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Topological diffusive metal in amorphous transition metal monosilicides
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In chiral crystals crystalline symmetries can protect multifold fermions, pseudorelativistic masless quasipar-
ticles that have no high-energy counterparts. Their realization in transition metal monosilicides has exemplified
their intriguing physical properties, such as long Fermi arc surface states and unusual optical responses. Recent
experimental studies on amorphous transition metal monosilicides suggest that topological properties may sur-
vive beyond crystals, even though theoretical evidence is lacking. Motivated by these findings, we theoretically
study a tight-binding model of amorphous transition metal monosilicides. We find that topological properties
of multifold fermions survive in the presence of structural disorder that converts the semimetal into a diffusive
metal. We characterize this topological diffusive metal phase with the spectral localizer, a real-space topological
indicator that we show can signal multifold fermions. Our findings showcase how topological properties can
survive in disordered metals, and how they can be uncovered using the spectral localizer.
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Introduction. Crystalline topological metals host quasi-
particles classified according to the symmetries required to
protect them. For example, Weyl semimetals require no sym-
metries to realize Weyl quasiparticles, which are spin-half,
gapless low-energy quasiparticles governed by the Weyl equa-
tion [1]. Weyl bands disperse linearly around a two-band
crossing point, accompanied by a quantized flux of Berry
curvature, known as the monopole charge. The absence of
symmetry requirements endows Weyl points with a relative
robustness against disorder [2–20], explaining why they have
been predicted to survive even in noncrystalline lattices [21].

Higher-spin generalizations of Weyl quasiparticles known
as multifold fermions, predicted and observed in chiral
crystals [22–31], seem more delicate. Their bands disperse
linearly around multiband crossing points and can have an
associated monopole charge. However, in contrast to Weyl
quasiparticles, they require crystalline symmetries to ensure
their robustness. The effect of disorder on multifold semimet-
als is much less explored [32,33], and it seems paradoxical
that topology can survive the absence of long-range lattice
order.

In this work we investigate to what extent the above
expectation holds in a noncrystalline amorphous model.
Our main result is that topological properties of multi-
fold fermions can survive the absence of crystal symmetry.
Recently, amorphous insulators have been predicted and ob-
served to display topological phases, owing to the finite
energy scale endowed by the gap [34–47]. Indeed, models
of amorphous Chern insulators [34–36,38–40], quantum spin-
Hall insulators [41–44], and three-dimensional topological
insulators [34,45,46] demonstrate that topology survives the
amorphicity and can even be induced by it [43]. Moreover,
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average crystalline symmetries can also protect amorphous
topological states, provided that the disorder strength is
smaller than the band gap [48–52].

In turn, the survival of topology in amorphous metals is
much more challenging to address due to the absence of a gap.
Methods to detect metallic topology in real-space are scarce,
especially in the presence of time-reversal symmetry where
local Chern markers [53,54] are identically zero.

To make progress, here we amorphisize a known
crystalline model of a chiral crystal in space group
198 [24,27,55,56]. Materials in this space group, such as
the transition metal monosilicides RhSi or CoSi, lack in-
version and mirror symmetries yet exhibit nonsymmorphic
symmetries. These materials manifest exotic physical prop-
erties such as multifold fermions at the Fermi level, long
Fermi arc surface states [55], a quantized circular photo-
galvanic effect [31,55,57–60], and unusual magnetotransport
features [23,55,61,62]. Moreover, a recent experimental study
on amorphous CoSi (a-CoSi) has found a range of intriguing
magnetotransport properties [63].

Using the recently introduced spectral localizer [64–69],
we find that multifold fermions enter a topological diffusive
metal (TDM) phase in the presence of moderate structural dis-
order. We find that localizer in-gap modes can be traced back
to the existence of multifold fermions and coexisting with
spectral properties characteristic of a diffusive metal [13].
Upon increasing disorder, the localizer in-gap modes are lost,
leaving behind a trivial diffusive metal (DM) that eventually
localizes into a trivial Anderson insulator (AI). Using the
spectral localizer to define TDMs can be extended to any
symmetry class and hence is the main result of this work [see
Fig. 1(a)].

Model Hamiltonian. Amorphous systems lack long-range
order, but they display short-range ordering, dictated by the
local chemistry of the elements [70]. This implies the exis-
tence of preferred bond lengths and angles peaked around the
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FIG. 1. (a) Schematic phase diagram found in this work, includ-
ing the multifold semimetal (MSM), the topological diffusive metal
(TDM), the diffusive metal (DM), and the Anderson insulator (AI)
phases, as a function of the disorder variance σ . The TDM persists
until σTDM that is defined in Fig. 4 and is signaled by in-gap states
of the localizer as well as a finite DOS at EF typical of a diffusive
metal. The trivial DM phase is delimited by σAI, defined in Fig. 3,
from the AI phase. (b) Orbitals of the crystalline unit cell. (c) The
nearest-neighbor interorbital hoppings v1±vp

4 represented by solid
and dashed lines. The color denotes hoppings between different sets
of orbitals: red for A-B/C-D, blue for A-D/B-C, and green for
A-C/B-D. (d) Band structure for parameter regime (i) with v1 =
v2 = 0 and vp = −0.762. (e) Band structure for parameter regime
(ii), a-RhSi, with v1 = 0.55, v2 = 0.16, and vp = −0.762. Solid and
dashed curves correspond to maximum hopping radii dc = 1.01 and
1.5, respectively. In panel (d), the spectrum is doubly degenerate with
two double-Weyl fermions occurring at � and R points. In panel
(e), a-RhSi regime, we see a threefold fermion at the � point and
a double-Weyl fermion at the R point.

crystalline values [71–73]. Hence, we first revisit the crys-
talline model of RhSi and CoSi, in space group 198, on which
we base our amorphous model. This space group has three
nonintersecting twofold screw symmetries s2x,y,z and a diag-
onal cubic threefold rotation C3,111. The spin-orbit coupling
in RhSi [55] and CoSi [74] is weak (tens of millielectron
volts), and is neglected in our simulations. In this case, the
band structure near the Fermi level is captured by a tight-
binding Hamiltonian with four s-type orbitals (A, B, C, D)
positioned at (0,0,0), ( a

2 , 0, a
2 ), ( a

2 , a
2 , 0), and (0, a

2 , a
2 ) [see

Fig. 1(b)] [55]. In the following, we measure all distances
in units of a. Nearest-neighboring orbitals are connected by
interorbital hoppings while second nearest-neighbors are con-
nected via intraorbital hoppings. Figure 1(c) illustrates the
interorbital hoppings within the unit cell, which take two
values (v1 ± vp)/4, depending on the bond orientation. The
amplitude v2/2 of intraorbital hoppings is independent of the
bond orientation. The Bloch Hamiltonian is discussed further
in the Supplemental Material (SM) [75].

It is convenient to consider two parameter regimes,
expressed in electron volts: (i) when only vp = −0.762
is nonzero, and (ii) when v1 = 0.55, v2 = 0.16, and

vp = −0.762 eV. The hopping amplitudes in regime (ii)
are chosen such that the crystalline tight-binding Hamil-
tonian [75] reproduces well the density-functional theory
calculated band structure of RhSi near the Fermi level [55].
Hence, in the following we refer to regime (ii) as a-RhSi
regime. The red curves in Figs. 1(d) and 1(e) show bulk
spectra for the two regimes, respectively. In regime (i), the
spectrum is doubly degenerate in the entire Brillouin zone and
features two double-Weyl fermions, one at the � point and
one at the R point, occurring at the same energy E = 0. In the
a-RhSi regime, v1 and v2 turn the double-Weyl fermion at �

into a threefold fermion, energetically shifted with respect to
the double-Weyl fermion at the R point. In both regimes, the
crossings at � and R have monopole charges C = 2 and −2,
respectively.

We create the amorphous lattice by displacing every site
n (representing a single orbital) of crystalline RhSi by δrn =
(δxn, δyn, δzn) drawn from a Gaussian distribution:

D(δrn) = 1

2πσ 2
exp

[
−|δrn|2

2σ 2

]
. (1)

The variance σ 2 is typically proportional to the quenching
temperature to form the amorphous solid, σ 2 ∝ kBT [43].
To avoid artificial clustering of sites, we impose a minimal
distance of dmin = 0.4 [48]. The possible hoppings ṽα (α = 1,
2, and p) between sites at positions rn = (xn, yn, zn) and rm =
(xm, ym, zm) are determined from

ṽα = ṽα (d )ṽα (θ, φ) exp

[
1 − d

d0
α

]
	(dc − d ), (2)

in spherical coordinates (d, θ, φ) with d = |rn − rm|. Here, d0
α

depends on whether the hopping is interorbital, where d0
1 =

d0
p = 1/

√
2, or intraorbital, where d0

2 = 1.
Since the intraorbital hopping v2/2 of crystalline RhSi is

independent of bond orientation [75], we take ṽ2(θ, φ) = 1
and ṽ2(d ) = v2/d . The interorbital hopping of crystalline
RhSi has amplitude (v1 ± vp)/4 [see Fig. 1(c)], where the
hopping vp is direction dependent, unlike v1. Hence, we take
ṽ1(θ, φ) = 1, ṽ1(d ) = v1/

√
2d , and ṽp(d ) = vp/d . In con-

trast, the hopping ṽp(θ, φ) depends on the type of orbitals that
form the bond as detailed in the SM [75]. The hopping ṽα

recovers the original tight-binding Hamiltonian in the crys-
talline limit when σ → 0 [55,75].

The step function 	 in Eq. (2) ensures that the maximum
distance between two sites is dc, whose effect is shown in
Figs. 1(d) and 1(e). Notably for a-RhSi longer-range hoppings
reduce the energy difference between threefold and double-
Weyl fermions. In our simulations, dc = 1.5, which allows
one to account for longer-range hoppings [see SM [75]].

Lastly, to account for possible potential disorder [48], we
add random on-site potentials drawn from the Gaussian dis-
tribution Eq. (1). Thus, our model accounts for all types of
disorder expected in amorphous solids: on-site, hopping, and
structural disorder.

Spectral properties. The density of states (DOS) charac-
terizes disordered topological semimetals [15] and can be
defined as ρλ(E ) = 1

V

∑
m δ(E − Em), where λ labels a dis-

order realization, m runs over all states of the system, and
V = 4L3 for a cubic system with L unit cells in each direction.
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FIG. 2. (a) ρ(E ) vs E as a function of σ . Dashed and dotted
lines represent fit functions αE 2 and α + β|E |, respectively. (b) The
averaged zero-energy DOS ρ̄0 as a function of disorder strength σ ; ρ0

becomes nonzero at σ ≈ 0.1. (c) ρ̄ (2)(0) vs σ peaks around σc = 0.08
independent of system size (L = 12 and 20) and KPM order NC . We
define ρ̄ (2)(0) = ∑Ndis

λ=1(ρλ)(2)(0), where (ρλ)(2)(0) is estimated from
a fit ρλ(E ) = ρλ

0 + (ρλ)(2)(0)E 2 in the energy range (−0.2, 0.2) for
independent disorder realizations λ.

For every disorder realization, the DOS is calculated using
the numerically efficient kernel polynomial method (KPM),
which relies on a Chebyshev polynomial expansion up to
order NC [76]. In the following, we study the disorder-
averaged DOS ρ̄(E ) = 1

Ndis

∑Ndis
λ=1 ρλ(E ), with Ndis = 16.

We focus first on regime (i) that has two double-Weyl
fermions at E = 0 in the crystalline limit. Figures 2(a)
and 2(b) show ρ̄(E ) for different disorder strengths and ρ̄0 ≡
ρ̄(E = 0) for different KPM orders NC , respectively. We see
that for σ � 0.04, ρ̄(E ) → |E |2, as in periodic systems with
(double-)Weyl fermions at the same energy. Once the disorder
strength is increased up to σ ≈ 0.07, ρ̄ ∝ |E | close to E = 0.
Additionally, at σ = 0.1 the DOS at E = 0 becomes nonzero.
Figure 2(b) reveals that ρ̄0 �= 0 for σ � 0.1 signaling that the
system becomes a diffusive metal, a phase with constant DOS
in a range of energies.

This behavior suggests a putative quantum critical point
(QCP) at a certain σc, where the semimetal phase is replaced
by a diffusive metal [13,16]. To study this phase transition
in more detail, Fig. 2(c) shows ρ̄

(2)
0 , extracted from a low-

energy fit ρ̄(E ) = ρ̄0 + ρ̄
(2)
0 E2 to the DOS [13]. It remains

finite with a maximum at σc ≈ 0.08, which shifts little with
increasing system size or the order of the KPM expansion.
This nondivergent behavior signals that the putative QCP is
avoided [13].

Avoiding such a QCP is enabled by the presence of statis-
tically rare states [13]. Rare states are low-energy eigenstates
that are quasibounded to the real-space regions with uncharac-
teristically large potential strengths that are statistically rare.
In the thermodynamic limit, these statistically rare events are
likely to occur for any nonzero σ . As a result, ρ̄0 becomes
exponentially small in disorder strength but nonzero, implying
a crossover from a semimetal phase to a diffusive metal phase
instead of a perturbative transition [13,16] [see SM [75] for
more details].

Importantly, it is the vanishing DOS at the band crossing
that makes rare states dominate the physics of disordered Weyl
semimetals. The DOS vanishes at E = 0 for parameter regime
(i), where two Weyl nodes coexist at the Fermi level, but not

for the a-RhSi regime (ii). In the latter, disorder can couple
states without energy penalty [77], turning the a-RhSi regime
into a diffusive metal for any infinitesimal amount of disorder.

Anderson localization. While eigenstates of diffusive
metals are extended, sufficiently strong disorder will turn
metallic systems into Anderson insulators with localized
eigenstates [15]. Localized states interact weakly, thus pro-
ducing an uncorrelated energy spectrum that obeys a Poisson
distribution function [78]. On the metallic side, the overlap of
delocalized states leads to the repulsion of associated energy
levels. For spinless and time-reversal symmetric systems, like
a-RhSi, such a spectrum falls under the Gaussian orthogonal
ensemble (GOE) of random matrices [79].

To distinguish between metallic and insulating regimes,
we calculate the adjacent energy level spacing ratio and the
inverse participation ratio (IPR) of states at the Fermi level
EF . The adjacent level spacing ratio is defined as

r = 1

NE − 2

∑
m

min(Ẽm,m−1, Ẽm+1,m )

max(Ẽm,m−1, Ẽm+1,m )
, (3)

where Ẽm,n = Em − En and the energy levels are arranged
such that Em > Em−1. The sum is performed over NE en-
ergy levels within the interval [EF − 
E , EF + 
E ]. The
GOE and Poisson spectra have rGOE ≈ 0.54 and rP ≈ 0.39,
respectively [80]. To quantify the localization of a set of
eigenstates near EF , we use the IPR defined as IPR =∑

m

∑
rn

|�m(rn)|4/NE . Here �m is the eigenstate correspond-
ing to the mth eigenvalue, and the sum is taken over the same
energy window [EF − 
E , EF + 
E ] as for r. The IPR is
close to zero (unity) for delocalized (localized) states.

In the following, we focus on small system sizes L = 6, 8,
and 10 where exact diagonalization is possible. We fix EF = 0
and 
E = 0.1 in order to probe the physics near the multifold
crossings, and we calculate the disorder-averaged r and IPR:
r̄ ( ¯IPR) = 1

Ndis

∑Ndis
λ=1 rλ (IPRλ), where Ndis = 101. The results

are shown in Figs. 3(a) and 3(b) for the parameter regime
(i) and the a-RhSi regime, respectively. In both cases, we
observe that the transition from r̄ ≈ 0.54 (GOE) to r̄ ≈ 0.39
(Poisson) occurs gradually due to finite-size effects, a behav-
ior also reflected in the ¯IPR that changes from 0 to ≈ 1 as σ

is increased.
To find the disorder strength for which the topolog-

ical phase transition into Anderson insulator phase oc-
curs, we use the typical DOS at E = 0 defined as ρ̄t

0 =
exp[

∑
rn

(
∑Ndis

λ=1 log ρλ
0 (rn)/Ndis )/Vt ]. Here, ρλ

0 (rn) is the local
DOS at site rn and energy E = 0, while Vt = 32 is the total
number of sites (eight sites in the bulk for each orbital type).
We calculate the typical DOS for a system of linear size
L = 20. Since the typical DOS is not a self-averaging quantity,
we set the number of disorder realizations to Ndis = 51. The
results are shown in Figs. 3(c) and 3(d) for regime (i) and the
a-RhSi regime, respectively. The typical DOS is sensitive in
the order of the KPM expansion NC [15], and to determine σAI

we extrapolate ρt
0 to zero using the Richardson extrapolation

method for data points obtained with NC = 214. We obtain
σAI = 2.715 for regime (i) and σAI = 2.985 for the a-RhSi
regime.

Topological phase diagram. Lastly, we are interested in
quantifying to what extent the topological properties of
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FIG. 3. Panels (a) and (b) show disorder-averaged adjacent level
spacing ratios (solid lines) and inverse participation ratios (dashed
lines) at EF = 0 as a function of disorder strength σ for a system
in parameter regime (i) and the a-RhSi regime, respectively. Panels
(c) and (d) show the disorder-averaged typical DOS for different
orders of the KPM expansion NC as a function of σ for a system
in parameter regime (i) and the a-RhSi regime, respectively. Here,
σAI is the critical disorder strength at which the system transitions
from a DM phase to an AI phase.

multifold fermions survive disorder. In time-reversal symmet-
ric systems like RhSi, we cannot use real-space invariants like
the local Chern marker [54] or the Bott index [53], used for
time-reversal breaking Weyl semimetals [21,81]. Instead, we
resort to the recently introduced spectral localizer [67–69].

In three dimensions, the spectral localizer is defined
as [67,69]

L(r, E ) = κ

3∑
j=1

γ j (Xj − x jI) + γ4(H − EI), (4)

where Xj are position operators corresponding to the Hamil-
tonian H , and the matrices γ j form a Clifford representation
{γ j, γi} = 2δi j . We choose γ j = τzσ j for j = 1, 2, and 3 and
γ4 = τxσ0, where σ j and τ j are Pauli matrices. The coeffi-
cient κ fixes the units and relative weights between Xj and
H [65,69]; see also the SM [75] for a discussion concerning
different values of κ . While the spectral localizer can be eval-
uated at any position r and energy E , here we choose r to
be at the center of our system (r = 0 → x j = 0 ∀ j) in order
to probe the bulk properties at E = 0. In the following, we
abbreviate L(0, 0) with L0.

The spectrum of L0 consists of pairs (ε,−ε) because L0

obeys chiral symmetry C = τyσ0I. In the crystalline limit, the
parameter regime (i) yields four states pinned at ε = 0, which
are separated from the remaining states by a gap of order

√
κ .

Using a semiclassical analysis of the operator L2
0 [68,75], it is

possible to show analytically that each Weyl node contributes
exactly one zero mode [68]. We have generalized such an
analysis [75] for the case of a system with threefold and
double-Weyl fermions, i.e., the a-RhSi regime, predicting
four midgap modes as well [75]. The number of midgap
modes of L0 can be thus used to signal multifold fermions in
both regimes, as trivial metals present different midgap mode
counting [82].

To study how L0 changes with disorder, we focus on its
DOS ρL0 , calculated using the KPM [76] with an energy

FIG. 4. Panels (a) and (c) show ρ̄L0 —the disorder-averaged DOS
of the operator L0 as a function of disorder strength σ for regime (i)
and the a-RhSi regime, respectively. In panels (b) and (d) are plotted
disorder-averaged energies of the midgap and first-excited states ε̄0

and ε̄1 and their difference ε̄1 − ε̄0 as a function of σ for the two
parameter regimes. Here, dashed green lines represent the topologi-
cal phase transition point σTDM at which ε̄1 ≈ 2ε̄0. The dashed black
line represents a fit ε̄0 = a

√
σ , where a = 0.0692 in regime (i) and

a = 0.0696 in regime (ii). The insets of panels (b) and (d) show how
well ε̄0 matches with the predicted form κ0.75σ [68] (gray line) in
the case of small disorder strengths. For panels (a)–(d), we consider
κ = 0.1 and Ndis = 25. In panel (e) are plotted disorder-averaged
(Ndis = 10) momentum-resolved spectral functions Ā(k, E = −0.3)
for different disorder strengths σ .

resolution of 
ε = 5 × 10−4 (NC ∼ 6000). The system size is
L = 12 and we consider Ndis = 25 disorder realizations. Fig-
ure 4(a) shows the disorder-averaged DOS ρ̄L0 , as a function
of disorder strength σ for regime (i). From Fig. 4(a), we see
that as σ is increased, the four zero-energy states split into
a pair of peaks that move away from ε = 0 in a symmetric
fashion. In parallel, disorder reduces the spectral localizer gap
and, at around σTDM = 0.35, the energies of the midgap and
first-excited states become comparable, indicating the transi-
tion into a trivial DM. The existence of the topological in-gap
modes of L0 for σ < σTDM defines the topological diffusive
metal phase [see Fig. 1(a)].

The transition from a TDM to a trivial DM is also apparent
by tracking, for every disorder realization λ, the peak posi-
tions ελ

0 and ελ
1 corresponding to the midgap mode and the

first-excited state, respectively. In Fig. 4(b), we plot disorder-
averaged energies ε̄0,1 = 1

Ndis

∑Ndis
λ=1 ελ

0,1 as a function of σ .
We see that ε̄0 and ε̄1 approach each other for small disorder
strengths, and without crossing each other they start to evolve
together with stronger disorder, indicating a topologically
trivial system. Since a topological phase is preserved with
disorder as long as the dimensionality of the operator’s L0 null
space is nonzero, it is natural to assume that the topological
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phase transition occurs when ε̄1 − ε̄0 ≈ ε̄0 → ε̄1 ≈ 2ε̄0. For
parameter regime (i), this occurs for σTDM ≈ 0.35.

In addition, for small disorder strengths, see inset of
Fig. 4(b), we find that ε̄0 = σκ3/4 consistent with the
analytical prediction concerning weakly disordered Weyl
semimetals [68]. Moreover, we find that ε̄0 can be fitted with
a function a

√
σ (a ≈ 0.07) in the entire disorder range.

In Figs. 4(c) and 4(d) we show results for the a-RhSi
regime. Even though the system supports a threefold fermion
in the crystalline limit, ρ̄L0 behaves similarly to regime (i)
with two double-Weyl fermions. From Fig. 4(d), we see that
σTDM ≈ 0.25. Furthermore, we recover ε̄0 = σκ3/4 behavior
in the limit of small disorder, as well as ε̄0 ∝ √

σ for the entire
disorder range.

To confirm that the spectral localizer correctly captures the
topological phase transition, we study how the Fermi arcs at
the top surface of a system in the a-RhSi regime evolve with
disorder. These arcs can be seen with the disorder-averaged
momentum-resolved spectral function Ā(k, E = −0.3) that
can be measured in angle-resolved photoemission experi-
ments [83]. The plots of Ā(k, E = −0.3) in Fig. 4(e) for
disorder strengths σ = 0.15, 0.2, 0.25, and 0.3 indicate that
the Fermi arcs disappear for σ > 0.25, in agreement with the
prediction of L0. For more details, see the SM [75].

We find that both regimes behave similarly as long the
hopping amplitude vp is the largest energy scale. This con-
dition ensures a sizable difference between the amplitudes of
direction-dependent nearest-neighbor hoppings (v1 ± vp)/4.
This condition is met by the RhSi parameters but not by

those of CoSi, where the parameter v1 is more than three
times larger than the parameter vp. As a result, the topological
properties of a-CoSi are expected to be less robust compared
to a-RhSi [75].

Conclusion. We have shown that a topological type of
diffusive metal can exist in transition metal monosilicides
in the presence of structural, potential, and hopping disor-
der. Characterizing this novel phase required us to extend
the recently discovered spectral localizer L to accommo-
date multifold fermions. The spectral localizer can be used
to signal TDMs in any symmetry class, including those for
which other real-space methods yield trivial results or are
ill-defined.

Our analysis highlights a-RhSi as a more robust platform
than a-CoSi to realize the topological diffusive metal due
to a larger anisotropy between nearest-neighbor hoppings.
Looking forward, it is worth studying whether such stability
permeates to physical properties such as the photogalvanic
effect or negative magnetoresistance.

The KWANT code [84] used to generate our results is avail-
able from Ref. [85].

Acknowledgments. We thank Q. Marsal, H. Schulz-Baldes,
J. Wilson, and D. Carpentier for discussions. A.G.G. and
S.F. acknowledge financial support from the European Union
Horizon 2020 research and innovation program under Grant
No. 829044 (SCHINES). A.G.G. is also supported by a Euro-
pean Research Council (ERC) Consolidator grant under Grant
No. 101042707 (TOPOMORPH).

[1] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[2] E. Fradkin, Critical behavior of disordered degenerate semicon-
ductors. I. Models, symmetries, and formalism, Phys. Rev. B
33, 3257 (1986).

[3] E. Fradkin, Critical behavior of disordered degenerate semi-
conductors. II. Spectrum and transport properties in mean-field
theory, Phys. Rev. B 33, 3263 (1986).

[4] A. Altland and D. Bagrets, Effective field theory of the
disordered Weyl semimetal, Phys. Rev. Lett. 114, 257201
(2015).

[5] S. V. Syzranov, P. M. Ostrovsky, V. Gurarie, and L.
Radzihovsky, Critical exponents at the unconventional disorder-
driven transition in a Weyl semimetal, Phys. Rev. B 93, 155113
(2016).

[6] J. H. Pixley, P. Goswami, and S. Das Sarma, Disorder-driven
itinerant quantum criticality of three-dimensional massless
Dirac fermions, Phys. Rev. B 93, 085103 (2016).

[7] A. Altland and D. Bagrets, Theory of the strongly disordered
Weyl semimetal, Phys. Rev. B 93, 075113 (2016).

[8] B. Sbierski, K. S. C. Decker, and P. W. Brouwer, Weyl node
with random vector potential, Phys. Rev. B 94, 220202(R)
(2016).

[9] T. Louvet, D. Carpentier, and A. A. Fedorenko, On the
disorder-driven quantum transition in three-dimensional rela-
tivistic metals, Phys. Rev. B 94, 220201(R) (2016).

[10] T. Louvet, D. Carpentier, and A. A. Fedorenko, New quantum
transition in Weyl semimetals with correlated disorder, Phys.
Rev. B 95, 014204 (2017).

[11] X. Luo, B. Xu, T. Ohtsuki, and R. Shindou, Quantum multicrit-
icality in disordered Weyl semimetals, Phys. Rev. B 97, 045129
(2018).

[12] I. Balog, D. Carpentier, and A. A. Fedorenko, Disorder-driven
quantum transition in relativistic semimetals: Functional renor-
malization via the porous medium equation, Phys. Rev. Lett.
121, 166402 (2018).

[13] J. H. Pixley and J. H. Wilson, Rare regions and avoided
quantum criticality in disordered Weyl semimetals and super-
conductors, Ann. Phys. 435, 168455 (2021).

[14] R. Nandkishore, D. A. Huse, and S. L. Sondhi, Rare region
effects dominate weakly disordered three-dimensional Dirac
points, Phys. Rev. B 89, 245110 (2014).

[15] J. H. Pixley, P. Goswami, and S. Das Sarma, Anderson local-
ization and the quantum phase diagram of three dimensional
disordered Dirac semimetals, Phys. Rev. Lett. 115, 076601
(2015).

[16] J. H. Pixley, D. A. Huse, and S. Das Sarma, Rare-region-
induced avoided quantum criticality in disordered three-
dimensional Dirac and Weyl semimetals, Phys. Rev. X 6,
021042 (2016).

[17] V. Gurarie, Theory of avoided criticality in quantum motion in a
random potential in high dimensions, Phys. Rev. B 96, 014205
(2017).

L021201-5

https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevB.33.3257
https://doi.org/10.1103/PhysRevB.33.3263
https://doi.org/10.1103/PhysRevLett.114.257201
https://doi.org/10.1103/PhysRevB.93.155113
https://doi.org/10.1103/PhysRevB.93.085103
https://doi.org/10.1103/PhysRevB.93.075113
https://doi.org/10.1103/PhysRevB.94.220202
https://doi.org/10.1103/PhysRevB.94.220201
https://doi.org/10.1103/PhysRevB.95.014204
https://doi.org/10.1103/PhysRevB.97.045129
https://doi.org/10.1103/PhysRevLett.121.166402
https://doi.org/10.1016/j.aop.2021.168455
https://doi.org/10.1103/PhysRevB.89.245110
https://doi.org/10.1103/PhysRevLett.115.076601
https://doi.org/10.1103/PhysRevX.6.021042
https://doi.org/10.1103/PhysRevB.96.014205


SELMA FRANCA AND ADOLFO G. GRUSHIN PHYSICAL REVIEW MATERIALS 8, L021201 (2024)

[18] M. Buchhold, S. Diehl, and A. Altland, Vanishing density of
states in weakly disordered Weyl semimetals, Phys. Rev. Lett.
121, 215301 (2018).

[19] M. Buchhold, S. Diehl, and A. Altland, Nodal points of Weyl
semimetals survive the presence of moderate disorder, Phys.
Rev. B 98, 205134 (2018).

[20] J. H. Wilson, D. A. Huse, S. Das Sarma, and J. H. Pixley,
Avoided quantum criticality in exact numerical simulations of
a single disordered Weyl cone, Phys. Rev. B 102, 100201(R)
(2020).

[21] Y.-B. Yang, T. Qin, D.-L. Deng, L.-M. Duan, and Y. Xu, Topo-
logical amorphous metals, Phys. Rev. Lett. 123, 076401 (2019).

[22] J. L. Mañes, Existence of bulk chiral fermions and crystal sym-
metry, Phys. Rev. B 85, 155118 (2012).

[23] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J.
Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions:
Unconventional quasiparticles in conventional crystals, Science
353, aaf5037 (2016).

[24] P. Tang, Q. Zhou, and S.-C. Zhang, Multiple types of topologi-
cal fermions in transition metal silicides, Phys. Rev. Lett. 119,
206402 (2017).

[25] G. Chang, B. J. Wieder, F. Schindler, D. S. Sanchez, I.
Belopolski, S.-M. Huang, B. Singh, D. Wu, T.-R. Chang, T.
Neupert, S.-Y. Xu, H. Lin, and M. Z. Hasan, Topological quan-
tum properties of chiral crystals, Nat. Mater. 17, 978 (2018).

[26] D. S. Sanchez, I. Belopolski, T. A. Cochran, X. Xu, J.-X. Yin,
G. Chang, W. Xie, K. Manna, V. Süß, C.-Y. Huang, N. Alidoust,
D. Multer, S. S. Zhang, N. Shumiya, X. Wang, G.-Q. Wang,
T.-R. Chang, C. Felser, S.-Y. Xu, S. Jia et al., Topological chiral
crystals with helicoid-arc quantum states, Nature (London) 567,
500 (2019).

[27] D. Takane, Z. Wang, S. Souma, K. Nakayama, T. Nakamura,
H. Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K.
Horiba, H. Kumigashira, T. Takahashi, Y. Ando, and T. Sato,
Observation of chiral fermions with a large topological charge
and associated Fermi-arc surface states in CoSi, Phys. Rev. Lett.
122, 076402 (2019).

[28] Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L. Wang,
Z. Li, W. Fan, J. Li, Y. Huang, Z. Liu, Y. Long, C. Fang, H.
Weng, Y. Shi, H. Lei, Y. Sun, T. Qian et al., Observation of
unconventional chiral fermions with long Fermi arcs in CoSi,
Nature (London) 567, 496 (2019).

[29] N. B. M. Schröter, D. Pei, M. G. Vergniory, Y. Sun, K. Manna,
F. de Juan, J. A. Krieger, V. Süss, M. Schmidt, P. Dudin, B.
Bradlyn, T. K. Kim, T. Schmitt, C. Cacho, C. Felser, V. N.
Strocov, and Y. Chen, Chiral topological semimetal with mul-
tifold band crossings and long Fermi arcs, Nat. Phys. 15, 759
(2019).

[30] D. S. Wu, Z. Y. Mi, Y. J. Li, W. Wu, P. L. Li, Y. T. Song, G. T.
Liu, G. Li, and J. L. Luo, Single crystal growth and magnetore-
sistivity of topological semimetal CoSi, Chinese Phys. Lett. 36,
077102 (2019).

[31] Z. Ni, K. Wang, Y. Zhang, O. Pozo, B. Xu, X. Han, K. Manna,
J. Paglione, C. Felser, A. G. Grushin, F. de Juan, E. J. Mele, and
L. Wu, Giant topological longitudinal circular photo-galvanic
effect in the chiral multifold semimetal CoSi, Nat. Commun.
12, 154 (2021).

[32] H.-C. Hsu, I. C. Fulga, and J.-S. You, Disorder effects on triple-
point fermions, Phys. Rev. B 106, 245118 (2022).

[33] R. Kikuchi and A. Yamakage, Electrical conductivity and
screening effect of spin-1 chiral fermions scattered by charged
impurities, Phys. Rev. B 108, 085204 (2023).

[34] A. Agarwala and V. B. Shenoy, Topological insulators in amor-
phous systems, Phys. Rev. Lett. 118, 236402 (2017).

[35] S. Mansha and Y. D. Chong, Robust edge states in amorphous
gyromagnetic photonic lattices, Phys. Rev. B 96, 121405(R)
(2017).

[36] N. P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and
W. T. M. Irvine, Amorphous topological insulators constructed
from random point sets, Nat. Phys. 14, 380 (2018).

[37] G.-W. Chern, Topological insulator in an atomic liquid,
Europhys. Lett. 126, 37002 (2019).

[38] Q. Marsal, D. Varjas, and A. G. Grushin, Topological Weaire–
Thorpe models of amorphous matter, Proc. Natl. Acad. Sci.
USA 117, 30260 (2020).

[39] I. Sahlberg, A. Westström, K. Pöyhönen, and T. Ojanen, Topo-
logical phase transitions in glassy quantum matter, Phys. Rev.
Res. 2, 013053 (2020).

[40] M. N. Ivaki, I. Sahlberg, and T. Ojanen, Criticality in
amorphous topological matter: Beyond the universal scaling
paradigm, Phys. Rev. Res. 2, 043301 (2020).

[41] M. Costa, G. R. Schleder, M. Buongiorno Nardelli, C.
Lewenkopf, and A. Fazzio, Toward realistic amorphous topo-
logical insulators, Nano Lett. 19, 8941 (2019).

[42] B. Focassio, G. R. Schleder, M. Costa, A. Fazzio, and C.
Lewenkopf, Structural and electronic properties of realistic two-
dimensional amorphous topological insulators, 2D Mater. 8,
025032 (2021).

[43] C. Wang, T. Cheng, Z. Liu, F. Liu, and H. Huang, Structural
amorphization-induced topological order, Phys. Rev. Lett. 128,
056401 (2022).

[44] J. Ma and H. Huang, Amorphous Kane-Mele model in disor-
dered hyperuniform two-dimensional networks, Phys. Rev. B
106, 195150 (2022).

[45] T. Mano and T. Ohtsuki, Application of convolutional neu-
ral network to quantum percolation in topological insulators,
J. Phys. Soc. Jpn. 88, 123704 (2019).

[46] P. Mukati, A. Agarwala, and S. Bhattacharjee, Topological and
conventional phases of a three-dimensional electronic glass,
Phys. Rev. B 101, 035142 (2020).

[47] P. Corbae, S. Ciocys, D. Varjas, E. Kennedy, S. Zeltmann, M.
Molina-Ruiz, S. M. Griffin, C. Jozwiak, Z. Chen, L.-W. Wang,
A. M. Minor, M. Scott, A. G. Grushin, A. Lanzara, and F.
Hellman, Observation of spin-momentum locked surface states
in amorphous Bi2Se3, Nat. Mater. 22, 200 (2023).

[48] H. Spring, A. R. Akhmerov, and D. Varjas, Amorphous topolog-
ical phases protected by continuous rotation symmetry, SciPost
Phys. 11, 022 (2021).
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