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Core structure of dislocations in ordered ferromagnetic FeCo
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We elucidated the core structure of screw dislocations in ordered B2 FeCo using a recent magnetic bond-
order potential (BOP) [Egorov et al., Phys. Rev. Mater. 7, 044403 (2023)]. We corroborated that dislocations
in B2 FeCo exist in pairs separated by antiphase boundaries. The equilibrium separation is about 50 Å, which
demands large-scale atomistic simulations—inaccessible for density functional theory but attainable with BOP.
We performed atomistic simulations of these separated dislocations with BOP and predicted that they reside
in degenerate core structures. Additionally, dislocations induce changes in the local electronic structure and
magnetic moments.
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I. INTRODUCTION

Iron-cobalt combines excellent magnetic properties and
severe brittleness [1]. The latter can be related to how the
atoms arrange in a compact region surrounding the dislocation
line—the dislocation core [2]. Although many experimen-
tal [3–6], theoretical [7,8], and computational [9–12] studies
have examined the mechanical properties of ordered Fe-Co
alloys, the dislocation core structure remains unknown. Ob-
serving cores experimentally proves complicated [13–15],
and quantum mechanical calculations based on density func-
tional theory (DFT) [16,17] face difficulties due to the large
simulation cells required for modeling ordered alloys with
dissociated dislocations [18].

Dislocations carry plastic deformation [19]. If a crystal
deforms easily, dislocations must be mobile under low applied
stress. When immobile, they cannot relieve stresses by shear-
ing the crystal; cracks start to grow and material fractures [20].
In metals with the body-centered cubic (bcc) structure, 1

2 [111]
screw dislocations govern low-temperature plasticity due to
their compact, non-planar core structure [21–24]. Their core
structures can be divided according to symmetry into degener-
ate and nondegenerate (see Fig. 1). DFT studies revealed that
the nondegenerate core is the ground state for pure bcc metals
[25–29]. Degenerate cores, for a long time, remained just the
artifacts produced by classical potentials [30], until Romaner
et al. observed degenerate cores with DFT in disordered bcc
alloys, first in W-Re [31] and then in Fe-Co [32]. The authors
also speculated that the degenerate core exists in ordered B2
(CsCl) FeCo (the most stable phase at 1:1 composition [33])
but exploring it with DFT was not feasible.

The behavior of screw dislocations in ordered and dis-
ordered Fe-Co alloys is distinctly different. In tensile tests,
the ordered B2 FeCo fractures in a brittle manner without

elongation, whereas the disordered FeCo before fracture dis-
plays some ductility [5]. In the latter, wavy dislocation slip
lines [4] indicate profuse cross-slip, similar to pure bcc tran-
sition metals. This similarity implies that in disordered FeCo,
ordinary 1

2 [111] screw dislocations govern plasticity. In con-
trast, in (partially) ordered B2 FeCo, the straight slip lines
indicate rare cross-slip. This behavior likely arises from dis-
parate dislocations presented in B2 FeCo. When an ordinary
1
2 [111] screw dislocation glides in a B2 crystal, it disrupts
the chemical order within the {110} slip plane, producing
an interface known as antiphase boundary (APB). Therefore,
plasticity in B2 alloys is governed by so-called superdisloca-
tions [18,23], with Burgers vectors two times larger than those
of ordinary ones. Superdislocation gliding through B2 crystal
retains its chemical order.

In B2 FeCo, [111] screw superdislocations dissociate into
two ordinary 1

2 [111] screw dislocations, called partial dislo-
cations or partials, separated by an APB, which glide together
(Fig. 2) [4,36]. The equilibrium separation depends on the
balance of two opposing forces: the elastic repulsion of the
partials with the same Burgers vector counters the tension
due to the energy cost of creating APB between them [37].
The estimated separation of the partials in B2 FeCo is about
50 Å [38], and their modeling would entail simulation cells
with thousands of atoms—unfeasible for DFT [39]. Classical
interatomic potentials, such as the embedded-atom method
(EAM) [40] and the modified EAM (MEAM) [41–43], easily
handle large simulation cells but only crudely describe the an-
gular character of the bonding, vital for bcc transition metals
[44,45]. This renders EAM and MEAM ambiguous for core
structures [30]. Besides, these potentials usually lack mag-
netism (and magnetism is the fulcrum of the Fe-Co properties
[46–48]). Machine learning (ML) interatomic potentials com-
bine exceptional accuracy and efficiency [49–53] and already
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FIG. 1. Differential displacement illustrates the two possible
core symmetries of the 1

2 [111] screw dislocations in bcc-like
crystals—B2 FeCo (left) and bcc Fe (right) obtained with BOP [34].
The arrows reveal the changes in atomic positions along the [111]
direction of the dislocation line compared to a bulk defect-free cell.
On the left, longer and shorter arrows alternating on a green triangle
reveal the degenerate core. Conversely, on the right, the same length
of the arrows reveals the nondegenerate core [35].

showcased their aptness for dislocation cores in bcc met-
als [54–60]. However, they require extensive DFT reference
data [49,50,52,53], and magnetic ML potentials are nascent
[58,61–66].

Bond order potentials (BOPs) are interatomic potentials
based on a tight-binding model [67,68]. They suffice modeling
systems with tens of thousands of atoms and, in addition,
treat magnetism explicitly. BOPs proved their aptness for
many transition metals [69–73] and, specifically, for 1

2 [111]
screw dislocations in W [74], Mo [75], and Fe [76]. The core
structures match DFT results in every case, evincing BOPs’
reliability for dislocations.

FIG. 2. 15048-atom periodic simulation cell (white square) for
the core structure of partial dislocations in B2 FeCo. Two pairs of
partial 1

2 [111] screw dislocations in {110} plane were introduced into
the cell, resulting in their quadrupolar arrangement. The blue atoms
are the bulk B2, and the orange is the dislocation cores [94]. Partials
are separated by an antiphase boundary (APB) where the B2 order is
distorted. The thickness of the cell is 2 × 1

2 [111] or 4.93 Å.

We recently developed an accurate and transferable mag-
netic BOP for Fe-Co alloys based on DFT reference data [34].
Here, we employed it for large-scale atomistic simulations of
screw dislocations in ordered ferromagnetic B2 FeCo. First,
to vindicate BOP’s validity for dislocations, we tested how
accurately it predicts the γ surface of the slip plane. We
then assessed the partial dislocations’ equilibrium separation
and elucidated their cores’ symmetry. We also examined how
local magnetic moments and electronic structure change in the
cores.

II. SIMULATION DETAILS

A. Computational details

We used the VASP package [77–79] for DFT calcula-
tions with the projector augmented wave (PAW) method
for pseudopotentials [80], PBE (Perdew-Burke-Ernzerhof)
exchange-correlation functional [81], 400 eV cut-off energy,
and dense Monkhorst-Pack k-point meshes [82]. We used the
BOPFOX package [83] for analytic BOP calculations with the
same settings as in Ref. [34] and employed the LAMMPS [84]
package implemented in the Atomic Simulation Environment
(ASE) [85] for MEAM. Atomic positions were relaxed using
the FIRE algorithm [86] until forces were less than 0.03 eV/Å
for the γ surface calculations and 0.003 eV/Å for the core
structures. We used a weaker convergence criterion for the γ

surfaces to speed up DFT calculations while fast-computing
BOP allowed us to use a tighter convergence criterion for the
core structures.

B. Setup for computing the γ surface

To compute the γ surface for a slip plane we adopted
a periodic simulation cell, cut it in half on a {110} plane,
displaced one part of the bicrystal with respect to the other
half in all directions, and calculated the energy as a function of
the displacement. The energy difference with respect to a bulk
crystal, divided by the area of the cut plane, is the generalized
stacking fault energy (GSFE) [87]. In all calculations, we
relaxed the positions of atoms in the direction perpendicular
to the cut plane only, as relaxation in other directions would
annihilate the stacking fault [74,75,87]. For the γ surfaces,
we computed energies on a 9 × 9 grid; the discrete values of
the energies were then converted into smooth contour plots
through extrapolation (Fig. 3).

C. Setup for dislocation core structures

To clarify if and how the [111] screw superdislocations
dissociate, we adopted a periodic cell containing two su-
perdislocations with opposite Burgers vectors, resulting in
their quadrupolar arrangement (see Fig. 1 in the Supplemental
Material [88]) [39,89,90]. To analyze the core structure of
partials, we replaced every [111] screw superdislocation with
a pair of ordinary 1

2 [111] screw dislocations at a distance,
retaining the same quadrupolar arrangement (see Fig. 2).
Dislocations were introduced into the simulation cell by dis-
placing atoms according to isotropic elasticity theory using
the BABEL package [91]. A homogeneous strain is applied
to the simulation cell to level out the strain caused by the
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FIG. 3. Relaxed γ surfaces for the {110} plane (experimental slip plane [95]) in B2 FeCo. Diagonals on these plots are the [111] direction—
experimental slip direction [95]. Local minima at the middle correspond to an antiphase boundary (APB) with distorted B2 order obtained
when we shift two crystal parts concerning each other by 1

2 a[111] (a is a lattice parameter).

introduced dislocations [39,92,93]. To get the equilibrium
configurations, we relaxed all atomic positions. The thickness
of the simulation cell is a[111], equal to the Burgers vector of
the superdislocation. To reduce dislocation-dislocation inter-
actions, we tested the convergence by varying cell sizes in the
directions perpendicular to the dislocation line. The resulting
132.39 × 132.76 × 4.93 Å simulation cell contained 15048
atoms (white square in Fig. 2). For an illustrative example
of the core structure in bcc Fe (Fig. 1), we used a 135-atom
simulation cell with a quadrupolar dislocations arrangement
(see Fig. S1a in Ref. [93]).

III. RESULTS AND DISCUSSION

A. γ surfaces

We first evaluated the γ surfaces, which portray the lattice
resistance against slip for a given plane. A BOP γ surface
matching the DFT would vindicate the BOP efficacy for
dislocations because interatomic potentials, which produce
accurate γ surfaces, are usually also accurate for core struc-
tures [53]. The DFT reference data for this BOP lacked the
γ surfaces [34]; thus, verifying if the BOP could predict them
accurately was crucial. We obtained the relaxed γ surfaces for
the {110} plane—the preferable slip plane [95]—with BOP,
DFT, and MEAM [96]. All three produce similar γ surfaces
(Fig. 3), with a local minimum at the center corresponding to
the antiphase boundary (APB). A single minimum indicates
that the superdislocation dissociates into two partials with
1
2 a[111] Burgers vectors [97], precisely what most studies
have assumed for B2 FeCo [4].

In bcc metals and alloys, the curvature of the γ surface
contour lines hints at the symmetry of the dislocation cores.
Circular contour lines between two minima along [111] direc-
tion lead to nondegenerate cores; conversely, the contour lines
deviating from a circular lead to degenerate cores (see, for

example, Fig. 2 in Ref. [31] or Fig. 1 in Ref. [98]). For all three
cases in Fig. 3, the contour lines crossing the [111] direction
deviate from a perfect circular shape, hinting at degenerate
cores in B2 FeCo.

Also, obtaining an accurate equilibrium separation be-
tween partial dislocations relies heavily on the accurate APB
energies (local minima at the middle), and, for BOP and
DFT, they are close (see Table I). The MEAM predicts far
lower APB energy, conceivably due to a lack of magnetism.
Excess energy after the 1

2 [111] shift in the {110} planes could
result from an improper B2 order of two constituent chemical
species but also from the disturbed magnetic order alone,

TABLE I. Separation of the partial 1
2 [111] screw dislocations

in B2 FeCo, dAPB, (i) from isotropic elasticity theory (elastic)
with input data required for calculation: equilibrium lattice param-
eters, a, Voigt-Reuss-Hill shear modulus, GVRH [103], and antiphase
boundary (APB) energy, γAPB, for {110} and {211} planes and
(ii) separation from atomistic simulations (details on Fig. 4).

a GVRH γAPB{110}/{211} dAPB, (Å)

(Å) (GPa) (mJ/m2) Elastic Atomistic

BOPa 2.845 73 132/152 53 49
DFTa 2.844 93 114/171 79
DFTb 2.843 91
DFTc 129/169
MEAMd 2.859 83 70/81 116
Exp. 2.857e 72e 157f 45

aThis work.
bReference [104].
cReference [105].
dReference [96].
eReference [106], measured at 293 K.
fReference [38].
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like in antiferromagnetic bcc Cr [99,100]. A marked increase
of the APB energy due to magnetism was also observed in
ordered L12 Ni3Al [101]. Thus, we surmise that considering
magnetism in our study is vindicated.

We also computed APB energy for {211} planes. Com-
pared to {110}, it is about 20–30% higher. This difference
entices the partials to dissociate in the {110} plane. For the
{211} plane, BOP again closely matches a DFT ABP energy,
while MEAM yields a far lower value (see Table I).

To summarize, the BOP predictions above align with DFT,
both for the topology of the γ surface and for the APB ener-
gies, which instills confidence that this BOP is well suited for
studying dislocations in B2 FeCo.

B. Equilibrium separation of the partials

To dissect the cores of the partial dislocations in B2 FeCo,
we first need to know how far apart they are. Isotropic elas-
ticity theory can roughly estimate the equilibrium separation
from the balance between partial dislocations elastic repulsion
and the APB energy (see Eq. A7 in Ref. [102]). The elastic
equilibrium separation (Table I) we calculated with BOP in-
put (53 Å) is lower than with DFT input (79 Å) due to the
lower shear modulus, which, along with APB energy, defines
the separation (see Eq. A7 in Ref. [102]). Nevertheless, the
BOP result is close to 45 Å calculated with experimental in-
put (though serendipitously because BOP shear modulus and
APB energy, which are proximate to experimental ones, were
not in the reference data for this BOP [34], and their values
are predictions). The low APB energy obtained with MEAM
yields a too-large separation of 116 Å, close to an experimen-
tal 125 Å for partially ordered FeCo with long-range order
parameter S = 0.59 [4].

In the atomistic simulations with BOP (at 0 K), [111]
superdislocations do not dissociate unless the atomic posi-
tions are randomly distorted. Then, BOP correctly predicted
that during relaxation, every [111] superdislocation dissoci-
ates into two 1

2 [111] partials connected by APB. Random
distortions led partials astray, and they could move both on
{110} and {211} planes, depending on the distortion (see ad-
ditional details in Supplemental Material [88]). Undistorted
superdislocation stays undissociated because, at 0 K, par-
tials cannot surmount a Peierls barrier. Therefore, we varied
distances between partials on {110} plane and, again, after
relaxation, evaluated the cell’s relative energies (Fig. 4). The
curve attains equilibrium separation at 49 Å, with energy
much lower than that of undissociated superdislocation (or
any randomly distorted dissociated configuration), manifest-
ing that it is the ground state. Furthermore, the equilibrium
separation agrees closely with the elasticity theory (cf.
Table I). The slight difference between the elastic and atom-
istic separations may be attributed to the finite size of the
cores, atomic interactions, or anisotropic effects.

C. Dislocation core structures

Employing the equilibrium separation of the partial dis-
locations (dAPB in Fig. 4), we obtained their relaxed cores
with BOP. We then scrutinized the core structures with a
differential displacement map [109] and the screw component

FIG. 4. Relative energy of the simulation cell versus separation
of the partial dislocations obtained using BOP. The minimum corre-
sponds to the equilibrium separation of the partial dislocations, dAPB

(see also Table I).

(α33) of the Nye tensor [110], which portrays the continuous
distribution of the Burgers vector [14,111,112]. We revealed
that both cores attain distorted degenerate structures spread
predominantly along the APB fault [Fig. 5(a)]. Romaner et al.
with DFT obtained similar cores for individual 1

2 [111] screw
dislocations in disordered bcc Fe-Co [32]. The authors also
observed a change from the nondegenerate core at low Co
concentrations, starting from zero, that is, from pure Fe to
the degenerate core at around 1:1 composition (it is worth
noting that, for pure Fe, our BOP also correctly predicts the
nondegenerate core; see Fig. 1).

Core symmetry in bcc-like Fe-Co alloys may differ from
the one in pure Fe, with its nondegenerate core, due to pure
Co being hcp. Bcc alloys, where both constituents reside in
a bcc ground state, such as W-Mo or W-Ta, retain nonde-
generate cores [113,114]. However, if one constituent resides
in another ground state (as in W-Re, where pure Re is hcp),
the degenerate core structure seems preferable [31,115]. We
confirmed the same here.

Additionally, in a recent work, Wang et al. linked the
core structure in bcc metals and alloys to the energy dif-
ferences between their bcc and fcc phases, expressed in the
materials index χ [116]. χ emanates from the bcc-fcc en-
ergy difference in the pure bcc metal (in our case, Fe) and
the same in the alloy (in our case, the energy difference
between bcc-based B2 and fcc-based L10 phases in FeCo).
These differences computed with BOP closely match the
DFT values [34]. A resulting χ index of roughly 0.69 cor-
responds to the degenerate core structure (near the transition
from nondegenerate) [116], which is what we observed in B2
FeCo.

As magnetism defines the Fe-Co phase stability [47,48],
we also looked at how the local magnetic moments change in
the dislocation cores. In disordered bcc Fe-Co, as Romaner
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FIG. 5. The core structure of partial 1
2 [111] screw dislocations in B2 FeCo we obtained with BOP [107]. Partials separated by an antiphase

boundary (APB) of the length dAPB = 49 Å (See Sec. III B). The differential displacement and Nye tensor distribution (a) reveal degenerate
core structures [108]. Additionally, the local magnetic moments of Fe and Co layers in B2 FeCo [(b) and (c)] display lower magnetic moments
within the cores and APB, compared to bulk.

et al. observed with DFT, they decrease [32]. The authors
linked it to the d-band filling, and we can expect the same
due to a similar band filling in B2 FeCo [117]. Indeed, we
observed that the magnetic moments of both Fe and Co atoms
in the core decreased [Figs. 5(b) and 5(c)]—moreover, the
decrease within 1% correlates with the decrease in bcc Fe-Co
[32]. (Tight-binding-based methods, such as BOP, provide
reliable energy differences between competing magnetic and
nonmagnetic phases, but the exact values of magnetic mo-
ments are not always robust [118]. Thus, we should approach
magnetic moment predictions with a grain of salt; even DFT
calculations with different exchange-correlation functionals
render different results for magnetic moments in the core
[27,32,119–121].)

We also examined how dislocations modify the electronic
structure, namely, the local density of states (DOS) of the
atoms in the cores. For the bulk B2, BOP predicts magnetic
and nonmagnetic DOS, which is consistent with DFT (see
Fig. 3 in Ref. [34]); thus, we can rely on the BOP predictions.
For the local DOS in the dislocation core, we observed mod-
erate changes for the Fe atoms and distinct for the Co atoms
(Fig. 6). For Co, some lower energy states (for spin down)
shift closer to the Fermi level compared to the bulk B2, thus

increasing the band energy. As Dezerald et al. unraveled, such
an increase affects the core energies and the Peierls energies of
dislocations in bcc transition metals, increasing them too [28].
We can expect similar dependency in transition metal alloys,
including B2 FeCo. (We will present the Peierls energy for
the B2 FeCo and compare it with those in disordered FeCo
and pure Fe in a separate publication.)

IV. SUMMARY AND CONCLUSIONS

Using a magnetic bond-order potential (BOP), we deter-
mined the atomic core structure of 1

2 [111] screw dislocations
in ordered B2 FeCo and can draw the following main conclu-
sions:

(i) The γ surface for the {110} slip plane obtained using
BOP is consistent with DFT.

(ii) Screw dislocations in B2 FeCo exist in pairs, separated
by a 50 Å wide antiphase boundary. This large separation
obstructs DFT simulations while it is reachable for BOP.

(iii) 1
2 [111] screw dislocations in B2 FeCo—unlike most

bcc transition metals but likewise disordered FeCo [32]—
accommodate degenerate core structures.
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FIG. 6. Local density of states (DOS) of Fe and Co atoms in the dislocation core and bulk B2 FeCo computed with BOP.

(iv) Magnetic moments decrease in the cores; just as in
disordered FeCo alloys [32].

(v) Dislocations alter the local DOS—and thus atomic
interactions—in the cores.

(vi) Significant alterations in the local DOS for Co atoms
in the core (unlike Fe atoms) are expected to increase band
energy and, hence, the Peierls energy.

ACKNOWLEDGMENTS

We thank L. la Rosa and F. Maresca for their valuable com-
ments on the manuscript. We acknowledge financial support
from the International Max-Planck Research School SurMat
and the Wilhelm and Günter Esser Foundation. The DFG
supported part of this work within the DFG-ANR Project
MAGIKID (No. 316673557).

[1] R. S. Sundar and S. C. Deevi, Soft magnetic FeCo alloys:
Alloy development, processing, and properties, Int. Mat. Rev.
50, 157 (2005).

[2] P. M. Anderson, J. P. Hirth, and J. Lothe, Theory of Disloca-
tions (Cambridge University Press, Cambridge, 2017).

[3] N. Stoloff and R. Davies, The plastic deformation of
ordered FeCo and Fe3Al alloys, Acta Metall. 12, 473
(1964).

[4] M. J. Marcinkowski and H. Chessin, Relationship between
flow stress and atomic order in the FeCo alloy, Philos. Mag.
A 10, 837 (1964).

[5] L. Zhao and I. Baker, The effect of grain size and Fe:Co ratio
on the room temperature yielding of FeCo, Acta Metall. Mater.
42, 1953 (1994).

[6] E. George, A. Gubbi, I. Baker, and L. Robertson, Mechanical
properties of soft magnetic FeCo alloys, Mater. Sci. Eng.: A
329-331, 325 (2002).

[7] K. Sadananda and M. Marcinkowski, Dislocation behaviour
in ordered alloys in the presence of frictional forces, J. Mater.
Sci. 8, 839 (1973).

[8] M. Marcinkowski and K. Sadananda, Effect of antiphase
boundary energy on mutual cross slip of unlike dislocations,
J. Appl. Phys. 45, 2441 (1974).

[9] H. Gholizadeh and S. Hasani, Ab-initio calculation of
the γ -surface and cleavage energy in the B2 FeCo
intermetallic compound, Comput. Mater. Sci. 143, 515
(2018).

[10] Y. Li, X. Cheng, W. Duan, and W. Qiang, Improved
ductility by coupled motion of grain boundaries in nanocrys-
talline B2-FeCo alloys, Comput. Mater. Sci. 198, 110703
(2021).

[11] M. Muralles, J. T. Oh, and Z. Chen, Molecular dynamics study
of FeCo phase transitions and thermal properties based on an
improved 2NN MEAM potential, J. Mater. Res. Technol. 19,
1102 (2022).

[12] M. Muralles, J. Oh, and Z. Chen, Influence of V addition on the
mechanical properties of FeCo alloys: A molecular dynamics
study, Mater. 27, 101670 (2023).

[13] W. Sigle, High-resolution electron microscopy and molecular
dynamics study of the (a/2)[111] screw dislocation in molyb-
denum, Philos. Mag. A 79, 1009 (1999).

[14] B. G. Mendis, Y. Mishin, C. S. Hartley, and K. J. Hemker, Use
of the Nye tensor in analyzing HREM images of bcc screw
dislocations, Philos. Mag. 86, 4607 (2006).

[15] R. Gröger, K. J. Dudeck, P. D. Nellist, V. Vitek, P. B. Hirsch,
and D. Cockayne, Effect of Eshelby twist on core structure
of screw dislocations in molybdenum: Atomic structure and
electron microscope image simulations, Philos. Mag. 91, 2364
(2011).

[16] P. Hohenberg and W. Kohn, Inhomogeneous electron gas,
Phys. Rev. 136, B864 (1964).

[17] W. Kohn and L. J. Sham, Self-consistent equations includ-
ing exchange and correlation effects, Phys. Rev. 140, A1133
(1965).

093604-6

https://doi.org/10.1179/174328005X14339
https://doi.org/10.1016/0001-6160(64)90019-7
https://doi.org/10.1080/14786436408225388
https://doi.org/10.1016/0956-7151(94)90020-5
https://doi.org/10.1016/S0921-5093(01)01594-5
https://doi.org/10.1007/BF00553733
https://doi.org/10.1063/1.1663611
https://doi.org/10.1016/j.commatsci.2017.11.050
https://doi.org/10.1016/j.commatsci.2021.110703
https://doi.org/10.1016/j.jmrt.2022.05.100
https://doi.org/10.1016/j.mtla.2022.101670
https://doi.org/10.1080/01418619908210343
https://doi.org/10.1080/14786430600660849
https://doi.org/10.1080/14786435.2011.562474
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133


CORE STRUCTURE OF DISLOCATIONS IN ORDERED … PHYSICAL REVIEW MATERIALS 8, 093604 (2024)

[18] J. S. Koehler and F. Seitz, Proposed experiments for further
study of the mechanism of plastic deformation, J. Appl. Mech.
14, A217 (1947).

[19] A. P. Sutton, Concepts of Materials Science (Oxford University
Press, Oxford, 2021).

[20] J. E. Gordon, The New Science of Strong Materials (Princeton
University Press, Princeton, 2006), Vol. 58.

[21] M. Duesbery, V. Vitek, and D. K. Bowen, The effect of shear
stress on the screw dislocation core structure in body-centred
cubic lattices, Proc. R. Soc. London A 332, 85 (1973).

[22] J. Christian, Some surprising features of the plastic deforma-
tion of body-centered cubic metals and alloys, Metall. Trans.
A 14, 1237 (1983).

[23] V. Vitek and V. Paidar, Chapter 87 - Non-Planar Disloca-
tion Cores: A Ubiquitous Phenomenon Affecting Mechanical
Properties of Crystalline Materials, in A Tribute to F.R.N.
Nabarro, Dislocations in Solids, edited by J. P. Hirth (Elsevier,
Amsterdam, Oxford, 2008), Vol. 14, pp. 439–514.

[24] D. Weygand, M. Mrovec, T. Hochrainer, and P. Gumbsch,
Multiscale simulation of plasticity in bcc metals, Annu. Rev.
Mater. Res. 45, 369 (2015).

[25] C. Woodward and S. I. Rao, Ab-initio simulation of isolated
screw dislocations in bcc Mo and Ta, Philos. Mag. A 81, 1305
(2001).

[26] S. Ismail-Beigi and T. A. Arias, Ab initio study of screw
dislocations in Mo and Ta: A new picture of plasticity in bcc
transition metals, Phys. Rev. Lett. 84, 1499 (2000).

[27] S. L. Frederiksen and K. W. Jacobsen, Density functional the-
ory studies of screw dislocation core structures in bcc metals,
Philos. Mag. 83, 365 (2003).

[28] L. Dezerald, L. Ventelon, E. Clouet, C. Denoual, D. Rodney,
and F. Willaime, Ab initio modeling of the two-dimensional
energy landscape of screw dislocations in bcc transition met-
als, Phys. Rev. B 89, 024104 (2014).

[29] C. R. Weinberger, G. J. Tucker, and S. M. Foiles, Peierls
potential of screw dislocations in bcc transition metals: Predic-
tions from density functional theory, Phys. Rev. B 87, 054114
(2013).

[30] M. R. Gilbert and S. L. Dudarev, Ab initio multi-string
Frenkel–Kontorova model for a b = a/2[111] screw dislocation
in bcc iron, Philos. Mag. 90, 1035 (2010).

[31] L. Romaner, C. Ambrosch-Draxl, and R. Pippan, Effect of
rhenium on the dislocation core structure in tungsten, Phys.
Rev. Lett. 104, 195503 (2010).

[32] L. Romaner, V. Razumovskiy, and R. Pippan, Core polarity of
screw dislocations in Fe–Co alloys, Philos. Mag. Lett. 94, 334
(2014).

[33] O. von Goldbeck, Iron—cobalt Fe—Co, in IRON—Binary
Phase Diagrams (Springer, Berlin, Heidelberg, 1982),
pp. 27–31.

[34] A. Egorov, A. P. A. Subramanyam, Z. Yuan, R. Drautz, and
T. Hammerschmidt, Magnetic bond-order potential for iron-
cobalt alloys, Phys. Rev. Mater. 7, 044403 (2023).

[35] Cores are visualized by a differential displacement [109] as
implemented in the ATOMMAN package [122].

[36] P. Moine, J. Eymery, and P. Grosbras, The effects of
short-range order and long-range order on the equilibrium
configuration of superdislocations in Fe—Co: 2 at% V—
Consequences on flow stress, Phys. Status Solidi (b) 46, 177
(1971).

[37] M. Marcinkowski, The effect of atomic order on the me-
chanical properties of alloys with emphasis on feco, in
Order-Disorder Transformations in Alloys: Proceedings of the
International Symposium on Order-Disorder Transformations
in Alloys held 3–6 September 1973 in Tübingen, Germany
(Springer, Berlin, Heidelberg, New York, 1974), pp. 364–403.

[38] M. J. Marcinkowski, Theory and Direct Observation of
Antiphase Boundaries and Dislocations in Superlattices, in
Electron Microscopy and Strength of Crystals, edited by G.
Thomas and J. Washburn (Interscience Publishers, New York,
1963), pp. 333–440.

[39] E. Clouet, Ab initio models of dislocations, in Handbook of
Materials Modeling: Methods: Theory and Modeling, edited
by W. Andreoni and S. Yip (Springer International Publishing,
Cham, 2020), pp. 1503–1524.

[40] M. S. Daw and M. I. Baskes, Embedded-atom method: Deriva-
tion and application to impurities, surfaces, and other defects
in metals, Phys. Rev. B 29, 6443 (1984).

[41] M. I. Baskes, Modified embedded-atom potentials for cubic
materials and impurities, Phys. Rev. B 46, 2727 (1992).

[42] B.-J. Lee and M. I. Baskes, Second nearest-neighbor modi-
fied embedded-atom-method potential, Phys. Rev. B 62, 8564
(2000).

[43] B.-J. Lee, M. Baskes, H. Kim, and Y. K. Cho, Second nearest-
neighbor modified embedded atom method potentials for bcc
transition metals, Phys. Rev. B 64, 184102 (2001).

[44] V. Vitek, Core structure of screw dislocations in body-centred
cubic metals: relation to symmetry and interatomic bonding,
Philos. Mag. 84, 415 (2004).

[45] D. Nguyen-Manh, V. Vitek, and A. Horsfield, Environmental
dependence of bonding: A challenge for modelling of in-
termetallics and fusion materials, Prog. Mater. Sci. 52, 255
(2007), Modelling electrons and atoms for materials science.

[46] R. J. Hawkins and J. Sanchez, Ferromagnetism and chemical
ordering in cobalt-iron, J. Phys. F: Met. Phys. 18, 767 (1988).

[47] I. A. Abrikosov, P. James, O. Eriksson, P. Söderlind, A. V.
Ruban, H. L. Skriver, and B. Johansson, Magnetically induced
crystal structure and phase stability in Fe1−cCoc, Phys. Rev. B
54, 3380 (1996).

[48] M. Neumayer and M. Fähnle, Atomic defects in FeCo: Stabi-
lization of the B2 structure by magnetism, Phys. Rev. B 64,
132102 (2001).

[49] V. L. Deringer, M. A. Caro, and G. Csányi, Machine learning
interatomic potentials as emerging tools for materials science,
Adv. Mater. 31, 1902765 (2019).

[50] Y. Mishin, Machine-learning interatomic potentials for mate-
rials science, Acta Mater. 214, 116980 (2021).

[51] J. Behler and G. Csányi, Machine learning potentials for
extended systems: a perspective, Eur. Phys. J. B 94, 142
(2021).

[52] H. Kulik, T. Hammerschmidt, J. Schmidt, S. Botti, M.
Marques, M. Boley, M. Scheffler, M. Todorović, P. Rinke,
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