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We have investigated whether and how a categorization of responses to questions on linear distance-time
graphs, based on a study of Irish students enrolled in an algebra-based course, could be adopted and
adapted to responses from students enrolled in calculus-based physics courses at universities in Flanders,
Belgium (KU Leuven) and the Basque Country, Spain (University of the Basque Country). We discuss how
we adapted the categorization to accommodate a much more diverse student cohort and explain how the
prior knowledge of students may account for many differences in the prevalence of approaches and success
rates. Although calculus-based physics students make fewer mistakes than algebra-based physics students,
they encounter similar difficulties that are often related to incorrectly dividing two coordinates. We verified
that a qualitative understanding of kinematics is an important but not sufficient condition for students to
determine a correct value for the speed. When comparing responses to questions on linear distance-time
graphs with responses to isomorphic questions on linear water level versus time graphs, we observed that
the context of a question influences the approach students use. Neither qualitative understanding nor an
ability to find the slope of a context-free graph proved to be a reliable predictor for the approach students
use when they determine the instantaneous speed.
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I. INTRODUCTION

This paper examines the generalizability and applicabil-
ity of a categorization of students’ responses to questions
concerning numerical linear distance-time graphs devel-
oped by Wemyss and van Kampen [1], referred to as [1]
from now on. They based their categorization on responses
from science students at Dublin City University (DCU)
in Ireland. The categories were based on the level of
understanding that students show and the difficulties they
have with scientific models, similar to the categorization
schemes used by Close and Heron, and Mashood and Singh
[2–4]. In this paper we analyze the responses from 700
students in two different universities in two different
countries, KU Leuven in Belgium and the University of
the Basque Country in Spain (UPV/EHU) to translated
versions of the questions in [1]. The questions concerned

three kinds of linear graphs that do not pass through the
origin: distance-time, water level versus time, and context-
free. [5] The DCU students were enrolled in an algebra-
based course; three quarters of them had not taken the
equivalent of high school physics, and almost none had
taken the equivalent of high school calculus. Students at
KU Leuven and UPV/EHU were enrolled in a calculus-
based course and had more extensive prior knowledge of
both calculus-based physics and mathematics. The analysis
of responses from such very different cohorts of students
provides a severe test for the original categorization.
The main findings of [1] are the following: on a pretest,

two-thirds of the DCU students could determine the direc-
tion of motion from a linear distance-time graph not passing
through the origin. Constancy of the speed was determined
by about three-quarters of the students. Their responses
comprised three categories: (i) reasoning based on the line
being straight or the slope being constant, (ii) interval-based
reasoning, and (iii) other reasoning. Only 20% of the
students correctly determined the instantaneous speed by
calculating Δx=Δt, while over half of them calculated x=t.
The reason students gave for the constancy of the speed did
not correlate with successfully determining a value for the
speed. In addition, it was shown that the ability to determine
the slope of a context-free graph and having a correct
qualitative understanding of a distance-time graph are not
sufficient to correctly determine the numerical value of the
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instantaneous speed. Finally, the students responded to
isomorphic questions on water level versus time graphs
more successfully than those on distance-time graphs.
In Sec. II we give an overview of the literature on graphs

in kinematics. In Sec. III we discuss the research design in
three steps: we list our research questions (Section III A),
describe the educational contexts at KU Leuven, UPV/
EHU, and DCU (Section III B), and explain the data
collection and analysis procedure (Section III C). We
summarize and discuss the results of our study in
Sec. IV, including detailed comparisons to the findings
at DCU and other results from earlier research dealing with
linear graphs. We summarize our conclusions in Sec. V.

II. LITERATURE OVERVIEW

The representational format and context of a question
are important factors in the problem-solving strategy stu-
dents choose and the corresponding success rate [6–11].
Moreover, students’ opinions of their skills in dealing with
different representations correlate poorly with their actual
performances [12]. It is therefore important to examine
students’ approaches to and difficulties with particular
representational formats [7,13]. This work focuses on
students’ interpretations of linear graphs in two different
kinematics contexts and compares these results to the
responses in a context-free setting.
Earlier research has shown that students encounter a lot

of difficulties with linear graphs in physics and mathemat-
ics. In a review paper, Leinhardt et al. distinguished three
categories of incorrect student responses: interval–point
confusion, slope–height confusion, and iconic interpreta-
tions [14]. Interval–point confusion occurs when students
narrow their focus down to a single point even though a
range of points is more appropriate. However, Preece
argued this may often be a consequence of an ambiguous
wording of the question [15]. Slope-height confusion takes
place when students confuse the slope of a graph with the
coordinates at a certain moment [16–19]. Iconic interpre-
tation, often called graph-as-picture error, contains mis-
takes related to the interpretation or construction of graphs
as if it were a photographlike replication of the path
traveled by an object [16–21].
Beichner designed the Test of Understanding Graphs in

Kinematics (TUG-K) and observed that only about one out
of four students could determine the slope of a graph that
does not pass through the origin, whereas 73% could do
this when the line did go through the origin [16]. Likewise,
students at DCU tended to use a formula where distance
is divided by time (v ¼ x=t or similar) when asked about
the speed at a particular instant [1]. Beichner also noted
that students in calculus-based physics courses performed
significantly better than those in algebra or trigonometry-
based courses [16]. Therefore, it is interesting to compare
the students from KU Leuven and UPV/EHU with those
of DCU and investigate to which extent the findings by

Wemyss and van Kampen can be generalized to calculus-
based physics students.
Another topic relevant to this paper is the transfer of

mathematical knowledge and skills regarding linear graphs
to a physical context. Christensen and Thompson argued that
students have difficultieswith graphs in physics because they
do not possess the required mathematical knowledge [22].
Planinic et al. showed that, contrary to teachers’ expect-
ations, students encountermore difficulties with determining
the slope of a line graph in physics than in isomorphic
mathematics problems. They also found that students having
the necessary mathematical knowledge does not guarantee
success on isomorphic questions with physics (or other)
contexts. While the same difficulties were observed, slope–
height confusion (i.e., confusing the ordinate of a point with
the slope at that point) occurred remarkably more frequently
in the context of physics than in the context of mathematics
[23,24]. Knockaert corroborated these results for Belgian
high school students, and noticed they fared significantly
worsewith questions containing a graph thanwith analogous
problems that use symbolic representations [11].
In Sec. III we discuss the design of our project and

the influence of the results from these earlier studies. In
Sec. IV we compare our results with some of the findings
described above.

III. RESEARCH DESIGN

A. Research questions

Our main concern is whether the categorization valid
for responses from students enrolled in an algebra-based
course at DCU in Ireland [1] may be adopted or adapted to
characterize the responses from students enrolled in calcu-
lus-based courses at KU Leuven (Flanders, Belgium) and
UPV/EHU (Basque Country, Spain). We focus on the
categorization itself rather than the prevalences of the
students’ responses. The research questions on students’
approaches to linear graphs are
(1) To what extent do students from different educa-

tional backgrounds have similar approaches to
identifying the direction of motion?

(2) Can a common categorization for the reasoning
about the constancy of the speed and the determi-
nation of instantaneous speed be developed?

(3) Do students adopt different approaches depending
on the context of the questions?

(4) To what extent are qualitative understanding of
kinematics graphs and the ability to determine the
slope of a context-free graph sufficient to correctly
determine the instantaneous speed, and can they
predict the approach students will use?

B. Educational context

Student responses were obtained at KU Leuven in
Flanders, Belgium and at UPV/EHU in the Basque
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Country, Spain. In both countries, the high school (secon-
dary school) curriculum includes topics on motion in one
and two dimensions, motion with constant acceleration,
circular motion, and projectile motion.
At KU Leuven, the questions were given to 223 students

in 2013 and to 214 students in 2014. All students were
enrolled in the first year of the Bachelor of Pharmaceutical
Sciences program, which includes a mandatory introduc-
tory course on mathematics and calculus-based physics.
This course comprises 4 h of lectures plus between 2 h and

4 h of problem-solving sessions per week and three
laboratory sessions of 3 h. After a few weeks of instruction
that include the kinematics curriculum, students may take
an optional midterm exam. Participation is highly recom-
mended and typically over 90% of the students take part.
In 2013 and 2014, a Dutch translation of the questions
shown in Fig. 1 was part of the midterm exam.
At UPV/EHU, the questions were given to 122 students in

2013 and 126 students in 2014. These students were enrolled
in an engineering programwhich comprises a calculus-based

FIG. 1. English version of questions used to investigate approaches to kinematics graphs at KU Leuven and UPV/EHU: a linear
distance-time graph (ball context) with negative slope (a), a water level versus time graph (swimming pool context) with a positive slope
(b), and a context-free graph (c). The questions are taken from [1].
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mechanics course in the first semester. The instruction
consists of 2 h of lecture classes and 1.5 h of problem
solving sessions per week. In the last 15min of most lectures
the students take a small feedback exam to promote the
interest of the students during the course. Themarks obtained
are part of the final mark for the mechanics course (about
20% in total, and 1% per test). At the end of the first lecture
(which was not about kinematics) this exam included a
Basque translation of the questions shown in Fig. 1.
For comparison purposes, we have included data

obtained from the DCU students who were enrolled in
an algebra-based course, with much different attainment
levels in both physics and mathematics [1].

C. Data collection and analysis

Data collection at KU Leuven and UPV/EHU was spread
over two years. In 2013, 116 students at KU Leuven were
given the ball question and 107 were given the swimming
pool question, both with negative slope. In 2014, 92 students
got a version of the ball question with positive slope,
supplemented by a context-free question with positive slope.
The other 122 students got the swimming pool question with
positive slope and a context-free question with negative
slope. As there were fewer participants at UPV/EHU, we
gave these students the same questions in 2013 and 2014.
A total of 129 students responded to the ball question with
negative slope and a context-free question with positive
slope. The other 119 students were asked the swimming pool
question together with a context-free question, both with
negative slope.
In all three universities, students completed the paper-

and-pencil questionnaire under exam conditions. This
means they could not communicate with each other and
could not consult any textbook or lecture notes. They had
approximately 30 min to answer the questions, but most
students finished early.
Students’ responses were categorized independently at

KU Leuven and UPV/EHU using the categories that were
adopted in [1]. In some cases we found clusters of responses
that seemed to warrant a separate category but could only be
fitted in the “other” category. These responses typically
contained explanations based on scientific models that were
not present in the study of [1]. In those cases we discussed
how we could extend the categorization system and rean-
alyzed the data. This process was iteratively followed until
we agreed on categories that were valid for all universities
and were significantly populated. The final categorization is
discussed in Sec. IV. By means of a χ2 test it was established
that at each university the data for both years were not
significantly different [25].

IV. RESULTS AND DISCUSSION

In this section we present the results of our study. In the
first part, we discuss the difficulties students encounter with

linear kinematics graphs. We also describe how we adapted
the categorization and how the prevalence of the responses
depends on the context (ball vs swimming pool). We com-
pare responses from the three universities. In Subsec. IV B
we discuss how responses on qualitative questions about
kinematics graphs correlate with approaches to determining
the instantaneous speed. The results of the context-free
questions are presented in Subsec. IV C. In addition, we
compare student success rates with questions on context-
free graphs with kinematics graphs and discuss to what
extent mathematical understanding of context-free graphs
is a sufficient condition to determine the instantaneous
speed from a kinematics graph.

A. Student approaches to kinematics graphs

1. Determining the direction of motion

The first part of the question (see Fig. 1) asked students
to determine the direction of motion. We did not find a
significant difference between the positive and negative
slope in the KU Leuven data, in contrast to the findings
of [1]. At both KU Leuven and UPV/EHU, about
80% of the students were able to correctly determine the
direction of motion of the ball, and about 95% correctly
determined how the water level in the swimming pool was
changing.
Further analysis confirms the findings from DCU [1].

Students seem to have significantly more problems to
determine the direction of motion in the context of the
ball than in the context of the swimming pool. However,
the difference appears to be an artifact of the question: it
appears that the ball question elicits difficulties with the
abstract nature of a reference point, while in the swimming
pool setting students see the bottom of the pool as a
“natural” reference point. An example of a student that is
confused by the location of the reference point in the linear
distance-time graph is given below

“The direction of motion of the ball depends on where
the reference point is situated.”

This kind of mistake was not observed in the water level
versus time question.

2. Determining whether the speed is constant

Students used various approaches to determine whether
the speed in a kinematics graph is constant or not. As
explained by Wemyss and van Kampen, most correct
responses are based on an argument that the graph depicts
a straight line or that the slope is constant [1]. For example,

“Since the slope of the graph is constant, the speed will
be constant.”

“The speed is constant because the xðtÞ graph is a
straight line.”
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Another important category comprises responses that
rely on an interval reasoning [1]. The interval reasoning
can be divided into two subcategories: a qualitative
approach, e.g.,

“In the same time, the ball moves the same distance.”

or a quantitative approach,

“The water level changes with constant speed since

v ¼ Δx
Δt

¼ x2 − x1
t2 − t1

¼ −0.4 ¼ constant:”

However, contrary to the algebra-based physics students
at DCU, a significant fraction of students at KU Leuven
and UPV/EHU used an approach based on the derivative
of the function, for example,

“The vðtÞ graph is the derivative of the xðtÞ graph, and
is a straight line parallel to the x axis.”

“v is the derivative of x and is constant.”

Since these responses are also linked to the character-
istics of straight line graphs, we chose not to add
differentiation as a new category but to relabel the
existing category to accommodate responses based on
the derivative. Some students who gave correct responses
used a combination of these approaches, a few used a
different approach like proportional reasoning, and a few
gave no explanation.
The final categorization and the prevalence of the

corresponding responses can be found in Table I. In all
three universities we observed significant differences in the
prevalence of approaches used in the ball question and the
swimming pool question. The most striking difference is in
the fraction of students writing that the speed of the ball
decreases over time. Since the prevalence of this kind of
reasoning was independent of the slope of the graph, we

believe this is not an example of slope-height confusion. It
is more likely students made an v ¼ x=t error, as illustrated
by this explanation:

“The speed of the ball decreases as we see in the
graph. Speed is distance divided by time and gradually
decreases.”

Some students set up a table showing that the speed
decreases over time.
By contrast, very few students wrote down that the water

level changed at a decreasing rate. We also noticed that
the calculus-based physics students generally like to use a
qualitative interval approach in the ball question, and prefer
a quantitative interval approach in the swimming pool
question. Moreover, many of the incorrect responses to the
swimming pool question used a speed equals distance over
time argument. These observations support the hypothesis
that incorrect application of “speed equals distance over
time” is an important obstacle for students in algebra-based
and calculus-based courses alike.
The prevalence of the responses is different for the three

universities. This can be explained by the differences in
attainment. Since the DCU students follow an algebra-
based course, Wemyss and van Kampen did not observe
arguments based on the derivative of a function [1].
However, the most conspicuous difference is that students
at UPV/EHU strongly favor the interval approach. This is
probably due to teaching methods used in the Basque
educational system. While students learn to determine both
the slope of a straight line and the interval approach, the
latter is promoted when solving kinematics problems in
secondary school and in the introductory physics course at
university. DCU students used interval reasoning much
more in the post-test, after the implementation of an
intervention that used the interval approach [1]. These
findings suggest that the students’ approach to answering
qualitative questions depends strongly on the instruction
they received. In Subsec. IV B we will discuss whether

TABLE I. Categorization and prevalences of approaches to determining whether the speed of the ball or rate of change of the water
level is constant, increasing, or decreasing. Correct responses (constant speed) are printed in bold, and are subdivided by the argument
students used to explain their response.

KU Leuven UPV/EHU DCU

Ball Water level Ball Water level Ball Water level
(n ¼ 208) (n ¼ 229) (n ¼ 129) (n ¼ 119) (n ¼ 550) (n ¼ 343)

Constant speed (total) 86% (179) 93% (213) 78% (100) 84% (100) 77% (423) 96% (330)
Straight line or constant slope or derivative 44% (92) 50% (115) 7% (9) 18% (22) 39% (213) 40% (138)
Interval reasoning 31% (64) 28% (65) 61% (79) 63% (75) 25% (139) 47% (160)
Intervalþ constant slope 10% (20) 14% (32) 1% (1) 0% (0) 1% (8) 2% (7)
Other 1% (3) ≈ 0% (1) 9% (11) 3% (3) 11% (63) 7% (25)

Speed increases 2% (4) 1% (2) 0% (0) 0% (0) ≈ 5% 0% (0)
Speed decreases 12% (24) 5% (12) 12% (16) 0% (0) ≈18% 0% (0)
No response or incoherent ≈0% ð1Þ 1% (2) 10% (13) 16% (19) ≈1% 4% (13)
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there is a preferred approach that promotes successful
determination of instantaneous speed.

3. Determining the instantaneous speed

Essentially all students in the algebra-based course at
DCU who evaluated the instantaneous speed correctly used
v ¼ Δx=Δt. The students at KU Leuven and UPV/EHU
use a larger variety of strategies. Some students set up the
expression for the straight line and took the derivative, e.g.,

“The graph’s equation is a straight line:

yðtÞ ¼ yð5Þ − yð0Þ
5

tþ yð0Þ ¼ −
2

5
tþ 2.4

The derivative of this expression is the speed:

y0ðtÞ ¼ −
2

5
: Thus; y0ð2Þ ¼ −

2

5
− 0.4”

Students who use this approach must at some point also
calculateΔx=Δt to set up the expression of the straight line.
Nevertheless, we added a separate category for these
responses, since they seem to explicitly distinguish
between the speed at an instant (v ¼ dx=dt) and the
average speed (v ¼ Δx=Δt). The former is the definition
of the instantaneous speed, while the latter is only equal to
the instantaneous speed in the specific case of a straight line
graph. It is possible that some of our students did not
understand that both approaches lead to the same result,
showing they have problems relating the average speed to
the instantaneous speed. Difficulties caused by misunder-
standing the difference between instantaneous slopes and
average slopes have been documented in several papers
[1,22,26,27].
Another new category contains responses that rely on

kinematics formulas (x ¼ x0 þ vt or similar), for example,

“x ¼ x0 þ vtþ at2

2
with

at2

2
¼ 0;

so

x ¼ x0 þ vt and v ¼ 1.6 − 2.4
2

¼ −0.4
m
s
”

Students from calculus-based courses are more likely to
use these formulas, since they are taught how to derive the
expressions and may therefore link them to graphical
representations. The final results for this question are
summarized in Table II.
The use of expressions that are only valid for linear

functions that go through the origin (v ¼ x=t or similar)
was the most prevalent error at all three universities. Only
one student at KU Leuven read the distance from the graph
and none did so at UPV/EHU; this was much more
common at DCU. For this reason we amended the
categorization and merged the original “read off” category
and the “other” category. In general, the approaches
calculus-based physics students at KU Leuven and UPV/
EHU used are quite similar. However, these students are
significantly more successful in determining the instanta-
neous speed than algebra-based physics students at DCU,
which is likely another consequence of their prior knowl-
edge and experience with mathematics. These findings are
in complete agreement with the observations of Beichner
discussed in Sec. II [16].
We did not find significant differences in the problem

solving strategies used in the ball problem versus the
swimming pool problem at UPV/EHU. At KU Leuven,
the success rate for both questions was similar, but we
observed that significantly more students used a kinematics
approach in the situation with a moving ball. This might
result from the difference in context: students are used to
applying kinematics formulas in situations with moving
objects that are often used in textbooks, like balls, cars, or
arrows. However, in this context of changing water level
that is rarely used in textbooks, they seem to rely on
techniques learned in math courses. This was different for
the algebra-based physics students at DCU, who did
significantly better on the question about the changing
water level and used arguments based on interval reasoning
more often than calculus-based physics students [1].

TABLE II. Categorization and prevalences of approaches to determining the speed at a particular instant. Correct responses are printed
in bold.

KU Leuven UPV/EHU DCU pretest

Ball Water level Ball Water level Ball Water level
(n ¼ 208) (n ¼ 229) (n ¼ 129) (n ¼ 119) (n ¼ 550) (n ¼ 343)

Correct instantaneous speed (total) 73% (151) 66% (150) 59% (76) 62% (74) 16% (87) 41% (139)
Δx=Δt or similar 49% (102) 46% (106) 43% (56) 50% (59) 16% (87) 41% (139)
Kinematics formula 8% (17) 2% (4) 10% (13) 4% (5) 0% (0) 0% (0)
Determine slopeþ derivative 16% (32) 17% (40) 5% (7) 9% (10) 0% (0) 0% (0)

x=t or similar 21% (44) 23% (52) 28% (36) 23% (27) 58% (317) 17% (59)
No response or incoherent or other 6% (13) 12% (27) 13% (17) 15% (18) 26% (141) 42% (145)
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Many students in the algebra-based course at DCU
calculated the instantaneous speed as v ¼ x=t, immediately
after stating that the speed is constant. Some students even
gave a correct numerical value for the average speed when
explaining that the speed is constant, yet did not appear to
question the different value they calculated for the instanta-
neous speed [1]. 70%–85% of the students in calculus-
based courses who correctly determined the speed to be
constant correctly determined the instantaneous speed. As
in [1], a considerable number of students calculated the
instantaneous speed as v ¼ x=t, right after stating the speed
is constant. Some students even give a correct value for the
constant speed, but use a different value for the instanta-
neous speed. The following response shows how some
students make an explicit distinction between average and
instantaneous speed:

“The water level changes with a constant speed because
the xðtÞ graph is a straight line, and the derivative of a
linear function is a constant.

v ¼ Δx
Δt

¼ 160 − 200

200 − 100
¼ −0.4 m=s:

This is the average speed (it is the same in every
interval). The instantaneous speed can be calculated as

v ¼ x
t
¼ 160

200
¼ −0.8 m=s:

This is the instantaneous speed at t ¼ 200 s, it is
equal to

v ¼ lim
t→0

Δx
Δt

:”

Comparable issues with the definitions of average and
instantaneous speed were observed at DCU [1].

B. Qualitative understanding as a predictor for
determining the value of the speed

Table I shows that quite a few students in calculus-based
physics courses did not write down that the distance or
water level changed at a constant rate. About 20% of these
students determined the speed, which is significantly more
than the algebra-based physics students at DCU, where
less than 2% who stated that the speed was not constant
calculated it correctly [1]. This shows that some calculus-
based students succeed in finding a value for the speed
without correctly interpreting the physics, while this is
almost impossible for algebra-based physics students. We
can therefore hypothesize that a qualitative understanding
of a linear kinematics graph is necessary for algebra-based
students to find a value for the instantaneous velocity, but
merely desirable for the calculus-based students. However,
for neither group of students is it a sufficient condition,

since many students correctly decided that the distance or
water level changed at a constant rate but did not determine
a correct value for the instantaneous speed.
When only taking into account the students who

answered the qualitative part of the question correctly,
Wemyss and van Kampen surprisingly found that their
students’ strategies to determine the speed at an instant
were independent of the argument they used to correctly
decide that the speed is constant [1]. By using the same
approach as Wemyss and van Kampen, we could confirm
this result. We made several tables with the arguments
students used to correctly state that the speed is constant
as columns, and the strategy they used to determine a value
for the instantaneous speed as rows. Since the p values
that resulted from a χ2 test were all higher than 0.16
(> α ¼ 0.05), we could accept the null hypothesis that
these columns and rows are independent. This shows that
qualitative understanding is not only insufficient for finding
the right value for the speed, but also a poor predictor for
the approach students use when determining the instanta-
neous speed. This implies there is no “best way” to teach
students about the qualitative characteristics of a linear
kinematics graph, since there is a weak correlation with the
approach they use to calculate the speed. This finding
applies to students in both calculus-based and algebra-
based courses.

C. The ability to determine the slope
in a context-free graph as a predictor

The responses to the question on context-free graphs did
not lend themselves to the categorization of Wemyss and
van Kampen [1]. First, we saw almost no “read off” errors.
Since the number of students in this category was also small
at DCU, the category was merged with the “other”
category. Second, we found that many students at KU
Leuven and UPV/EHU used an argument based on the
derivative of the function. Often, such an argument was
used in combination with one or more of the three
subcategories identified by Wemyss and van Kampen:
stating “the” formula for slope [e.g., ðy2 − y1Þ=ðx2 − x1Þ]
without noting the points they used, similar responses
indicating which two points they used, and numerical
interval reasoning. We were unable to establish a reason-
able number of subcategories, and therefore abandoned any
subcategorization. The final categorization of responses to
questions on context-free graphs can be found in Table III.
When comparing the results of the three universities, we

observed no significant differences between KU Leuven
and UPV/EHU, but there was a deviation from the results
obtained at DCU. This is probably again due to the prior
knowledge of the students, as the students from the algebra-
based course in Ireland generally had received less training
in mathematical techniques than the students enrolled in
calculus-based courses in Belgium and Spain.
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In Sec. II, we discussed earlier research showing that
students tend to do better with questions on context-free
graphs than with graphs in a kinematics (or other) context
[22–24]. We verified this result for the algebra-based
physics students at DCU using a two-tailed two-proportion
z test with a significance level α ¼ 0.05. However, when
examining the responses of the calculus-based students at
KU Leuven and UPV/EHU, we noticed that the differences
in success rates between context-free and context-rich
kinematics questions were not always significant. This
leads us to believe that there is a larger gap between
mathematics and physics for algebra-based physics stu-
dents than for calculus-based physics students when it
comes to the determination of the slope in linear graphs.
While Christensen and Thompson suggested that student
difficulties regarding the slope and derivative may have
origins in the understanding of the mathematical concepts
[22], our results suggest that other factors are at play
as well.
Finally, we found that there is little or no correlation

between the ability to determine the slope at a point on a
linear context-free graph and understanding that the speed
is constant in a kinematics graph. Moreover, we found
almost no correlations between the responses on the
context-free question and the strategies used in the deter-
mination of the instantaneous speed. Consequently the
ability to determine the slope at a point on a context-free
graph seems to be a poor predictor for how students answer
questions about kinematics graphs, confirming the findings
of Wemyss and van Kampen. [1].

V. CONCLUSIONS

The research described above allows us to answer the
research questions in Subsec. III A. In addition we discuss
implications for instruction and ideas for future research
projects.
The majority of students from all three universities

can correctly identify the direction of motion in a linear
kinematics graph. However, some students appear to
struggle with the reference point implicit in distance-time
graphs. By contrast, almost all students can correctly
interpret whether water is entering or leaving a pool.

The sign of the slope of the graph had no influence on
the responses.
We have identified two principal approaches students

use to determine correctly whether the speed is constant:
(i) the line is straight, or the slope or the derivative is
constant, and (ii) interval reasoning. Other approaches
and combinations of approaches rarely occur. Incorrect
responses almost all stem from dividing the two coor-
dinates, most likely due to misinterpreting the phrase
“speed equals distance over time.” This categorization
applies to both linear distance-time graphs and linear
water level versus time graphs, with positive or negative
slope. Our results show that it is important to explicitly
include one or both of the successful approaches, and that
students need to carefully consider that dividing two
coordinates gives incorrect answers when the straight
line does not go through the origin.
To determine the instantaneous speed correctly, the

majority of students use interval reasoning: they calculate
Δx=Δt or use a similar approach. Compared to the analysis
performed by Wemyss and van Kampen, this “correct”
category was extended with subcategories based on the
derivative of a function and kinematics formulas. Incorrect
interpretation of “rise over run” as “y=x” was the most
frequent error. A third category comprised all other
responses and students that did not give a response.
These three major categories emerged from our data and
could be used irrespective of the context of the question and
the sign of the slope. While the prevalence of certain
responses varied between universities, the same categori-
zation applied to all the data. This indicates that students
use similar strategies to solve these questions and struggle
with the same issues, regardless of the educational
approach (calculus-based versus algebra-based physics)
and country (Ireland, Belgium, or Spain).
We found that a qualitative understanding of kinematics

graphs is a necessary but insufficient condition for students
in algebra-based courses to correctly determine instanta-
neous speed. For students in calculus-based courses, it is
neither necessary (though highly desirable) nor sufficient.
This implies that both qualitative and quantitative aspects
of linear kinematics graphs should be taught. The argument
students use to explain why they think the speed is constant

TABLE III. Categorization and prevalences of approaches to determining the slope of a context-free graph at a particular point. Correct
responses are printed in bold.

KU Leuven UPV/EHU DCU

Positive slope Negative slope Positive slope Negative slope Positive slope Negative slope
(N ¼ 92) (N ¼ 122) (N ¼ 129) (N ¼ 119) (N ¼ 206) (N ¼ 205)

Δy=Δx or similar 77% (71) 76% (93) 64% (83) 69% (82) 52% (107) 46% (94)
y=x or similar 3% (3) 3% (7) 12% (15) 4% (5) 18% (37) 24% (50)
Other 15% (14) 14% (17) 18% (23) 13% (16) 18% (37) 15% (30)
No answer 4% (4) 7% (8) 6% (8) 13% (16) 12% (25) 15% (31)
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does not correlate with the approach they use to determine
the instantaneous speed.
The ability to determine the slope of a context-free graph

is neither necessary nor sufficient to solve problems
involving a kinematics graph, and is a poor predictor for
the approach students will use. Students in the algebra-
based course fared significantly better with questions on
context-free graphs than on kinematics graphs, but the
difference was less pronounced for calculus-based students.
This may indicate calculus-based students have fewer
problems transferring their knowledge and skills from
mathematics to physics than algebra-based physics stu-
dents; however, this claim needs to be verified further in
other contexts.
We found that students in calculus-based courses have

higher success rates than students in algebra-based courses,
confirming Beichner’s findings [16]. At all three univer-
sities more than half of the incorrect responses used
v ¼ x=t instead of v ¼ Δx=Δt to determine instantaneous
speed. This indicates that students in calculus-based
courses and algebra-based courses encounter similar diffi-
culties, albeit with different prevalences. As Maries and
Singh have shown, for graduate students enrolled in

teaching assistant training it is often difficult to identify
the problems university students have with graphs in
kinematics [28]. To design effective instruction and useful
learning activities, it is important that instructors and
teachers are aware of student difficulties. We agree with
Berg and Smith that the learning outcomes of these
activities should be carefully evaluated and validated [29].
The different circumstances in the three universities in

different countries is both a strength and a limitation of the
research presented here. Our conclusions and categoriza-
tions are strengthened by the diversity. We encourage
others to confirm the validity of our results at other
universities and at the high school (secondary school)
level, and undertake additional qualitative research and
pretest/post-test analysis whenever an intervention is
attempted.
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