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Highly confined, low-loss plasmonics based on two-dimensional solid-state defect lattices
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Plasmons, collective excitations of electrons in solids, are associated with strongly confined electromagnetic
fields, with wavelengths far below the wavelength of photons in free space. Such strong confinement nominally
holds the potential to enable optoelectronic technologies that bridge the size difference between photonic and
electronic devices. However, despite decades of research in plasmonics, many applications remain limited by
plasmonic losses, thus motivating a search for new engineered plasmonic materials with lower losses. Among the
promising candidates for low-loss plasmonic materials are solid-state lattices with flat and energetically isolated
metallic bands—with commensurately small phase spaces for phonon-assisted optical losses, a major contributor
to short plasmonic lifetimes. Such electronic band structures may be created by judiciously introducing an
ordered lattice of defects in an insulating host material. Here, we explore this approach, presenting several
low-loss, highly confined, and tunable plasmonic materials based on arrays of carbon substitutions in hexagonal
boron nitride monolayers. From our first-principles calculations based on density functional theory, we find
plasmonic structures with midinfrared plasmons featuring very high confinements (λvacuum/λplasmon exceeding
1400). In addition, we find that one of our materials exhibits a confinement of 700 while avoiding second-
order—phonon-assisted—losses entirely (infinite quality factor at this order of perturbation theory). We provide a
systematic explanation of how crystal structure, electronic bandwidth, local-field, and many-body effects inform
the plasmonic dispersions and losses of these materials. The results are thus of relevance to low-loss plasmon
engineering in other flat band systems.
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The optoelectronic properties of two-dimensional (2D)
materials are of major interest due to the qualitatively different
physics of electron-photon interactions in reduced dimen-
sions. Accordingly, the search for stable 2D materials with
specific optoelectronic properties has been a topic of intense
research in recent years [1–3]. In particular, the expansion of
the repertoire of stable 2D materials has made strides in three
directions:

(i) The tuning of geometric properties of van der Waals
(vdW) bilayers and trilayers, most notably by creating moiré
patterns [4];

(ii) the advent or prediction of 2D analogues of naturally
occurring three-dimensional metals [5,6]; and

(iii) the introduction of defects in common 2D materials
[1] to induce desired optoelectronic properties.

A major impetus has been to enable collective excita-
tions, such as plasmons [7], phonon polaritons [8,9], and
exciton polaritons [10], with tailored dispersions, high con-
finements, and/or low losses [11], which would enable a
wide range of new light-matter interaction effects [12,13].
In the case of plasmons specifically, whose electromagnetic
fields can be confined far below the free-space wavelength
of photons, many of the promising applications envisioned
for the field decades ago are still hindered to this day by

loss. Strongly confined and low-loss plasmonic excitations
could lead to major advances for most envisioned applica-
tions of plasmonics in fields spanning photovoltaics [14],
spectroscopy [15], biosensing [16], and ultrahigh resolution
lasers [17].

Our study is motivated by the goal of significantly reducing
the ubiquitous losses intrinsic to plasmonic materials [18,19].
In particular, we focus on 2D materials whose metallic char-
acter is induced by the presence of defects [an example of
case (iii) above]. To avoid loss channels such as interband
transitions, we restrict our search to a host material with a
large band gap, namely, hexagonal boron nitride (hBN) (6 eV
band gap; see [20]), and defects that produce moderately flat
bands near the middle of the band gap.1 For the defects,
we choose carbon atoms since their atomic size, similar to
that of B and N, minimizes defect-induced lattice strain. The
substitutional defect structures that we consider are denoted
as Cn×n

X , indicating an n × n supercell of the primitive unit
cell of hBN, in which one atom labeled X is replaced by
a C atom [an example of which is shown in Fig. 1(b)]. We

1A truly flat band does not support plasmonic excitations and a
highly dispersive band increases intraband losses.
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FIG. 1. Electronic band structures. (a) Electronic bands for Cn×n
B

(left column) and Cn×n
N (right column) structures. Energy is mea-

sured from the Fermi level. For the six lattices that are insulating
and ferromagnetic, we shift the Fermi energy to half filling of the
defect band closest to the hBN midgap. We report the bandwidth W
and conductivity σ for each structure (σg is graphene’s conductivity
at 0.5 eV doping). The labels (1) and (3) denote intraband and
interband Landau damping processes, respectively. The labels (2)
and (4) denote interband and interband phonon-assisted damping
processes, respectively. Black dashed lines denote plasmons and pink
dashed lines denote phonons. (b) The Wigner-Seitz cells for the four
structures that we considered, within the largest 4 × 4 structure. The
brown circle denotes the C defect at the center of the cell. White
circles denote N atoms for the B substitutional lattices and B atoms
for the N substitutional lattices. Green circles denote B atoms for the
B substitutional lattices and N atoms for the N substitutional lattices.
The color scheme is the same as in (a) with purple, orange, red,
and light blue corresponding to

√
3 × √

3, 2 × 2, 3 × 3, and 4 × 4,
respectively.

study supercells with n = √
3, 2, 3, 4 and X = B or N, that is,

a total of eight defect-containing structures. Typically, larger

supercells can host flatter bands, which are more conducive to
low-loss plasmonics.

The eight structures and corresponding electronic band
structures are shown in Fig. 1. Our density functional theory
(DFT) calculations indicate that the relaxed structures with
N substitutional atoms are perfectly planar, whereas those
with B are slightly buckled; see the Supplemental Material
(SM) [21]. While this is a minor structural difference, we
show later that it has a significant impact on the magnitude
of the electron-phonon interaction. All of the structures, other
than the two C

√
3×√

3
X ones, are fully spin polarized, meaning

that they must be doped in order to support plasmons. As
previously predicted [22,23], we find that the structures with
larger supercells are ferromagnetic, with spin gaps of the order
of 1 eV.2 The structures we report have bandwidths ranging
from 3.3 eV (C

√
3×√

3
B ) to 0.13 eV (C4×4

B ).3 This decrease in
the bandwidth as lattice size is increased is accompanied by
a commensurate decrease in the Fermi velocity and the onset
of ferromagnetism (lifting of spin degeneracy), both of which
contribute to a lowering of the Drude conductivity as seen in
Fig. 1(a). This then leads to lower frequency plasmons for the
larger defect supercells.

Limiting plasmonic losses has been an active area of re-
search for several decades [24]. In all proposed candidates for
low-loss plasmonics, losses are mitigated by suppressing the
phase space for direct and indirect (phonon-assisted) transi-
tions into the electron-hole continuum. In the case of surface
plasmons, for instance, one early proposal for avoiding losses
was by engineering semiconducting superlattices that ener-
getically separate the plasmonic band from the electron-hole
continuum [24]. In the case of our structures that include
substitutional defects, a similar energetic separation should
exist, as the structures with larger periodicity host flat bands
that are well separated from the hBN valence and conduc-
tion bands. Accordingly, we calculate the transverse magnetic
(TM) polarized plasmonic dispersions and associated losses
in the proposed structures. For the C

√
3×√

3
B and C

√
3×√

3
N struc-

tures, which are metallic at charge neutrality, we calculate
the plasmonic properties without imposing any changes in
band occupation. For the structures with larger supercells,
we move the Fermi level to half filling of the defect band
closest to the hBN midgap and calculate plasmonic properties
within the rigid band approximation [25], which neglects
changes to the band structure due to doping (we analyze the
validity of this approximation below).

We calculate the plasmon dispersion through the poles
of the inverse dielectric function, ε−1(q, ω), which at finite
temperature is given by [26]

1

ε(q, iωn)
= 1 − Vq

Nk�

∫ β

0
eiωnτ 〈T ρ(q, τ )ρ(−q, 0)〉 dτ,

(1)

2To verify their ferromagnetic order, we calculate the ground state
of a 2 × 2 supercell of C2×2

B and find that the ferromagnetic state is
preferred, with magnetization 4µB.

3For comparison, we calculated the bandwidth with the LDA [31]
and PBESol [38] functionals for C3×3

B as well and found it varied by,
at most, 10 meV.

L011001-2



HIGHLY CONFINED, LOW-LOSS PLASMONICS BASED ON … PHYSICAL REVIEW MATERIALS 8, L011001 (2024)

FIG. 2. Plasmonic dispersions, confinements, and losses. (a) Plasmonic dispersions (solid lines) and confinements (dashed lines) compared
to graphene. Wave vectors were chosen to lie on the 
 − M direction. (b) Decay times for Cn×n

B (Cn×n
N ) in solid (dashed) lines and graphene at

0.5 eV doping (dashed gray line).

where � is the unit cell area, Nk is the number of sampled
Brillouin zone points, T is the imaginary-time ordering op-
erator, q is the wave vector, and Vq = e2

2ε0q is the Coulomb
interaction in 2D (with ε0 the vacuum permittivity), β is the
inverse temperature, and ρ(q, τ ) is the density operator in
the Heisenberg representation. Equation (1) yields the inverse
dielectric function at a bosonic Matsubara frequency, ωn.
The retarded inverse dielectric function is then calculated by
analytically continuing iωn → ω + iδ. We note that though
Eq. (1) includes the full directional dependence of the system
response, in the local q → 0 limit, the C3 symmetry of our
lattices enforces the conductivity and dielectric function to be
isotropic (see the SM [21]).

Electron-electron interactions are included through the
random phase approximation (RPA) [26], which gives the
standard result (neglecting local-field effects) [27],4

ε(q, ω) = 1 − e2

2ε0qNk�
F (q, ω), (2)

F (q, ω) =
∑
k,n,m

f
(
εn

k+q

) − f
(
εm

k

)
εn

k+q − εm
k − h̄ω − iδ

| 〈k + q, n|k, m〉 |2,

(3)

where 〈k + q, n|, |k, m〉 denote the cell periodic components
of the Kohn-Sham eigenstates with corresponding energy
eigenvalues εn

k+q, ε
m
k and f (ε) is the Fermi occupation. We

note that in Eq. (3), the spin indices are subsumed into the
band indices, m, n. One additional wrinkle in our calculations
is that since we use a Wannier tight-binding basis to compute
overlaps, we have to take into account the locations of the
Wannier orbitals in computing | 〈k + q, n|k, m〉 |2,

〈k + q, n|k, m〉 =
∑

u

eiq·τuU k+q
nu

(
U k

mu

)∗
, (4)

4In the present work, we disregarded local-field effects [39,40],
which are likely substantial only when |q| = |q + G|, where G is a
reciprocal lattice vector.

where the U k
i j are the Wannier unitary rotation matrices and

τi the locations of the Wannier orbitals within the unit cell
(see SM [21]). We note that such local-field effects become
important when the locations of the Wannier orbitals in the
unit cell become comparable to the plasmonic wavelength.
We report plasmonic dispersions and confinements in Fig. 2(a)
as compared to the most well-established 2D plasmonic plat-
form, i.e., graphene, at 0.5 eV doping from the Dirac point.
The plasmons in the proposed structures cover a frequency
range from 0 to ∼1.4 eV, with plasmons below 1 eV immune
to interband and intraband Landau damping—first-order—
losses (see SM [21]). These plasmons have confinements
in the plotted wave-vector range of up to ∼5 times that of
graphene (for the C4×4

B structure). We note that the generically
small plasmonic group velocities observed for most of the
proposed structures are a consequence of interband screening,
a nearly universal phenomenon in 2D [28]. This is not the case
for the C

√
3×√

3
B and C

√
3×√

3
N structures, as in those cases the

plasmon approaches the interband continuum at large wave
vectors.

We calculate the plasmonic phonon-induced decay rate at
second order in perturbation theory (see SM [21]):

τ−1(ω) = 2π

NkNk′ h̄2ωg(εF )

∑
k,k′ j±

∣∣gj
k,k′

∣∣2(
N j,∓

k−k′ fk

− N j,±
k−k′ fk′ ± fk fk′

)
δ
(
εk + h̄ω ± h̄ω

j
k−k′ − εk′

)
×

(
1 − vk · vk′

|vk||vk′ |

)
, (5)

where vk, vk′ are the electronic velocities at wave vectors k
and k′, respectively, ω

j
q are the phonon frequencies of branch

j at wave vector q, with corresponding N j
q Bose occupation

factors. In Eq. (5), we have defined the quantities

N j,±
q ≡ 1

2 + N j
q ± 1

2 ,

where the plus (minus) sign corresponds to phonon emis-
sion (absorption). We sum over phonon bands, indexed by j,
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but we include only the defect-related electronic band in the
evaluation of the decay rate from Eq. (5), which is an exact
expression in the frequency regime of interest (0–1 eV).

In Fig. 2(b), we present phonon-induced plasmonic de-
cay times, τ (ω). The C

√
3×√

3
N and C2×2

N lattices yield better
plasmonic lifetimes than graphene at high frequencies, with
C

√
3×√

3
N plasmons having lifetimes about four times those

of graphene plasmons at ∼1 eV. It should be noted that at
such frequencies, graphene is also highly Landau damped
(of the order of femtoseconds), so our order of a few im-
provement in phonon-induced decay times is in fact a major
underestimate (but a fairer comparison). The fact that the
decay times are lower for the B substitutional structures
is due to enhancement of the electron-phonon interaction
through the aforementioned buckling of the CB structures.
We verified this by explicitly comparing the decay times
for buckled and unbuckled (nonrelaxed) CB structures (see
SM [21]). However, though the B substitutional lattices have
lower quality factors in general, C3×3

B actually evades loss
at high frequencies—at frequencies exceeding 0.37 eV, there
are no energy-conserving loss processes for this material.
In particular, at a wave vector of 1.4 nm−1, we find that
C3×3

B has plasmon of frequency 0.417 eV. To determine how
reasonable our lossless plasmon is, we accounted for the
most likely source of error—convergence with respect to the
number of Wannier bands—by calculating the interband di-
electric function of pure hBN with 20 bands (corresponding to
180 bands in a 3 × 3 supercell). This then gave an indication
of how much the plasmon dispersion would decrease. We
found that with this estimate, the plasmon would be lowered
from 0.417 to 0.4 eV, but not below the second-order loss
threshold of 0.37 eV. In addition, we expect that the under-
estimation of the hBN band gap from DFT would work in
our favor in an experimental setting, as the true dielectric
screening from interband transitions would be significantly
lower.

As shown in the Supplemental Material [21], we calculate
the expected decay time in the region where one-phonon
processes are disallowed—this calculation being a result of
13 Feynman diagrams that contribute at third order in pertur-
bation theory. Our calculations indicate that the two-phonon
plasmonic decay process strongly depends on the electronic
self-energies. Due to the strong electron-phonon interaction,
we found the imaginary part of the electronic self-energy to
be around 1–10 eV at room temperature, corresponding to a
plasmonic lifetime of about 108 fs.

Though a subset of our materials have plasmons with qual-
ity factors that exceed those of graphene plasmons in small
frequency ranges, graphene still enables overall higher quality
plasmons for most frequencies. This is attributed to the fact
that in the carrier decay rate, the density of states effectively
shows up twice in the numerator and once in the denominator
(see SM [21]). Thus, as a flat band hosts a tightly confined (in
frequency) region with a high density of states, our observa-
tion of a small decay time at low frequencies is to be expected.
In addition, the fact that flatter bands in general host lower
frequency plasmons results in plasmons being pushed into the
regime of high loss. In view of this, the C3×3

B lattice straddles
a lucky middle ground: its band structure is sufficiently flat to

FIG. 3. Doping effect on band structures and plasmonic disper-
sions. (a) Band structures near the Fermi level as a function of doping
for C2×2

B (left column) and C4×4
B (right column). (b) Accuracy of

our spin-splitting model given by Eq. (6). Each blue dot represents
a DFT calculation for which we plot our predicted spin splitting
against the DFT result. The proximity of each point to the y = x
line (shown in black) indicates the validity of the perturbation theory
model. (c) Plasmonic dispersion for C2×2

B at various values of doping
calculated in the rigid band approximation (dashed lines) and from
the explicit charged DFT calculations (solid lines). (d) Calculation of
plasmon dispersion for C3×3

B at various degrees of rigid doping.

limit the phase space of phonon-induced loss, but not too flat
so as not to be able to enable plasmonic excitations that enter
this phase space.

We turn next to the promised validity check of the rigid
band approximation, which we have heretofore implicitly
used. Interestingly, we find that electron and hole doping in
the structures we consider has the effect of tuning the spin
gap at the Fermi level [see Fig. 3(a)], which is at odds with
the bands being rigidly doped. We attribute this result to
changes in the exchange potential with respect to doping. In
particular, the exchange potential in DFT is a functional of the
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spin-resolved electron densities. From perturbation theory in
the local density approximation (LDA), the doping results in
a spin gap are given by (see SM [21])

�[ρ↑(r), ρ↓(r)] =
(

6

π

)1/3 ∫ [
ρ

1/3
↑ (r) − ρ

1/3
↓ (r)

]

× [|ψ↑(r)|2 + |ψ↓(r)|2]

2
d3r, (6)

where ρ↑, ρ↓ and ψ↑, ψ↓ are the spin-up (-down) densities
and wave functions, respectively. We evaluate the reliability
of this model by performing DFT calculations on the doped
structures as shown in Fig. 3(b). For each material, we use
three functionals: Perdew-Burke-Ernzerhof generalized gra-
dient approximation (PBE-GGA) [29], Slater LDA without
correlation [30], and LDA with correlation [31]. For each
value of doping, we calculate the spin splitting from DFT at
the 
 point (center of the Brillouin zone in reciprocal space).
We also use the self-consistent density and the Kohn-Sham
wave functions for the defect bands to calculate the predicted
spin-splitting value given by Eq. (6). In Fig. 3(b), we plot our
prediction against the exact DFT values. The plots in Fig. 3(b)
are obtained by using the PBE-GGA exchange-correlation
functional for the structures C2×2

B and C4×4
B . As is evident, the

fit of our model to the numerical DFT results is very accurate.
We present analogous plots for the other two functionals and
for all other lattices in the SM [21].

In Fig. 3(c), we show plasmonic dispersions as a function
of doping. We find that the explicitly doped plasmons differ
quantitatively from those obtained through the rigid band ap-
proximation by about 10% at most, with the best agreement
being for the systems doped at −0.8 electrons per unit cell. In-
terestingly, we find that discarding Wannier local-field effects
results in a much worse agreement between the rigidly doped
and explicitly doped plasmonic dispersions, which is another
testament to their importance. We investigated the origin of
the quantitative discrepancies shown in Fig. 3(c) and found the
major contributing factors to be differences in wave-function
overlaps between bands separated by large frequencies, most
likely due either to the fact that the Wannier convergence win-
dow does not cover conduction bands far from the Fermi level
or to the fact that the neutralizing background charge in the
explicitly doped computations may change the nature of the
Kohn-Sham wave functions. To better understand how dop-
ing affects the plasmonic bands, other physically motivated
scenarios for doping, such as through lithium intercalation
[32], need to be investigated, as a uniform neutralizing
charge does not reflect an experimentally realizable doping
mechanism.

The prospect of doping raises another question: Can one
dope the C3×3

B system such that its “lossless” plasmon is
pushed even further into the lossless regime? To answer this
question, we rigidly doped the C3×3

B system and calculated the
plasmon dispersion at the wave vector that provided the high-
est plasmon frequency at half filling, as shown in Fig. 3(d).

We found the maximum plasmon frequency can reach up to
0.45 eV through doping (well above the phonon-induced loss
phase space).

In conclusion, we have introduced a set of candidate 2D
materials with different plasmonic properties, consisting of
doped hBN through C substitution at either B or N sites.
In particular, we predict these structures to host plasmons
with confinements up to five times the maximum achievable
in graphene, with decay times that can also surpass that
of graphene, for frequency ranges exceeding ∼0.4 eV. In
addition, we predict that one of our materials could entirely
evade the lowest-order phonon loss mechanism.

We expect that imperfections in the periodicity of these
materials will not have qualitative consequences as long as
the density of defects is similar to the superlattices that we
investigated. However, this issue and the effect of impurities
[33] is a topic for future investigation.

As most of the proposed structures have low Fermi ve-
locities, it is possible that their electron-electron interactions
necessitate an approach beyond RPA. Investigation of the
validity of the random phase approximation in treating these
flat band systems and their collective excitations warrants fur-
ther investigation. Similar work, which explored beyond RPA
diagrams in the case of graphene [34], has already been done,
but not applied to defect structures of the type considered here.
The effect of the electron-plasmon interaction on the carrier
lifetimes should also be considered for a better assessment of
the Drude decay time [35]. In addition, even in the absence
of doping, exciton polaritons may exist in the proposed struc-
tures [36] and this needs to be further investigated.

We note, in closing, that there has recently been a flurry
of work in creating databases of 2D materials [3,37]. While
a “blind” enumeration of the plasmonic properties of all tabu-
lated materials would be an overly demanding task, the results
presented here suggest a simpler approach. Namely, we expect
that filtering the available databases for materials with isolated
flat bands at the Fermi level and high structural and thermal
stability would be a first step in identifying the most promising
candidates for low plasmonic losses.
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