a more accurate result. Below we
present examples of various ways students play this game.

A. The analytical derivation epistemic game

A detailed analysis of this strategy, using the lens of
epistemic games, indicates the presence of all the essential
components that characterize an epistemic game (see
Fig. 4). The epistemic form for this game is a series of
equations. Playing this game involves establishing the
relationships between different variables for physical quan-
tities in hope to evaluate the required physical quantity.
The knowledge base students may use in this game are
procedural, symbolic, computational, and, less often, con-
ceptual resources. The entry condition is the presence of an
equation or an algebraic expression or the requirement to
find an expression, whereas constraints are explicit or
implicit conditions imposed by the problem or the problem
solver. Examples of constraints are assuming the constancy
of the function dT

dt and approximating the curve as a linear or
a quadratic function. There are numerous ways in which a
student may make moves while playing this game, such as
cross multiplying, substituting, integrating, approximating
an integrand as an algebraic expression, and making
assumptions about integrands. Usually students do not
make sense of their final expression in this game, neither
mathematically nor physically. The exit conditions could
be the derivation of an acceptable equation, evaluation of a
numerical answer by substituting numbers in the final
equation, obstruction from not finding any further way, or
dissatisfaction with one’s own intermediate steps or final
result. These characterizations of the components of this
epistemic game are based on our analysis of interview
data through the epistemic games perspective. Our claim is
that the four components mentioned above are unique to
this strategy, making it a distinct game.
Although the students in Tuminaro and Redish’s study

manifested some degree of symbol manipulation moves
(e.g., in the recursive plug-and-chug game), they do not
constitute an analytical derivation game because the

expressions students use in recursive plug-and-chug are
formulas that are memorized straight from textbooks (e.g.,
PV ¼ nRT). In analytical derivation, students start with
one or more expressions that may or may not be textbook-
based formulas. The majority of a student’s focus revolves
around one or more raw starting equation(s). While
playing this game, a student performs different kinds of
mathematical operations, such as cross-multiplication,
integration, distribution, differentiation, etc., on the raw
equation(s). Some students may substitute numbers during
intermediate moves, some may hold off substitution until
the final expression, while others may not use numbers at
all, neither in intermediate moves nor in the finished
expression or equation. In contrast, during the recursive
plug-and-chug game, students constantly focus on the
numerical answer.
Our analysis of student problem-solving strategies in this

study, using the perspective of epistemological framing,
revealed that students were in one or the other frames
proposed by Tuminaro and Bing and Redish. Similarly,
using the perspective of epistemic games, we found that
students pursued different e-games proposed by previous
researchers for solving the mathematically based physics
problems. The next sections document a number of student
strategies for solving the temperature and the electrostatics
problems to manifest the distinctions between the recursive
plug-and-chug game and the analytical derivation game.
We explore the implications and the potential pitfalls of
these games and show how some students use these games
to move towards the right solution paths.

B. Epistemic games for the temperature problem

Although most of the students attempted the temperature
problem using analytical derivation, only three students

FIG. 4. Components of the analytical derivation epistemic
game.
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correctly derived the target form—the expression for
ΔT—and only two of these connected the resultant
equation with the given graph to find the desired quantity.
Students manifested various kinds of moves to derive the
target form.
A diagram of the general version of analytical derivation

applied to the electrostatics problem is shown in Fig. 5.
Students who pursued analytical derivation integrated the
rate term (dTdt ) with respect to time to derive the change in
temperature (i.e.,

R
1
0

dT
dt dt). Because there were no analyti-

cal expressions given for the rate of change temperature as a
function of time in this problem, some students approxi-
mated the given curve with an algebraic function (e.g.,
linear), where the others considered the temperature itself
to be an algebraic function. But only a few students were
able to connect the target form, i.e., the definite integral
expression, with the area graph and hence the area under
the curve. However, once they realized that they needed
to find the area under the curve, they considered either
counting the number of squares under the curve and
multiplying it by the value of a unit square or forming
simple geometric shapes, such as right triangles and/or
squares, to find the required quantity.
We present three cases to exhibit the different ways that

students solved the temperature problem using the ana-
lytical derivation game. But first we start with a case of
recursive plug-and-chug to demonstrate the differences
between the two games.

1. Case A1: Alex playing recursive plug-and-chug

The interviewer explained the temperature problem in
detail at the onset of its administration. Because the
temperature problem did not include an equation, Alex

focused primarily on the graph. After spending a few
seconds on the graph, Alex responded.

1 Alex: So, umm, basically my thought for this one
2 is, since we are looking at the change in tempera-
3 ture over time and we need to find the change in
4 temperature between time of zero [hour] and time
5 of one [hour], we look at the start value of [dT=dt],
6 time at zero and we see that’s −2 there. We get
7 the start, umm, umm, sorry the finish of where
8 is at the time at one hour [dT=dtðt ¼ 1 hrÞ]. Umm,
9 you know, it looks like it’s about −.75 ish ½0C=hr�.
10 So there is a change of about 1.25, umm, posi-
11 tive umm… So my best guess would be a positive
12 change of 1.25 ish, umm, degrees per hour at that
13 point.
14 Interviewer: No, the question is not rate…
15 Alex: Oh, umm, 1.25 degree Celsius per…
16 I: I want temperature change. How did you cal-
17 culate that?
18 Alex: I looked at the starting value, so we started
19 at time zero. So we are starting at this start point
20 and then our end point is at time equals 1 [hour]
21 and so it’s basically, it’s kind of finding the slope
22 in a way. So you have the two y values and then
23 you have the x values. So you have y2 − y1 and
24 x2 − x1 on the bottom [y2−y1x2−x1

] and so…
25 I: Why are you finding slope here? What do you
26 get by finding slope?
27 Alex: Umm, by finding slope, you come out with
28 negative… I’m gonna write… We have −.75. I’m
29 just gonna say that’s just about −.75 for the start,
30 ah for the end there, minus negative 2, ‘cause
31 that’s the beginning value. Umm, that’s the,
32 umm, y point value and then we have a finish at
33 x ¼ 1 and the start of zero so that’s 1 − 0 and so
34 we come out with about 1.25, umm, for the change
35 in temperature [referring to −0.75−ð−2Þ

1−0 ¼ 1.25].
36 I: So this is… what…
37 Alex: That’s what I’d say the best I know is
38 of what change in temperature would be, just by
39 judging it.
40 I: So you are just finding slope to find change
41 in temperature?
42 Alex: Umm, pretty much, umm, I am just look-
43 ing at like how much is changed, umm, at the start
44 versus at the finish is basically the slope.

In this example, Alex’s goal was to find a numerical
value for the change in temperature (ΔT). His target
form was the slope equation. He played the recursive
plug-and-chug game by first determining and then
plugging the values of dT=dt corresponding to t1 and
t2 in the generic slope equation y2−y1

x2−x1
, where y and x

represent dT=dt and t, respectively. In this game, he did
not use any mathematical operation to derive the expres-
sion for the change in temperature (ΔT). He simply
used the slope formula to determine the corresponding
numerical values.

FIG. 5. Example of the analytical derivation epistemic game
for solving the temperature problem.
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2. Case A2: Kara’s unit-based
analytical derivation game

In response to the temperature problem, Kara immedi-
ately suggested that she needed to somehow evaluate the
integral of the rate of change of temperature over the given
time interval to find the change in temperature. She
analyzed the units of the integrand and the differential to
assure that her moves were leading to the right path. As she
solved the problem, she explained.

1 Kara: So if I integrate dT=dt [writes
R

dT
dt ]…

2 So this [referring to dT
dt ] is rate of change of

3 temperature per time. So if I integrate that
4 you get a rate [sic, temperature]. Then I
5 should get just temperature [writes

R
dT
dt dt ¼

6
R
rate of change of temp per time → Temp]. So I

7 think, maybe, I just have to integrate that. Okay,
8 that makes more sense. So I have integral of…
9 umm, dT=dt times dt. So that’s really degree Cel-
10 sius per hour [times] hour, so my hours cancel out [refer-
11 ring to

0C
hr hr]. Then if I integrate over it, it will

12 give me just the temperature, hopefully [writing
13 R 0C

hr hr ¼ Temp].
14 I: Okay.
15 Kara: So, now I have to do it… So from time
16 0 to time 1 dt [writes

R
1
0

dT
dt dt], that will give me,

17 that’s really just the integral from 0 to 1 dt equals
18 T [writes

R
1
0

dT
dt dt ¼R

1
0 dT ¼ Tj10]. I don’t know

19 I am screwing that up. No… Okay, is this, is
20 this the temperature, change in temperature over
21 time?
22 I: Right, um hum.
23 Kara: So I think I actually have to go from…
24 I: That’s the rate.
25 Kara: Okay, I think I want to go from … Sorry I
26 am thinking…
27 I: No that’s fine, perfectly fine.
28 Kara: I wish I could think of Calc 1 right now.
29 So ….ok So I have the rate of change of tempera-
30 ture over time… [mumbling] It should just give me
31 temperature. I feel like I have to multiply some-
32 thing and I am not sure what. Okay… dT=dt and
33 they go from … Yup I am stuck again, yeah.

As seen in the above excerpt and in Fig. 6, Kara
attempted to solve the problem analytically without real-
izing that there was no analytical function to be integrated.
Her strategies in lines 1–9 satisfy well with the character-
istics of the analytical derivation game. Her epistemic form
in this game was a series of equations. She pursued the
mathematical procedure for the integration to complete her
epistemic form. In lines 5–6, she derived an analytical
expression for the temperature and used the units of dT

dt and
dT to verify the validity of her equation. But she did not
seem satisfied with her final expression and, after analyzing
her moves, finally gave up when she was unable to find

the connection between the definite integral that she
constructed and the given graph.

3. Case A3: Jake playing analytical derivation by
approximating an algebraic function

This case exemplifies how some students prefer inte-
grating an algebraic function that approximates the curve
rather than using the graph to approximate the area
under the curve. Nguyen and Rebello [2] also identify this
tendency, noting that students used the graph to find the
integral only after ruling out the analytical solution, either
for its complexity or for lack of a function. In this case,
Jake first looked at the temperature problem quietly for a
moment and wrote down the equation ΔT ¼ dT

dt Δt. When
the interviewer asked him to explain the equation, he
responded.

1 Jake: So, if the temper…, the change in tem-
2 perature is equal to the change in temperature
3 over time to the change in time [referring to
4 ΔT ¼ dT

dt Δt]. So, it should be an equation, I
5 think, should be similar to this, umm, so…
6 I: How do you know that equation?
7 Jake: Umm, this is a… I think this is a form of
8 math linear approximation equation, I think, that’s
9 from math and I think I can use this to solve the
10 problem.
11 I: Okay.
12 I: So, how do you get ΔT then?
13 Jake: How do I get ΔT? Umm… [after a long
14 pause] Sorry, I’m trying to…
15 I: It’s okay.
16 Jake: So you can take the, I know you can take
17 the integral under the curve to find the total
18 change. Sorry, it’s just been a long day.
19 I: It’s okay, you can take time.
20 Jake: Okay. [A long pause while looking at the
21 problem]
22 After the long pause, Jake proceeded by approxi-
23 mating the given curve with the function lnðxÞ − 2
24 and writes its integral as

R
1
0 lnðxÞ − 2 (without dx),

25 then he explained:

(Table continued)

FIG. 6. Kara’s analytical derivation game to solve the temper-
ature problem.
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26 Jake: Umm, so, it’s kinda hard to, like, figure
27 out the area, like, without an equation. So, I’m
28 just grasping straws here and trying to come up
29 with an equation that fits the curve, and I think
30 this is an equation that sort of fits the curve. So,
31 I mean, cause, I don’t, I could do it using… I can
32 just count the boxes or I could try and find an
33 equation that I think would fit…
34 I: Can you explain to me, like, what do you mean
35 by counting boxes?
36 Jake: Well, you can… If you’re trying to find
37 area between [sic, under] curve and, like, change
38 in temp-
39 I: Why are you trying to find an area?
40 Jake: Because isn’t that, if you have a graph of
41 the… change in temperature over time and time
42 and you can find change in temperature using the,
43 ah, integral, which is the area under the curve,
44 which would be about here [showing the area on
45 the graph]. So, you could count the boxes if you
46 wanted to but that takes a lot of time. I mean,
47 and I’ve just figured… I just grabbed an equation
48 that would sort of fit the curve and I think that
49 this one [pointing on lnðxÞ − 2] would work cause
50 —would look like this [drawing a curve by shifting
51 the given curve over the x axis], which is basically,
52 with that, what this one [showing the given curve]
53 is just shifted.
54 I: So, basically you are approximating the curve?
55 Jake: Yeah.
56 I: And taking integration from 0 to 1?
57 Jake: Ah, yes.
58 I: So you think this curve looks like log, natural
59 logarithm, lnðxÞ − 2?
60 Jake: minus 2 [repeating with interviewer], yeah.
61 I: Okay, okay. Basically, you are saying that you
62 can find it [referring to ΔT] in two ways: one is do-
63 ing integration and second is counting the boxes.
64 Right?
65 Jake: Yes. I think there are other ways to do it,
66 too. But those are the two ways I would be most
67 comfortable with, just given the graph not, not
68 numbers.

In the above excerpt, Jake proposed two approaches to
deal with the problem. Initially, he derived the expression
for ΔT by making a “linear approximation” of the curve (a
constraint) and using the units of the vertical and horizontal
axes. He then switched the constraint by approximating the
curve as the function lnðxÞ − 2 and realized the need for
performing an integration to solve the problem. In both
approaches, he considered that the solution to the problem
required either deriving an equation or routine mathemati-
cal operation (integration). For the latter approach, Jake
approximated the given curve with the function lnðxÞ − 2

and wrote its integral as
R
1
0 lnðxÞ − 2 (without dx). Jake

realized that the required quantity could be evaluated by
finding the area under the curve, and even suggested that
this could be done by counting the squares. However, he

was reluctant to use that approach because he thought that it
would be a lengthy process. Although his approximated
curve was not necessarily any more accurate than estimat-
ing some of the irregular squares to find the area under the
curve, he still preferred the analytical approach over the
graphical.
A few other students also expressed their preference

for an analytical approach over counting the squares to
evaluate the required quantity due to a concern with the
accuracy of the process. They considered that the analytical
approach would result in a more accurate answer even when
the exact algebraic function (integrand) was not provided.

4. Case A4: Andrew beyond the analytical derivation
game—connecting integral and area under the curve

In response to the temperature problem, Andrew first
wrote

R
1
0 dT, then he erased dT to replace it by its rate, i.e.,R

1
0

dT
dt . After a while, he added the missing term in the

integral (dt) to make the integral
R
1
0

dT
dt dt. The interviewer

then asked him how he would find a numerical answer for
the change in temperature.

1 Interview: So how do you find the value, if I ask
2 you to give me some numerical value for change
3 in temperature between 0 and 1?
4 Andrew: [After a long pause] I could estimate
5 the area under the curve, assuming that that is
6 nearly a straight line, to make a triangle, and
7 that’s a square [pointing to the graph].

In order to elicit Andrew’s understanding of the con-
nection between the integral and the area under the curve,
the interviewer asked him why he thought the integral that
he wrote was exactly what was being asked in the problem
and how the area under the curve would give the desired
quantity. His response was as follows:

8 Andrew: dT
dt represents this curve [pointing to

9 the graph], you integrated over time to get your
10 change in temperature.
11 I: Okay. So what does this [indicating the integral]
12 represent in the graph?
13 Andrew: This part right here [indicating the area
14 under the curve between 0 and 1 hour time].
15 I: Can you mark that with the pen?

In response, he drew a boundary, encompassing the
space under the curve between 0 and 1 hour time, on the
graph to show the area that represented the integral of dT

dt .
Throughout the problem-solving process, Andrew did not
invoke any physical sense making. He first played the
analytical derivation game, where the epistemic form
was a series of equations, which he completed by making
the moves described above. Then with the interviewer’s
prompt, he pursued the graphical analysis game in order to
find the connection between the integral and the graph, in
which the epistemic form was the given graph and the
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moves were to analyze it to recognize the relevant graphical
feature, which was the area under the curve. This case
exemplifies how a few students proceeded beyond the
analytical derivation game and successfully associated it
with a secondary game, the graphical analysis game, by
recognizing the graphical representation of integral as the
area under the curve.

C. Epistemic games for the electrostatics problem

A diagram of the general version of analytical derivation
applied to the electrostatics problem is shown in Fig. 7.
Most of the participants started the problem by rearranging
the given rate equation E ¼ − dV

dr to dV ¼ −Edr. Then, to
evaluate the potential difference inside the sphere, they
replaced EðrÞ with EðrÞ ¼ 1

4πϵ0

q
R3 r and solved the integral

analytically. Since there was no information provided about
the charge and the value of ϵ0, students simply left their
final answers in notational form, e.g., ΔV ¼ q

4πϵ0ð1Þ2
r2
2
j0.80.2.

Although the majority of students identified the essence of
integration for transforming the differential (dV) to the
difference (ΔV), most of them did not connect their integral
to the relevant graphical feature, namely, the area under the
curve. Only when the students were asked for an alternative
way to find the required quantity did they state that it could
be found by evaluating the area under the curve in the given
graph. However, as with the temperature problem, the
majority of the students did not feel comfortable using the
graph because they needed to approximate the number of
squares to find the area under the curve and they considered
that this would not give an exact answer. They considered
analytical derivation as the most appropriate game because

they could get the exact answer only through such a game.
We present four representative cases to exhibit different
ways students played analytical derivation while solving
the electrostatics problem.

1. Case B1a: Kara’s recursive plug-and-chug game

While most of the students rewrote the given expression
EðrÞ ¼ − dV

dr , then rearranged the equation in terms of dV,
some students simply inserted the given values in the
expression for the electric field without clearly envisioning
how they would using that expression to find ΔV. As
shown in Fig. 8, Kara first started the electrostatics problem
by rewriting the given numerical quantities for r1 and r2
and the given expressions [EðrÞ ¼ − dV

dr and E ¼ 1
4πϵ0

q
R3 r].

After substituting the known numerical values into the
expression for E, she arrives at the final expression
E2 − E1 ¼ cð0.6Þ, in terms of the unknown constant c.
Although Kara’s initial strategy might superficially be

thought of as an analytical derivation game, a more
detailed examination revealed that it was indeed recursive
plug-and-chug. In order for a strategy to qualify as an
analytical derivation game, one needs to derive an equation
for the quantity being asked through a series of steps using
various resources, such as integration and graphical fea-
tures. However, her initial target form was “finding a
difference,” for which she targeted the quantity E2 − E1;
she simply plugged in the values of the known quantities in
the given expression for E. Then she denoted all the
unknown constants as a letter c and expressed the potential
difference as E2 − E1 ¼ 0.6c without exhibiting the use
of any sophisticated mathematical resources such as inte-
gration. She did not clearly envision, when she began the

FIG. 7. Example of the analytical derivation epistemic game
for solving the electrostatics problem.

FIG. 8. Kara’s initial, recursive plug-and-chug solution to the
electrostatics problem.

FIG. 9. Kara’s version of the analytical derivation game to
solve the electrostatics problem.
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solution, how she would use the result, i.e., E2 − E1 to find
ΔV. Her rote mode of problem solving, in which she
mindlessly plugged in numbers in given equations, was
more consistent with the characteristics of the recursive
plug-and-chug game.

2. Case B1b: Kara switching to the analytical
derivation game

When asked why she was evaluating E2 − E1, Kara
responded that she did not know why she was doing that.
Then she approached the problem in a completely different
way as shown in Fig. 9.
After completing her solution, she explained.

1 Kara: So, I think… So, I’m looking for a delta
2 V [pointing at ΔV] really. So if I multiply my
3 dr over… That’s an r, oops, then I have the in-
4 tegral of… oh, and then I integrate… that’s the
5 integral of EðrÞdr equals the negative the integral
6 of dV [pointing to

R
EðrÞdr ¼ R

−dV]. So then if
7 I integrate this [referring to

R
EðrÞdr], I get E2=2.

8 Umm, and I’m going from… it’s dr [points at dr
9 in

R
EðrÞdr], so I take my r values, which is r1

10 is 0.2 cm to ½r2 ¼� 0.8 cm [pointing at the limits
11 in E2

2
j0.80.2]. Umm, that’ll give me negative delta V

12 [pointing at −ΔV]. So if I just plug… okay, well
13 I’ll have to plug… here’s my 0.2 into here [refer-
14 ring to E1 ¼ 1

4πϵ0

q
13
ð0.2Þ in her previous strategy]

15 and that’ll give me E.

In the above excerpt, Kara was treating the integrand
EðrÞ as the variable of integration (i.e., integrating with
respect to E instead of r), which was her self-imposed
constraint. At this point the interviewer momentarily
intervened and reminded Kara that the integrand E
was a function of r and she could not just integrate it
without expressing it in its functional form first. After
the interviewer’s intervention, she then wrote

R
EðrÞrdr →

Erj0.80.2 ¼ −ΔV and after drawing a striking line overR
EðrÞrdr (see Fig. 9), she responded.

16 Kara: So… now, if I take the difference in my r s,
17 which is 0.6 [pointing over j0.80.2]… or is it negative
18 0.6? And then I plug it into the… See I needed
19 to find E [pointing at E ¼ 1

4πϵ0

q
R3 r], but now

20 it’s the integral of E [pointing at
R
EðrÞdr]… and

21 the electric field isn’t constant, so I cannot pull it
22 outside the integral.
23 I: [Pointing at Erj0.80.2] So what you, what you did
24 there?
25 Kara: Well, I tried…, ah…
26 I: This one [pointing at EðrÞ], what’s this?
27 Kara: I took the integral of Edr.
28 I: So you are… you are considering E as constant?
29 Kara: Right, but I can’t do that.
30 I: Right it’s not constant.
31 Kara: Right. So I need to… E isn’t constant,

(Table continued)

32 when I integrate it. Will it still be E2=2 then?
33 No. So if I integrate x, I’ll get x2=2. No, I won’t,
34 that’s not true. Integrate x2… Wait a minute.
35 Okay, so E isn’t constant, but I am integrating
36 with respect to r, so I can’t just keep my E there.
37 Like, would E go to zero then? I don’t know.
38 Well, yeah ‘cause it’s not with respect to r, so E
39 goes away, right [scratches E in Erj0.80.2]?
40 I: How E goes away?
41 Kara: Oh, now I am confused. That’s… No,
42 it can’t go away because that doesn’t make sense
43 … [rewrites E].

Because Kara seemed to be confused with the outcome of
her strategy due to her activity in the analytical mode, the
interviewer asked her if there was any other way that she
could solve the problem. She responded that she could
simply count the squares to find the required quantity. When
the interviewer asked how the area under the curve would
give the required answer, she responded that she simply
remembered that from her calculus class that when it
involved an integral, she often evaluated the area under
the curve to determine the quantity being asked for. In order
to invoke her understanding of the connection between the
integral and its graphical representation, the interviewer
again asked her how the area under the curve would give
ΔV. However, she simply elaborated her analytical solution
without saying much about its connection with the graph, so
the interviewer once again asked her about an alternative.

44 I: How else can you do that?
45 Kara: I mean, aside from counting the squares,
46 which is what I don’t want to do…
47 I: Why you don’t want to count squares?
48 Kara: ‘Cause it won’t be exact.
49 I: I don’t want exact answer…
50 Kara: Okay.
51 I: … it’s fine.
52 Kara: I mean, yeah I guess, what I would do is
53 count squares, then.
54 I: So, my, my question is again, like, how do you
55 connect this ΔV and counting thing, area under
56 that line?
57 Kara: Umm, because…
58 I: How these two are connected? You are saying
59 this is equal to that, so how?
60 Kara: Because my… Umm, my final is… Okay,
61 how am I gonna explain that? I am looking at, so
62 like, the area between two curves I guess what I
63 would be looking at. But my first curve is zero.
64 No that doesn’t make sense. So you want me to
65 tell you why ΔV is the area under the curve?
66 I: Yeah.
67 Kara: Oh boy.
68 I: It seems like you have some instinct that should,
69 that should be equal to area under the curve, but
70 how?
71 Kara: But why? Yeah, I don’t know. if I can

(Table continued)
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72 explain why. Umm, so…
73 I: What exactly is the area under the curve?
74 Kara: That… area under the curve, it’s like…
75 I: Like, how mathematically, in calculus… What
76 thing you use to represent the area under the
77 curve?
78 Kara: The integral.

Despite possessing all the knowledge required to pro-
duce a correct solution, Kara initially followed incorrect
paths to solve the problem. This may be due to her failure to
identify the problem correctly as a graphically based FTC
problem, preventing her from finding the right connections
within her fragmented knowledge. But as the interviewer
went on probing deeper and deeper—asking follow-up
questions—eventually, she was able to identify that the
integral could be evaluated by determining the area under
the curve. However, she was unable to tell why the integral
was represented by the area under the curve, suggesting
that this is pseudoconceptual behavior. The set of excerpts
here suggests a lack of deep functional understanding of
the definite integral. This result aligns with findings by
previous researchers showing students’ difficulties with
integrals and their graphical representations [2,18,28,29].

3. Case B2: Joe’s multiple approaches
to the analytical derivation game

In response to the electrostatics problem, Joe wrote down
the integral

R
Edr, followed immediately by 1=2E2rjBA and

said that that was the required potential difference. When
the interviewer asked him, pointing at

R
Edr, why he took

the integral, he erased the 1=2E2rjBA and responded

1 Joe: Umm, it’s the sum of the electric field times
2 the delta rs [Edr].
3 I: So, what does that [the integral] give you?
4 Joe: The total potential difference.
5 I: How do you know that potential difference is
6 integral of Edr?

In response to this question, he implicitly invoked the
expression for potential energy difference (ΔU ¼ R

Fdr)
and recognized that qU ¼ V and qF ¼ E; thus giving
qΔU ¼ R

qFdr or ΔV ¼ R
Edr. The interviewer then

asked him how he would get potential difference from
the integral. His response was

7 Joe: This is the change in potential [pointing at
8 VðBÞ − VðAÞ], umm [adds the limits over the in-
9 tegral] and umm this is the sum of the change
10 [pointing at the integral] that occurs if [pointing
11 at E] that’s the derivative [referring to E ¼ − dV

dr].
12 So that’s the same thing [referring to VðBÞ − VðAÞ
13 and −

R
B
A Edr].

When asked how to find a numerical answer for this
integral, Joe replaced the limits A and B with their

numerical values, .2 and .8 (in centimeters). Then after
converting into meters, he replaced the numbers by .002
and .008, respectively, and continued.

14 Joe: You gotta express E in terms of r, which
15 is this equation [pointing to 1

4πϵ0

q
R3 r], so I would

16 put this [ 1
4πϵ0

q
R3 r] in here [

R
.008
.002 Edr] and find the

17 integral for that. Do you want me to do that?
18 I: That’s fine, you are saying… just, just explain
19 it to me, you don’t have to do, like, explain the
20 steps how you do that…
21 Joe: … you’d take this expression, which is the
22 E… so the expression of E in terms of r and you
23 plug that into here.
24 I: And what you do after that?
25 Joe: And then… you integrate it. [Laugh] Umm,
26 this one will be constant [pointing at 1

4πϵ0

q
R3]. So

27 you put that up here [to the left of the integral
28 sign] and just integrate rdr.

When the interviewer asked him to show how he would
find the integral, he evaluated the integral in terms
of unknown constants as shown in Fig. 10. Then the
interviewer asked how he would get a numerical value
without knowing the values of the constant. The inter-
viewer rephrased how else he would get a numerical answer
without the values of the constants given. Looking at the
graph, he immediately responded.

29 Joe: Ten times one-half of ten [referring to the
30 area of the triangle formed by the straight line].
31 I: How?
32 Joe: Ah, oh, rather the, ah…, well, the area un-
33 der the curve between those two points [pointing
34 at the limits], right?

In the above example Joe initiated his solution with the
analytical derivation game yielding the expression for ΔV
in terms of the integral. From the resulting expression, he
identified that the required quantity (ΔV) could be evalu-
ated by evaluating the area under the curve. This example
shows that students often pursue the analytical derivation
game before exploring the other paths providing a bridge to
explore further games, such as graphical analysis.
Although Joe eventually realized that the potential

difference could be determined by evaluating the area
under the curve, he was unable to tell how the area and
the integral were related when the interviewer asked him
how his result from the analytical derivation game was
equivalent to finding the area under the curve. In addition to
Joe, many other subjects, including Jake in the following
example, were also unable to see the deeper connections
between the integrals and the area under the curve.

4. Case B3: Jake’s preference for the analytical
derivation game over using the relevant graphical feature

In response to the electrostatics problem, Jake integrated
the given function EðrÞ between the given limits similar
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to how Joe responded in lines 1–4. Like Kara and Joe,
Jake also identified this problem as the one requiring an
analytical approach, which led him to pursue the analytical
derivation game. In order to probe his perspective on an
alternative strategy, the interviewer prompted him to
provide an alternative approach for evaluating the required
quantity.

1 I: That’s right, I mean, you are doing integration,
2 so, how would you, how else would you do?
3 Jake: Umm… I guess you could compute the ar-,
4 you could compute the area but that doesn’t tell
5 you, like, it leaves out all the variables and it’s just, it’s
6 just the area of the graph and then you
7 have to use the graph to figure out but I mean this
8 is the best way to do it.
9 I: If you were not given this [pointing at E ¼
10 1

4πϵ0

q
R3 r], how would you do that problem?

11 Jake: Well… like, well you can approximate the
12 f…, you can approximate a function by looking
13 at the slope. But you have to calculate out the
14 slope, pick two points, figure out what the slope
15 is for this ‘cause it’s a straight linear line. So, it
16 isn’t that hard for the (a) but for (b) it would
17 be little harder cause then you have these sloping
18 lines and you have to find an equation that will fit
19 that. Something, ah x2 would probably be a good
20 function to fit that, I mean can obviously see now
21 it’s 1=x2 but…
22 I: I mean without using integration, I mean, func-
23 tion and integration, how would you do that?
24 Jake: Without using analytical integration?
25 Umm… I guess I would just try to approximate
26 best I could.
27 I: How would you estimate?
28 Jake: You can… you, the boxes to sort of get a
29 rough estimate of how many there are, how much
30 potential there is…
31 I: How do you know that the boxes give what you
32 need?
33 Jake: Umm, if you’re doing in that way, you don’t
34 unless they tell you that’s what it is or you know
35 from previous experiences.
36 I: I mean, how is potential difference connected to
37 the boxes you’re going to count?
38 Jake: Oh, because, umm, the potential difference
39 is umm, it’s a force generated by electric field over

(Table continued)

40 the force that the electric field exhibits at distance.
41 So, you can see that, that’s what it is. But it’s
42 kind of hard to ‘cause you don’t have the equa-
43 tion for that, so you don’t know what exactly the
44 ratio is for the force to distance. So, equations
45 just make everything lot easier.

When pressed for an alternate solution method, Jake
immediately invoked area under the curve, but then rejected
it as anapproximationor estimationof the integral rather than
an exact determination, which he argued would be the result
of an analytical function. Furthermore, his impression of
why area was important or right came from authority—that
you don’t know that counting boxes is the right way “unless
they tell you that’s what it is or you know from previous
experiences”—rather than from an understanding of the
connection between the integral and the area.
In order to perform an analytical integration, Andrew

first self-imposed a constraint. He proposed approximating
the integrand [EðrÞ] by an algebraic function by looking at
the slope for the first linear section of the curve. Although
he thought that the approximation in the second nonlinear
regime would not be as simple, he still thought the
approximate function would give a more accurate result
than approximating the area under the curve.

5. Case B4: Monica beyond the analytical derivation
game—counting boxes to find ΔV

Soon after reading the question, Monica suggested that
she needed to perform an integration to solve the problem.
When the interviewer asked her why she needed to do the
integration, she responded that she needed it because she
was finding the potential difference between the two points.
As in the temperature problem, the rate equation seemed
to have triggered Monica to perceive that problem
involved performing integration as seen in the following
conversation:

1 Monica: Umm, this is what I’ll do, the original
2 function [first writes EðrÞ ¼ − dV

dr then rearranges
3 it as dV ¼ −EðrÞdr]
4 I: So I’m… I’m asking this thing [pointing at dV].
5 What’s this, this thing?
6 Monica: Oh, that’s, that’s the potential differ-
7 ence. So it would be… This is, given this graph,
8 so you’d want to integrate over certain, over those
9 positions, those r s.
10 I: So, is this [pointing to ΔV] exactly the same
11 thing as that [referring to dV] you have here?
12 Monica: No. This is the change in V and you
13 just…
14 I: Okay, what’s difference between…?
15 Monica: Oh, never mind. Well, the difference
16 would be the change…
17 I: What’s difference between these two? [pointing
18 at dV and ΔV.]

(Table continued)

FIG. 10. Joe’s version of the analytical derivation game to
solve the electrostatics problem.
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19 Monica: [pointing at dV] This isn’t, like, very
20 very small change in V? That [ΔV] would be a
21 large, larger change in V. So, you’d have to actu-
22 ally integrate that from some V initial to V final
23 [writes

R Vf

Vi
in front of dV]. So, then you would

24 get that [referring to ΔV].
25 I: Okay. So how do you get potential difference?
26 Monica: Using [pointing at 1

4πϵ0

q
R3 r]… You have

27 [writing Vf − Vi and inserting
R
0.8
0.2 in front of pre-

28 viously written EðrÞdr]… and if you wanted to
29 go from .2 to .8 centimeters with that function
30 [referring to 1

4πϵ0

q
R3 r], that would be, this would

31 be, umm, the area from those two points of that
32 function, of this electric field.

Monica’s rearranging of the given rate equation (lines
1–3) and use of the operation of integration (line 8) in the
above excerpt are moves in the analytical derivation game.
In response to the interviewer’s question about the way to
get the potential difference, Monica simply integrated Edr
between the given limits and suggested substituting the
integrand EðrÞ by the given function 1

4πϵ0

q
R3 r. Monica was

aware that the values of ϵ0 and Q are not provided, but she
proceeded to solve the problem analytically, indicating that
her target form was a series of equations. She derived an
expression for the required quantity without caring about a
final numerical answer. This target form along with her
moves involving equation rearranging and application of
integration show that she was predominantly engaged in
analytical derivation, although she briefly mentioned in
the end that her integral was equivalent to the area between
the given limits (lines 26–32). Monica seemed to be aware
of the essence of both analytical and graphical resources
for solving the problem. Although she was dominantly
involved in the analytical derivation game, she briefly
invoked the notion of area in the end, but she did not
elaborate clearly how the area and the integral are related.
In order to probe her understanding about this relationship,
the interviewer asked

33 I: So how do you get that [pointing at ΔV] in the
34 graph?
35 Monica: Umm, wait is that the fu-… This is the
36 function of that. I guess, you could integrate that.

Although the interviewer asked her to explain how she
would find ΔV from the graph, she focused only on the
algebraic form of the integrand presented on the graph and
explained how she would use that to find the required
quantity analytically.

37 Monica: Umm, well this E would be that [point-
38 ing at 1

4πϵ0

q
R3 r on the graph]. So you’d have

39 [mumbles and writes
R
0.8
0.2

1
4πϵ0

q
R3 r]… and those

40 are all cons-. Well I’m assuming that q will be a
41 constant.

(Table continued)

42 I: Yeah, q is constant.
43 Monica: Yeah, so you could bring all that out,
44 [Mumbles and writes 1

4πϵ0

q
R3

r2
2
j0.80.2]. That would

45 be…, you can calculate it.
46 I: Okay. So that’ s…
47 Monica: …that’s the change in the electric…
48 Well, that’s the change in the potential difference
49 [sic].
50 I: Okay. So how how else would you do that to
51 find the exact number?
52 Monica: You could just look at the graph and go
53 from [mumbles], go from .2 to .8 and then find the
54 area under the curve for those two, which would
55 be…
56 I: How do you find the area then?
57 Monica: Umm, I guess I’d make it about a tri-
58 angle… (Monica first counts the total number of
59 boxes contained in the square and the triangle as
60 48 and 30, respectively. Then she adds them to
61 get 58 boxes and proposes to multiply the total
62 number of boxes by the value of a single box to
63 get the required potential difference.)

In the above episode, Monica seemed to be primarily
engaged in analytical derivation, and she did not look
for an alternative way to find the required quantity at first.
Although the problem asked for a numerical value for the
potential difference, Monica simply left her answer in form
of an equation, leaving behind the unknowns, such as q and
ϵ0. She seemed to be satisfied with her result that she
derived from analytical derivation ( 1

4πϵ0

q
R3

r2
2
j0.80.2) and con-

sidered that the resultant expression was the answer to the
problem being asked. However, when the interviewer
deliberately prompted her for an alternative approach,
not only did she successfully show the relationship between
the integral and the notion of area under the curve, but
she also explained how she would evaluate the area in the
given context. The interviewer’s prompt for the alternative
graphical approach seemed to have triggered Monica to
explore additional resources, e.g., graphical. In addition to
the interviewer’s prompt, the incomplete result of her
analytical derivation game also led her to explore alter-
native resources. She explored the graphical resources by
playing the graphical analysis game. In this game, her
target form was the given graph and the game involved
analyzing it to identify one or more relevant graphical
features and evaluate the required potential difference.
More explicitly, her moves included identifying the area
under the curve as the relevant feature and evaluating it by
finding the areas of the triangle and the rectangle under
the curve.

V. DISCUSSION

In the cases presented above, students manifested
three types of e-games while solving the temperature
and the electrostatics problems—recursive plug-and-chug,
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analytical derivation, and graphical analysis games. Based
on these cases, there are three facets of the data to discuss.
First, we make the case for analytical derivation as an
epistemic game distinct from recursive plug-and-chug.
Second, we point out how analytical derivation is neces-
sary but not sufficient for solving the problems presented
here. Third, we discuss the ways students went beyond
analytical derivation to try an alternate solution method
that may or may not have built on the result of their
analytical derivation game. In addition, we also point out
findings from other researchers that we see as evidence of
analytical derivation in a different physics context, with
different mathematical content, and discuss additional
support for the idea that analytical derivation is a general
epistemic game played by both experts and novices in
physics. Finally, we present a brief discussion on potential
instructional implications of this game.

A. Analytical derivation as a distinct epistemic game

Cases A1 and B1a document the way students play the
recursive plug-and-chug game, consistent with Tuminaro
and Redish [9]. The epistemic form in this game involves
one or more ready-made equations or expressions and the
moves include plugging in numbers to evaluate the required
quantity by using the given values and/or extracting
them from the given graph. In the cases presented above,
the epistemic forms for Alex and Kara were the generic
slope expression y2−y1

x2−x1
and the given physics equation

EðrÞ ¼ 1
4πϵ0

q
R3 r, respectively. Their moves included

extracting the relevant numbers from the given graphs
and plugging them into their equations. Unlike in Tuminaro
and Redish’s study where the students used other equations
for unknown quantities, students in this study used the
given graphs to extract the values of unknown quantities.
All the other cases, except the above two, document

the ways students play analytical derivation. Unlike the
epistemic form for the recursive plug-and-chug game,
the epistemic form for this game is a series of equations,
which leads the students towards deriving an expression for
the required quantity. Students may still proceed to plug
numbers into the derived expression, but the primary
purpose of the game is to use mathematically based
procedural resources to derive the expression. Students
generally start this game with an equation and through a
series of mathematical procedures derive an expression for
the required quantity in terms of known and/or unknown
variables. As seen in the depicted cases, most of the
students started with the rate equation EðrÞ ¼ − dV

dr and
derived the expression for the required potential difference
as ΔV ¼ −

R
0.8
0.2

1
4πϵ0

q
R3 rdr.

The analytical derivation game is distinct not only from
recursive plug-and-chug, but also from the other games
proposed by Tuminaro and Redish, including mapping
mathematics to meaning and mapping meaning to

mathematics. Although one may map an equation derived
from analytical derivation to physical meaning or map
physical meaning to acquire an expression during the
analytical derivation game, the intention of analytical
derivation is quite different from those of the two mapping
games. The main intention of the analytical derivation
game is to derive a mathematical expression using pro-
cedural resources. Unlike the other two games, the ana-
lytical derivation game may or may not involve using
physics resources; often students do not use physical
interpretations while deriving equations. Besides
Tuminaro and Redish’s games, the analytical derivation
game is also distinct from Chen et al.’s answer making
game. Unlike in analytical derivation, the primary focus
of answer making is how one acquires an answer to a
question—first answer-then-justify or first reason-then-
answer. The answer making game may or may not need
a sophisticated mathematical derivation; it may only need a
simple plugging-and-chugging of numbers proceeded by
conceptual reasoning.

B. Analytical derivation as a necessary
but not sufficient epistemic game

In order to correctly solve the temperature and electro-
statics problems, students were expected (a) to recognize
the desired physical quantities as definite integrals and
(b) to identify the connection between the definite integral
and the area under the curve. More than two-thirds of the
students successfully completed part (a) by playing ana-
lytical derivation, but only one-third successfully com-
pleted both part (a) and part (b). Although the first part

TABLE I. Epistemic games played by the individual partic-
ipants. RP&C stands for recursive plug-and-chug; GA stands for
graphical analysis; and AD stands for analytical derivation. A
slash (/) in between two games in a column means that the subject
changed games partway through the task, often when the
interviewer asked for an alternate solution. Bolded rows indicate
participants with excerpts in the text. Dots (� � �) indicate cases
where the problem was not attempted by the participant.

Subject Temperature Electrostatics

Amy � � � RP&C/AD
Alex RP&C � � �
Andrew GA/AD RP&C/AD
Brian AD AD/GA
Chris GA AD/GA
Jake RP&C/AD/GA AD/GA
Joe GA AD/GA
Kara GA AD/GA
Lin GA AD
Monica GA AD/GA
Nikki RP&C RP&C
Ryder RP&C � � �
Wilson GA GA
Yu RP&C AD
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could be achieved simply by invoking the fundamental
theorem of calculus, students often pursued an analytical
approach to derive the relation. For most of the students
the analytical derivation game seemed to be necessary for
realizing the relationship between the required physical
quantity and the definite integral. Although the problem
required them to find a numerical answer, most of the
students simply stopped the process after deriving the
equation. At all levels of physics problem solving, students
are required not only to derive equations, but also to
meaningfully interpret the results of the derivations. In
addition to deriving an equation, a complete solution to a
problem may often demand several other actions depending
upon the nature of the problem, such as examining limiting
conditions, representing the equation graphically, interpret-
ing the physical meaning of the equation, and evaluating
and/or estimating a numerical value. Analytical derivation
is not a sufficient game in the sense that it becomes only
a routine procedure when the process does not involve
any deep conceptual thinking, neither mathematical nor
physical.
One indication of the breadth of use of analytical

derivation can be seen when the use of various epistemic
games by participant is shown (see Table I). Three
participants played the analytical derivation game to deal
with the temperature problem and 10 participants played
this game to deal with the electrostatics problem (two of the
remaining students did not engage with the electrostatics
problem). There are two plausible explanations for the
asymmetry in this result. First, the interview subjects were
drawn from the second-semester physics course, which
focuses primarily on electricity and magnetism; the electro-
statics problem may have dealt with familiar content.
Second, the electrostatics problem included the analytical
expression for the electric field, perhaps priming analytical
derivation as a reasonable game to start with, whereas the
temperature problem provided the graph without any
analytical expressions.
To check whether student course performance corre-

sponded to use of epistemic games, we looked at students’
grades in each of the calculus and physics sequence courses
and their choice of epistemic game use for the temperature
and the electrostatics problems. We found no connection
between course grades and game choice: subjects at both
ends of the grade spectrum in both sets of courses used
analytical derivation in these two problems [31].
An important aspect of physics problem solving is the

appropriate use of units. As seen above, students used a
unit-based approach in their analytical derivation game
(e.g., Kara in case A2); this occurred not only in the nearly
linear regions, but also in the nonlinear region of the
functions. This is a clear indication of students’ failing to
use the appropriate underlying mathematical concept—the
FTC. We also found that a number of students in this
study substituted values for variables in equations without

any units, e.g., “0” and “1” in the integral limits in the
temperature problem (see Fig. 5). Particularly, during
numerical substitution, the inclusion of units provides
not only a means to check for consistency in mathematical
operations, but also a way to interpret the physical meaning
of the result.
In the interviews, although some students were able

to derive the equation for potential difference as ΔV ¼
−
R
b
a Edr and were also able to identify the connection

between the definite integral and the area under the curve,
they still failed to demonstrate a deeper understanding of
the relationship. The students were cued by the analytically
derived definite integral expression to invoke the area
under the curve. But they were unable to tell how the
integrals and the area under the curve were related. Only a
few students manifested their understanding of the concept
by invoking the notion of the Riemann sum. Similarly, the
majority of the students did not manifest a deep under-
standing of the relation between the rate equations and the
integrals—a change or accumulation of a quantity depends
on the rate of change of the quantity. The lack of evidence
of a deep understanding of the integral concept in the
students’ responses resonates well with findings from other
researchers [2,15,28,29,32,33].

C. Students’ exploring beyond analytical derivation

As mentioned above, most of the students who derived
equations did not initially attempt to find numerical
answers. However, when the interviewer asked for numeri-
cal answers, the students either approximated the given
curve with an algebraic function or assumed the curve to be
too linear to continue their analytical approach. Only a few
students were able to connect their previously derived
equation to the relevant graphical feature, which is the
expected path to achieve an optimum numerical answer.
Students were directed to this path only after the inter-
vention of the interviewer, when they were asked for either
a numerical answer or an alternative approach. There were
clear indications that the students possessed the knowledge
base required to solve the problem, but failed to apply this
knowledge in the relevant contexts. The students’ failure to
activate the relevant knowledge base might be attributed to
their initial framing of the problems.
In case B3, Jake seemed to have all the knowledge

resources needed to correctly solve the problem, but he
focused mostly on the analytical derivation game. He
exhibited a strong belief that the analytical derivation game
was the best way to solve the problem even though it could
be solved graphically by evaluating the area under the
curve. He suggested that only by solving the problem
analytically can he get an accurate answer. He was reluctant
to evaluate the area under the curve because it would only
yield an estimated answer and not an exact answer. This
robust epistemological framing seemed to have held him
back from pursuing the graphical analysis game. This is in
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agreement with the stance of Hammer et al. that students
fail to apply their existing knowledge to a novel situation
because of their framing of the situation in a specific
way [25].
Similar to Tuminaro and Redish’s findings, we also

found that students’ epistemic games were often deter-
mined by their initial framing of a problem, as seen in the
above examples; thus, they were highly context dependent.
During the interviews students did not only use a single
strategy, but often varied their strategies (epistemic games)
while solving a problem. Students switched their epistemic
games, particularly, when they were confronted with
varied contexts or representations and/or asked for further
clarification (knowledge elicitation). We believe that
students’switching of epistemic games is the consequence
of shifts in their frames that are induced by the above
mentioned factors. However, this conjecture can only
be verified by a further deep analysis of students’episte-
mological framing.

D. Analytical derivation in other contexts

Given the structure of analytical derivation, we suggest
that this game is played not only by students, but also
by experts. In their work on experts’strategies for
solving partial derivative problems in thermodynamics,
Kustusch et al. [34] documented a set of expert activities
(e.g., identifying mathematical relationships and identify-
ing constraints) that they also established as different
from the moves in the recursive plug-and-chug game.
They defined this as part of their partial derivatives game.
Their description of the distinction is similar to ours.

[all of the experts in their interviews] did connect
[mathematical] quantities to the mathematical structure
of the problem and to their conceptual understanding of
the mathematics, which was fairly sophisticated and
nuanced in some cases. In fact, the constraints that
these experts placed on their mathematical moves,
particularly in the Partial Derivatives game, clearly
distinguished their activities from the Recursive Plug-
and-Chug game, which involves little to no evaluation of
ones moves. [[34], p. 16].

This description is very similar to what we see in the
analytical derivation game, but in a different mathematical
context. Their move of “identifying constraints” is a form
of the “assumptions or approximations” move in analytical
derivation. Thus, we argue that Kustusch et al. were
seeing evidence of analytical derivation, which is a larger
grain-sized game than partial derivatives and can be played
in any context for which the target form is an expression for
a desired physical quantity. In other words, their experts
were most likely playing the analytical derivation game
while solving partial derivative problems. Given that it was
used by experts in thermodynamics problem solving using
the mathematics of partial derivatives, we suggest that this

game may be seen commonly in other upper-division and
graduate-level problem-solving contexts.
As mentioned in Sec. II C, Bing and Redish [11] suggest

that expertlike problem solving involves a larger grain-
sized frame that includes frame shifting within a problem,
as needed. It may be that analytical derivation is a game
that includes this more expansive framing, allowing for
the blending of different frames—and epistemic games—as
needed. It may be that analytical derivation has an
accompanying frame of its own, one of the frames among
which experts shift.
We have evidence of students locked in to analytical

derivation even when it did not lead to a (numerical)
solution; these students did not, on their own, invoke the
graphical analysis game to extract useful information to
put into their derivation. This suggests that difficulties
during problem solving can occur not only when a student
frames a problem inappropriately [11], but also when
students fail to change their epistemic game when it
becomes unproductive. This supports the need for flexible
use of multiple e-games.
These findings might suggest the existence of different

epistemological framing for the different e-games—
different expectations about what kind of knowledge is
needed to solve the problem at hand—but we do not have
sufficient evidence to claim the identification of one or
more particular frames to accompany the analytical der-
ivation game; that is left as a task for future research.

E. Instructional implications

The concepts of the FTC and the definite integral are
widely applicable in physics problem solving. Students
usually learn much of the mathematics concepts and skills
required to solve the FTC-based problems in their calculus
classes. However, studies show that students have difficulty
applying their concepts and skills in relevant situations
[1,2,4]. Our study shows that students do not usually lack
mathematical concepts and skills needed for solving
physics problems; instead, we argue that these students
have difficulties accessing and implementing the relevant
concepts in relevant situations. This was clearly manifested
in the cases presented in Secs. IV C 1 and IV C 2. Kara
revealed that she possessed all the knowledge required to
correctly solve the electrostatics problem, but she was
unable to find the right connections within her fragmented
knowledge, until the interviewer went on probing her
deeper and deeper through follow-up questions. Jake in
Sec. IV C 4 initially attempted the analytical derivation
game to solve the electrostatics problem. Only after the
interviewer pressed for an alternative strategy, Jake pointed
out the that the problem could be solved by finding the area
under the curve. He clearly indicated that he could count
the squares to find the required area. In response to the
problems not presented here, he also showed how the
definite integral and the area under the curve are related by
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invoking the Riemann sum concept. Like Jake, Joe in
Sec. IV C 3 also invoked one after the other approaches
including the graphical as the interviewer asked for the
alternative strategies. It was apparent that he knew the right
way to solve the problem, but just did not invoke it right
away. From an instructional point of view, it is important to
recognize the difference between these two perspectives.
The former suggests that students need to be (re)taught the
missing knowledge; our data do not support this approach.
Instead, our findings suggest that instruction emphasize the
appropriate framing of a problem, helping students decide
what strategies (e-games), and thus which resources, to
bring to bear.
Even for appropriate initial choice of framing and

epistemic games, flexibility must be taught. Like recursive
plug-and-chug, if students are playing the analytical
derivation game, they may merely be invoking procedural
resources pseudoconceptually, without invoking any con-
ceptual resources. Problems for which this is a pitfall could
be modified by including prompts that demand physical
explanation, graphical elaboration, limiting cases evalu-
ation, etc., in order to cue other resources and possibly the
invocation of other epistemic games.

F. Limitations of the study and future implications

Because of the qualitative nature of this study, only a
small number of participants were recruited from the
target population, yielding a sample of convenience. In
order to explore the commonality of students playing the
analytical derivation gamewhen solving physics problems,
an expanded study would be needed that accessed more
physics contexts, with a larger population that included
different groups such as algebra-based introductory, upper-
division, and graduate physics students. Although we did
not focus on the variation among the students in our
population, there may be some differences in the ways
the students with and without multivariable calculus solved
the given problems. This study focused on a specific
mathematical topic: student application of the FTC and
the definite integral. In order to generalize our findings,
additional studies should explore other mathematical
concepts that are commonly invoked in physics problem
solving, such as derivatives and partial derivatives.
Similarly, this study could be expanded by observing
students solving problems involving alternate representa-
tions, e.g., only numerical or only graphical. Finally,
because of the narrow scope of this study, many variables
such as gender, educational background, and race were not
investigated.

VI. CONCLUSION

Although much of reformed instruction de-emphasizes
analytically based problem solving skills, the ability to
derive equations using various mathematical resources is an

important problem-solving skill required in all levels of
physics. Particularly, in upper-division and graduate-level
physics, problem solving often involves finding symbolic
expressions for one or more physical quantities, which
may or may not require a numerical answer. This mode of
problem solving, i.e., analytical solutions, usually involves
basic algebra and calculus operations at a minimum, and
sometimes application of more sophisticated mathematical
knowledge. Since the term “analytical” carries a broad
meaning, we use the term analytical derivation to indicate
the mode of problem solving that involves the derivation
of one or more physical quantities in forms of symbolic
expressions using various mathematical resources. The
dominant mathematical resources students use in this
type of problem solving are procedural resources such as
differentiation and integration. In many instances, students
use this mode of problem solving, particularly when they are
provided with an equation and/or an algebraic expression.
We identified the analytical derivation game by char-

acterizing its epistemic form, knowledge elements or
resources, moves, entry and exit conditions, and con-
straints. The characterization of the components not only
led us to identify a new e-game, but also helped us to
understand the students’difficulties with the application of
the fundamental theorem of calculus in physics problem
solving. Students seemed to have the knowledge about all
facets of the FTC required to solve the given problems, but
have difficulties connecting the knowledge because of the
way they frame the situations, e.g., failing to frame the
problems as involving graphical interpretation of definite
integrals. To some extent, we also gained insight on how a
change in students’frames led them to change their epi-
stemic games and how they apply situation-specific knowl-
edge resources in their problem solving.
Although the students in this study were expected to

identify the connection between the definite integral and
the area under the curve to find a reasonable numerical
answer, the majority of the students attempted the problem,
at least in the beginning, using the analytical derivation
game. To a larger extent, students’ choice of this game
seemed to be influenced by the way they initially framed
the given problems. The presence of equations, algebraic
expressions (functions), or even symbols seemed to lead
students to frame the problems as requiring equation
derivation, thus invoking the analytical derivation game.
Some students seemed to choose this game over other
games in order to get a better numerical answer. They chose
this game with the goal of obtaining the most exact
numerical answer, even if the resulting equation had one
or more unknown variables.
Problem solving in physics often requires interpretation

and/or application of one or more types of representations,
such as algebraic, graphical, and numerical. The algebraic
representation mostly involves symbolic manipulations
and equation derivations, which may require skills ranging
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from very basic to highly sophisticated mathematical
procedures and recognition of appropriate constraints
and assumptions about the physical situation. Students
tend to employ an algebraic representation to derive one or
more equations even when a problem does not require any
equation derivation. There may be more than one reason
for the students’ excessive inclination towards playing
with equations while solving a problem. Much of physics
problem solving, particularly in traditional instruction, is
dominantly algorithmic or rule based, which encourages
symbolic manipulation and so-called equation chasing.
Students are often reluctant to use other representations
because the symbolic manipulation and the equation
derivation could be processed routinely without engaging
much in a deep thinking process. This is true not only in
physics but also in mathematics problem solving. Selden
et al. reported that even above-average calculus students

often struggle while solving nonroutine problems that
do not involve symbolic manipulation, tending to solve
these calculus problems simply algebraically [35,36].
Previous studies have documented that students have
difficulties switching between and connecting two or more
representations, including algebraic and graphical [37,38].
This difficulty often leads them to pursue solely the
algebraic representation and avoid other representations
such as graphical.
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