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Generalizing the structural phase field crystal approach for modeling solid-liquid-vapor phase
transformations in pure materials
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In a recent class of phase field crystal (PFC) models, the density order parameter is coupled to powers of its
mean field. This effectively introduces a phenomenology of higher-order direct correlation functions acting on
long wavelengths, which is required for modeling solid-liquid-vapor systems. The present work generalizes these
models by incorporating, into a single-field theory, higher-order direct correlations, systematically constructed
in reciprocal space to operate across long and short wavelengths. The correlation kernels introduced are also
readily adaptable to describe distinct crystal structures. We examine the three-phase equilibrium properties and
phase diagrams of the proposed model, and reproduce parts of the aluminum phase diagram as an example of
its versatile parametrization. We assess the dynamics of the model, showing that it allows robust control of the
interface energy between the vapor and condensed phases (liquid and solid). We also examine the dynamics of
solid-vapor interfaces over a wide range of parameters and find that dynamical artifacts reported in previous
PFC models do not occur in the present formalism. Additionally, we demonstrate the capacity of the proposed
formalism for computing complex microstructures and defects such as dislocations, grain boundaries, and
voids in solid-liquid-vapor systems, all of which are expected to be crucial for investigating rapid solidification
processes.
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I. INTRODUCTION

Rapid solidification is a key process at work during casting
and additive manufacturing processes of metals and alloys,
as it plays an important role in shaping the spatiotemporal
evolution of material microstructures [1]. The interactions
between these microstructures, such as grain boundaries,
defects, density heterogeneity, and voids [2], determine the as-
cast morphology and can be controlled for achieving specific
material performance. Accurately describing these interac-
tions requires the ability to simulate phase transformations
from atomic to mesolength scales, over large density and tem-
perature ranges, and among the three phases: solid, liquid, and
vapor. These are necessary when investigating the formation
of microscopic voids and cracks initiated at dislocations and
grain boundaries in solids, which have been shown to substan-
tially impact mechanical properties (strength, ductility, etc.),
thereby dictating material performance [3,4].

The phase field crystal (PFC) methodology has been
successful at modeling phase transformations on diffusive
timescales while simultaneously bridging the aforementioned
length scales between the atomic and mesoscales in mi-
crostructure modeling. At the heart of the PFC approach is a
free-energy functional that can be minimized by a periodic or-
der parameter in solids, while becoming uniform in disordered
phases as in traditional phase field models. This emerges from
atomic-length interactions designed into the PFC free-energy
density. These can be made to emulate the short-wavelength
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interactions that are motivated by the direct correlation func-
tion of classical density functional theory (DFT) [5,6]. This
simple change of representing a solidifying system in terms
of a periodic order parameter allows for a straightforward
description of complex microstructures, including polycrys-
talline grain growth, grain boundaries, anisotropic interface
structure, and elastic and plastic deformation [7].

The original PFC model [8,9] free energy consists of ideal
and excess free-energy contributions. The latter comes from
the inclusion of a two-point direct correlation expanded to
fourth order in gradients of the order parameter, in such a com-
bination that favors the formation of period phases with single
length scale at increasing average density (or low enough
effective temperature). The basic PFC formalism was later
expanded to allow for a robust control of a variety of twodi-
mensional (2D) and three-dimensional (3D) crystal structures,
making it possible to model crystallization into and between a
wide variety of solid phases of pure metals [10] and the alloys
[11]. This second PFC approach was coined the structural
phase field crystal (XPFC) approach.

Since the introduction of the original PFC models, several
works have further extended the PFC or XPFC formalism to
include two uniform phases, liquid and vapor, an important
feature for modeling microscopic voids in the study of pure
materials and alloys [12–15]. Beyond expanding the physi-
cal phase space accessible to PFC modeling, this innovation
also enabled the coexistence of a solid and a low-density
(vapor) phase at temperatures below the triple point, opening
the door to the study of phenomena involving voiding [16],
cavitation [17], density shrinkage and hot cracking [13] and
solidification through vapor deposition. These processes are
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of particular importance in rapid solidification, where the
interplay of interface kinetics, defect flow, and elasticity is
dominant. To date, PFC modeling of solid-liquid-vapor sys-
tems has been limited to crystal lattices with a single length
scale in reciprocal space, which can be represented as a real-
space fourth-order gradient expansion. It is instructive for
setting the context of the present work to review below some
challenges of the aforementioned vapor-forming PFC models.

A model by Kocher and Provatas [12] featured couplings
of the PFC density field with powers of its mean field, effec-
tively introducing higher-order correlations operating at long
wavelengths (low q, where q is the wavenumber in recip-
rocal space) through a smoothing parameter. This modeling
approach was extended to use XPFC kernels, which allowed
for efficient control over metallic crystal structures by Jreidini
et al. [16,17]. While expanding the scope of material systems
amenable to PFC modeling, the aforementioned models also
possessed certain limitations, namely, (a) they produced solid-
liquid-vapor phase diagrams over a limited range of density
space, (b) they allowed limited control of the solid-liquid
density jump, and (c) they exhibited stable interface dynamics
only if an upper bound was imposed to the range of the
smoothing; smoothing over larger length scales led to artificial
beading at the solid-vapor interfaces. Another approach for
modeling the vapor phase was introduced in Ref. [14], which
used various high-order real space gradients to describe the
excess energy. This approach fixed problem (b) but only at the
cost of exacerbating problem (a). Moreover, the approach for
determining the number and power of the high-order gradients
cannot be easily generalized. A more recent approach was
introduced in Ref. [18], which proposed a two-field solution
for separately representing spatial variations in the average
density and atomic-scale density variations in the solid. While
this approach was useful in resolving all the aforementioned
challenges, it is a hybrid between PFC and traditional phase
field theory, rather than a self-consistent single-field PFC the-
ory; this approach is analogous to that of Schwalbach et al.,
who proposed introducing an additional nonconserved order
parameter for representing the vapor phase in the PFC formal-
ism, alongside the spatially varying atomic density field [19].

In this work, we introduce a PFC methodology for mod-
eling phase transformations in solid-liquid-vapor systems
through the use of higher-order direct correlations systemati-
cally constructed in reciprocal space to contain both short- and
long-wavelength contributions, features missing in previous
PFC models. We demonstrate that this approach recovers pre-
vious vapor-forming PFC models in specific limits. We show
that the aforementioned artifacts of previous vapor-forming
PFC models are eliminated in the present formalism. As a case
study, we illustrate how to select some parameters of the pro-
posed formalism to quantitatively match temperature-density
and pressure-temperature phase diagrams of pure aluminum
(Al), for the liquid-vapor part of the phase diagrams; quanti-
tative control of the solid-phase properties will be left for a
separate paper. We also examine the stability and parametrize
the energy of liquid-vapor and solid-vapor interfaces. Fi-
nally, we present dynamical simulations of solid-liquid-vapor
transitions to demonstrate that the model lends itself to the
investigation of defects and void formation in rapid solidifica-
tion processes.

The results in the present paper can be straightforwardly
extended to three dimensions, as shown in a recently de-
veloped open-source framework for high performance PFC
simulations in three dimensions [20] using the recent three-
phase PFC model of Refs. [16,17], which inspired the
extensions proposed in this work. However, since the goal
here is to present the underlying properties of this proposed
PFC variant, we limit our simulations to two dimensions. It is
also noted that since the correlation functions for this model
are designed in reciprocal space, it follows on the XPFC of
Greenwood et al. [10,21]. Such two-point correlation kernels
are easily adapted to allow for robust control of a wide range
of metallic crystal structures, ranging from triangular and
square lattices, in two dimensions, to body-centered-cubic
(bcc), face-centered-cubic (fcc), and hexagonal-close-packed
(hcp) crystal lattice structures, in three dimensions.

This remainder of this paper is organized as follows.
Section II introduces the formalism of two-point and higher-
order direct correlation functions used in the proposed model.
Section III studies the equilibrium properties of the model
and presents the construction of temperature-density (T -ρ̄)
and pressure-temperature (P-T ) phase diagrams for solid-
liquid-vapor coexistence over experimentally relevant ranges
of temperature and density. Section IV addresses dynamical
artifacts at solid-vapor interfaces in previous models, and ex-
amines the stability and energy of interfaces in the proposed
model. This section also presents dynamical simulations of
the model, showcasing microstructure evolution in several
types of solid-liquid-vapor phase transitions. A summary and
final remarks of this work are presented in Sec. V.

II. MODEL

In this section, we present the proposed vapor-forming
structural phase field crystal model, which for ease of notation
we will hereafter refer to as VXPFC. Quantities entering the
formulation of VXPFC theory are summarized in Table I. In
accordance with previous approaches that follow the approach
of classical density functional theory (CDFT) [5,22,23], the
starting point is a free-energy functional written in terms of
a scaled local density difference denoted by n(r) = (ρ(r) −
ρ0)/ρ0, where ρ(r) is the number density. The free-energy
functional accounts for ideal and excess free-energy contribu-
tions, and is defined as

�F[n(r)] ≡ �Fideal +
4∑

m=2

�F (m)
excess, (1)

where �F ≡ F − F0 ≡ �F/(kBT0ρ0ad ) is the dimension-
less Helmholtz free-energy difference, where �F = F −
F0, with F0 ≡ f0 V , where f0 is the free-energy density
at the reference point of the functional expansion, defined
by the reference temperature T0 and reference density ρ0, and
V is the volume of the system. Here, the spatial coordinate
is rescaled by the reference solid-phase lattice constant as
r = x/a, and d represents the dimension of space. The space
coordinates are represented as x = (x, y, z) for the case where
d = 3, for example.

The ideal gas (noninteracting) free-energy term is typically
expanded up to fourth order around the reference density
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TABLE I. Physical quantities used in the dimensionless param-
eters of the proposed VXPFC theory. Some quantities are chosen
to match the properties of pure aluminum (Al), and the reference
density is taken to be that of liquid Al at the triple point, ρ̃0 =
2368 kg m−3.

Quantity Symbol Units

Helmholtz free energy F J
Boltzmann constant kB J K−1

Avogadro’s number NA mol−1

Gas constant R = NAkB J mol−1 K−1

Temperature T K
Reference temperature T0 K
Reduced temperature τ = T/T0

Reference particle density ρ0 = ρ̃0(NA/mi )a3−d m−d

Reference mass density ρ̃0 kg m−3

Lattice spacing a m
Dimensionless position r = x/a
Dimension of space d (= 1, 2, 3)
Molar mass for i species mi kg mol−1

m-point direct correlation C (m)(r1, r2, . . . , rm )
function

[8,9], n(r) = 0, in the spirit of Landau theory, yielding a
tractable model for dynamical simulations over relevant den-
sity ranges, defined as

�Fideal ≡ τ

∫
dr[(n(r) + 1) ln(n(r) + 1) − n(r)]

≈ τ

∫
dr

[
1

2
n(r)2 − 1

6
n(r)3 + 1

12
n(r)4

]
, (2)

where τ = T/T0 represents the dimensionless temperature.
Continuing to follow the approach of CDFT, the excess

free energy is encapsulated via contributions that employ two-
point and higher-order direct density correlation functions,
defined as

�F (m)
excess ≡− τ

m!

∫
dr1n(r1)

m∏
j=2

∫
dr j (ρ0ad )m−1

× C(m)(r1, r2, . . . , rm)n(r2)n(r3) · · · n(rm), (3)

and the direct correlation functions C(m) are assumed to follow
the form

(ρ0ad )m−1C(m)(r1, r2, . . . , rm)

≡ Qm

∑
{ξ}

Cm(ξ1)Cm(ξ2)Cm(ξk ) · · ·Cm(ξm−1), (4)

where the sum can generally run over all permutations of
pairwise distances (without repetitions) ξi = rαβ = rα − rβ

(α, β ∈ {1, 2, 3, . . . , m}), where i = 1, 2, 3, . . . , m − 1. The
Cm can in theory all be different, but to keep things tractable
in the construction of a VXPFC model, we consider inter-
actions where they are all the same. Equation (4) represents
one of various nonunique methodologies of representing
higher-order correlation functions as products of two-point
correlations, and which have been shown to be useful in
PFC modeling of complex crystal symmetries in recent years

[24–26]. All the pairwise particle interactions aforementioned
can be interpreted as “indirect” correlations propagated via in-
creasingly large numbers of intermediate particles (see Chap.
3 of Ref. [27]). The base two-point correlation kernels Cm,
from which C(m) in Eq. (4) is constructed, are connected to
their reciprocal space counterparts via

Cm(|ri − r j |) =
∫

dq
(2π )d

Ĉm(q)e−iq·(ri−r j ), (5)

where q is a general wave vector, and Ĉm(q) is the Fourier
transform of Cm(|ri − r j |). We note that there are several ways
to express the higher-order direct correlation kernels that are
consistent with the notation of Eq. (4).

In the general PFC framework, the contribution due to the
two-point correlation (m = 2) is the lowest-order term used
for establishing a periodic lattice structure of the ordered
(solid) phase. Additionally, its low-q properties also allow
for minimal control of the compressibility of the liquid. One
can also modify the coefficients of some local polynomial
terms arising from the ideal free energy to allow for a sec-
ond uniform phase (vapor). This can be formally justified by
incorporating long-wavelength contributions in the two-point
(m = 2), three-point (m = 3), and four-point (m = 4) correla-
tion functions added to the excess free energy, each including
a corresponding self-interaction term (i.e., a local polynomial
term). In order to allow for this, we hereafter define

Ĉm(q) = Ĉm(0) + ˆ̃Cm(q), (6)

where Ĉm(0) corresponds to the value of the correlation
kernel at q = 0, conveniently introduced to yield the self-
interaction terms when incorporated into the respective excess
free-energy terms. Powers of Ĉm(0) emerging from the excess
free-energy terms will rescale the coefficients of the ideal free
energy at the corresponding orders (m = 2, 3, 4). The q �= 0
reciprocal space dependence is encoded in ˆ̃Cm(q), which in
real space represents the spatial dependence of the correlation
functions (this will be demonstrated in the following sections).
The inclusion of high-q contributions to the higher-order cor-
relation functions will prove to be useful for providing robust
control of the solid phase in relation to the uniform phases.
This is analogous to the recent work of Huang and co-workers
[15,26,28], albeit using a different approach. The next three
sections elucidate the specific forms of excess energy terms
generated by the m = 2, 3, 4 correlations functions.

We note that the formalism of constructing higher-order
correlations as products of two-point correlation kernels has
been studied in a limited fashion in previous PFC works.
Seymour and Provatas [24] proposed the first rotationally
invariant three-point correlation function (3PCF) compris-
ing two terms of the form C(3)(r1, r2, r3) ∝ C3(r12)C3(r13),
whose short-wavelength properties stabilize a wide variety
of anisotropic crystalline structures, including graphene and
kagome lattices (as well as square and triangular lattices,
which can also be controllable solely through the two-point
correlation function (2PCF) in the usual XPFC approach
[10,21]). Jreidini later showed how this approach produces
rectangular, rhombic lattices in two dimensions [29]. Alster
et al. [25] and Seymour [30] extended this 3PCF approach
to three dimensions to capture simple cubic, diamond cubic,

093402-3



COELHO, BURNS, WILSON, AND PROVATAS PHYSICAL REVIEW MATERIALS 8, 093402 (2024)

graphene layers, and CaF2 lattices [31]. This approach of
making higher-order correlation functions as products of two-
point correlation functions is also inherent in the design of
the original vapor PFC models by Kocher and Provatas [12]
and Jreidini et al. [16,17], except that the C3(rαβ ) of these
were designed to capture only long-wavelength correlations
of the density field. As mentioned above, the present work
generalizes this approach to generate two-, three-, and four-
point correlation functions operating at both long and short
wavelengths. Toward this aim, we design a class of Ĉm(q) that
allows for both the coexistence of and dynamical transitions
between solid-liquid-vapor phases.

A. Two-point direct correlation (m = 2)

From Eq. (4), the two-point direct correlation func-
tion (2PCF) term becomes (ρ0ad )C(2)(r1, r2) ≡ C2(|r1 − r2|),
where Q2 has been set to 1 here. Substituting this definition
into Eq. (3) gives

�F (2)
excess = − τ

2

∫
dr1 n(r1)

∫
dr2C2(|r1 − r2|)n(r2), (7)

which is the starting form from which the excess energy is
specialized in all previous PFC models. Originally, Ĉ2(q) was
designed as a polynomial expansion [7,9] truncated to fourth
order in q to place the required positive peak at |q0| to stabilize
a periodic crystal structure of interest. Additionally, a peak at
q = 0 was added to model liquid state compressibility [6,8,9].
The two-point correlation has also been truncated at higher
order [15,26,28], producing a peak at q = 0 with negative
curvature Ĉ′′

2 (q), which is required to stabilize vapor-liquid
interfaces [32]. The original XPFC approach [10,21] modeled
the peaks of Ĉ2(q) with one or more Gaussian functions sit-
uated at the peaks (|q0|, |q1|, |q2|, . . .) corresponding to the
primary lattice reflections of the crystal structure of interest.
The position, height, and curvature of each peak can be tuned
independently. Here, we extend the XPFC form of Ĉ2(q)
by adding two Gaussian peaks at q = 0, so as to produce a
negative curvature Ĉ′′

2 (q = 0), while keeping Ĉ2(q = 0) < 0.
These double Gaussian functions are designed to (a) control
the absolute value of the correlation at q = 0, and in turn
the compressibility of the uniform phases, and (b) produce
a negative curvature around q = 0 to yield a |∇n̄|2-type be-
havior, where n̄ is the locally averaged density field. Point
(b) is useful to describe energy contributions due to aver-
age density gradients across solid-vapor, liquid-vapor, and
solid-liquid interfaces more rigorously [32]. With the above
considerations in mind, we introduce the following two-point
direct correlation function, defined in Fourier space:

Ĉ2(q) = κ1,2e
− |q|2

2β2 − κ2,2e
− |q|4

2γ 2

+ maxi

(
Bx

2,ie
− |qi |2

2σ2 τ e
− (|q|2−|qi |2 )2

2α2
i

)
, (8)

where the maxi implies the maximum envelope over all terms
containing the index i. For the case of two dimensions exam-
ined here, i = {10} and {11}, corresponding to peaks at |q10|
and |q11|, and the prefactor exp[−(|qi|2/2σ 2

i )τ ] carries both
a Debye-Waller-like factor (temperature dependent) and an
elastic compressibility constant. All parameters in Eq. (8) and

(a) Triangular phase in 2D

(b) Square phase in 2D 

FIG. 1. Two-point direct correlation functions used in this work
represented by Eq. (8) using τ = 1.0 and the parameters indicated in
Table II for building (a) triangular and (b) square solid phases, in two
dimensions (2D).

their values used in this work are shown in Table II. Following
the definition in Eq. (6), we write Ĉ2(q) = Ĉ2(0) + ˆ̃C2(q), and
substitute this form into Eq. (7) via Eq. (5). This yields the
following excess free-energy contribution from the two-point
correlation:

�F (2)
excess = − τ

2

∫
dr1[Ĉ2(0)n2(r1) + n(r1)η(2)(r1)], (9)

where

η(2)(r) = {C̃2 ∗ n}(r) ≡
∫

dr′C̃2(r − r′)n(r′)

= [ ˆ̃C2(q)n̂(q)]r. (10)

where the inverse Fourier transform is denoted by [·]r. We
highlight once again the contribution due to a self-interaction
(quadratic) term and the η(2)(r) term operating at both long
and short wavelengths. The former term corresponds to that
of Ĉ2 at q = 0, which will rescale the quadratic term in the
ideal free energy in the final form of the model, summarized
in Sec. II D. Figure 1 illustrates two forms of the two-point
correlation function in Eq. (8) used in this work, using the
parameters indicated in Table II.

B. Three-point direct correlation (m = 3)

Peebles and Groth have proposed a generalized hierarchi-
cal form of multipoint correlation functions comprising prod-
ucts of lower-order correlation functions to describe structure
in cosmological fields [33,34]. The specific form they pro-
posed for the 3PCF is C(3)(r1, r2, r3) ∝ C3(r12)C3(r31) +
C3(r12)C3(r23) + C3(r23)C3(r31), which allows for different
contributions of O(n3) to be incorporated in the model.
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TABLE II. Parameter values used in all numerical calculations made with the model defined by Eqs. (20), (21) and (23). The first set
corresponds to values of the physical quantities considered in this work. The second set contains general parameters shared by two-, three-,
and four-point correlation functions, while their individual parameters are presented in the subsequent sets, respectively. The last set contains
the definitions of the relations between model parameters.

Parameter Value Units Parameter Value Units

T0 933 K TCP 6250 K
ρ0 5.29 × 108 m−3 ρ̃0 2.368 kg m−3

kB 1.38 × 10−23 J K−1 NA 6.022 × 1023 mol−1

|q10| 2/
√

3 |q11| |q10|
√

2
α10 1.2 α11 0.8
β 0.25 γ 0.4
Na 0.01 σ 1.7450
B00 0.1040 B01 −0.1023

κ1,2 1.5 κ2,2 = κ1,2 − [1 + C0] + ˆ̃C2(0)
C00 −1.703 C01 −0.1667
Bx

2,10 1.0528 Bx
2,11 0.9Bx

2,10

κ1,3 0.2 κ2,3 2.2
D0 −8.139 D1 −9.1390
D2 −2.2845
Bx

3,10 −0.035 Bx
3,11 0.9Bx

3,10

κ1,4 0.2126 κ2,4 1.8
E0 −11.74 E1 −18.4074
E2 −11.5960 E3 −2.4350
Bx

4,10 −0.035 Bx
4,11 0.9Bx

4,10

Q3 = 0.25(D0 − 1) = −2.2848, Q4 = 0.25(E0 + 2) = −2.4350
Ĉ2(0) = C0 + 1
Ĉ3(0) = √

(D0 − 1)/Q3 , D1 = 2Q3Ĉ3(0) , D2 = Q3

Ĉ4(0) = 3
√

(E0 + 2)/Q4, E1 = 3Q4Ĉ2
4 (0), E2 = 3Q4Ĉ4(0), E3 = Q4

To model the 3PCF, we adopt the phenomenology of Refs.
[33,34] and, following the definition in Eq. (4), propose the
form

(ρ0ad )2C(3)(r1, r2, r3)

= Q3[C3(r1 − r2)C3(r1 − r3) + C3(r1 − r2)C3(r2 − r3)

+ C3(r1 − r3)C3(r2 − r3)], (11)

where {ξ} = {r12, r13, r23}, and as alluded to above, it is
tacitly understood that C(ri − r j ) ≡ C(|ri − r j |) throughout.
Substituting this definition into the general form of Eq. (3)
yields an excess free-energy term of the form

�F (3)
excess = − τ

3!

∫
dr1n(r1)

∫∫
dr2dr3(ρ0ad )2

× C(3)(r1, r2, r3)n(r2)n(r3)

= − τ

3!
Q3

∫
dr1n(r1)

∫∫
dr2dr3[C3(r1 − r2)

× C3(r1 − r3) + C3(r1 − r2)C3(r2 − r3)

+ C3(r1 − r3)C3(r2 − r3)]n(r2)n(r3). (12)

An illustration of what the three correlation products represent
in terms of statistical interactions between points in the den-
sity field is shown in Fig. 2. To proceed further, we follow the
definition in Eq. (6) once again and write the base correlation
kernel C3(ξi ) in Fourier space as Ĉ3(q) = Ĉ3(0) + ˆ̃C3(q). For
simplicity, we take Ĉ3(q) to have the form in Eq. (8) [it is

generalized in Eq. (23) to order m], with coefficients given in
Table II. Considering first the term C3(r1 − r2)C3(r1 − r3) in
Eq. (12), this decomposition gives the contribution

�F (3)
excess = − τ

3!
Q3

∫
dr[Ĉ2

3 (0)n3(r)

+ 2Ĉ3(0)n2(r)η(3)(r1) + n(r)η2
(3)(r)], (13)

where

η(3)(r) = {C̃3 ∗ n}(r) ≡
∫

dr′C̃3(r − r′)n(r′)

= [ ˆ̃C3(q)n̂(q)]r, (14)

and where Q3 also incorporates a factor of 3 due to the multi-
plicity of the other interaction terms, C3(r1 − r2)C3(r2 − r3)

FIG. 2. All possible pairwise distances considered in the rep-
resentation of the three-point correlation, considering translational
and rotational invariance: (a) C3(r1 − r2)C3(r1 − r3), (b) C3(r1 −
r2)C3(r2 − r3), and (c) C3(r1 − r3)C3(r2 − r3).
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and C3(r1 − r3)C3(r2 − r3), each producing an identical con-
tribution to the free energy as Eq. (13), as is also evident from
the symmetry of Fig. 2. It thus suffices to retain only Eq. (13)
for the 3PCF contribution to the excess energy. The values
used for these parameters are shown in Table II.

C. Four-point direct correlation (m = 4)

Continuing analogously to the previous section, and fol-
lowing the definition in Eq. (4), the four-point correlation
function (4PCF) is defined by

(ρ0ad )3C(4)(r1, r2, r3, r4)

= Q4[C4(r1 − r2)C4(r1 − r3)C4(r1 − r4)

+ C4(r1 − r2)C4(r1 − r3)C4(r2 − r4) + · · · ], (15)

where {ξ} = {r12, r13, r14, r23, r24, r34}, and where the (. . . )
represent all the triple correlation products that can be formed
from the set {ξ}. Using this definition, the general form of the
excess free energy due to the three-point correlation becomes

�F (4)
excess = − τ

4!
Q4

∫
dr1n(r1)

∫
dr2dr3dr4(ρ0ad )3

× C(4)(r1, r2, r3, r4)n(r2)n(r3)n(r4)

= − τ

4!
Q4

∫
dr1n(r1)

∫
dr2dr3dr4

× [C4(r1 − r2)C4(r1 − r3)C4(r1 − r4) + · · ·
+ C4(r1 − r2)C4(r2 − r3)C4(r3 − r4) + · · ·
+ C4(r1 − r2)C4(r1 − r3)C4(r2 − r4) + · · ·
+ C4(r1 − r2)C4(r2 − r4)C4(r3 − r4) + · · · ]

× n(r2)n(r3)n(r4), (16)

where (· · · ) in each line denotes four cyclic permutations
on the indices of the indicated term, each yielding an iden-
tical contribution to the excess free energy. It is noted that
we do not include terms with products missing one of the
vector positions (r1, r2, r3, or r4), such as the ones of the
type C(r12)C(r13)C(r23), as these do not link all four-vector
positions. Similarly to the 2PCF and 3PFC excess terms, we
decompose the base correlation kernel by following the defi-
nition in Eq. (6), and write C4(ξi ) in Fourier space as Ĉ4(q) =
Ĉ4(0) + ˆ̃C4(q). As previously, we take the full correlation
kernel Ĉ4(q) to have the form in Eq. (8) [or, alternatively,
Eq. (23), with m = 4], with the coefficients given in Table II.
Substituting this into the C4(r1 − r2)C4(r1 − r3)C4(r1 − r4)
term of Eq. (16) yields, after some manipulations,

�F (4)
excess = − τ

4!
Q4

∫
dr

[
Ĉ3

4 (0)n4(r) + 3Ĉ2
4 (0)n3(r)η(4)(r)

+ 3Ĉ4(0)n2(r)η2
(4)(r) + n(r)η3

(4)(r)
]
, (17)

where

η(4)(r) = {C̃4 ∗ n}(r) ≡
∫

dr′C̃4(r − r′)n(r′)

= [ ˆ̃C4(q)n̂(q)]r, (18)

and where Q4 also incorporates a factor of 4 due to the multi-
plicity of the other cyclic permutations of the term C4(r1 −

r2)C4(r1 − r3)C4(r1 − r4), which yield the same result as
Eq. (17) and are thus not required further than in their formal
representation in Eq. (16). The values used for these param-
eters are shown in Table II. Also, in this work, we will not
consider contributions from the four-point correlation terms
arising from the last three lines of Eq. (16). These represent
three different groups of correlation products with distinct
pairwise distances which can be shown to contribute terms
of the form n2∇2n2 or n2∇4n2 in the free energy, which are
indicated in Ref. [26] to be necessary for controlling angular
dependence of crystal structure.

D. Structural PFC model for solid-liquid-vapor
systems (VXPFC)

In the last sections, we defined each term of the generating
CDFT free-energy functional in Eq. (1). Now, we proceed to
summarize the final form of the free energy considered in this
work, given by

�F ≡ �Fideal + �F (2)
excess + �F (3)

excess

+ �F (4)
excess + �Flinear, (19)

where we tacitly introduced a linear term with coefficient B0,
�Flinear = −τ

∫
drB0n(r), interpreted as an external contri-

bution to the free energy, which was recently demonstrated
to be essential for the calculation and control of the system’s
bulk pressure and elastic constants [15,35]. Collecting Eq. (2)
and the higher-order excess terms proposed in Eqs. (9), (13),
and (17) into Eq. (19) yields the final form of the VXPFC
model for solid-liquid-vapor systems. After some tedious but
straightforward algebra, this is written in the following com-
pact form:

�F = − τ

∫
dr[B0n(r)]

− τ

2!

∫
dr [C0n2(r) + n(r)η(2)(r)]

− τ

3!

∫
dr[D0n3(r) + D1n2(r)η(3)(r)

+ D2n(r)η2
(3)(r)]

− τ

4!

∫
dr[E0n4(r) + E1n3(r)η(4)(r)

+ E2n2(r)η2
(4)(r) + E3n(r)η3

(4)(r)], (20)

where

η(m)(r) =
∫

dr′C̃m(r − r′)n(r′) = [ ˆ̃Cm(q)n̂(q)]r, (21)

and

ˆ̃Cm(q) = Ĉm(q) − Ĉm(0), (22)

with Ĉm(q) given by Eq. (8) for the two-point correlation
kernel (m = 2), and

Ĉm(q) = κ1,me
− |q|2

2β2 − κ2,me
− |q|4

2γ 2 + maxi

(
Bx

m,ie
− (|q|2−|qi |2 )2

2α2
i

)
,

(23)
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for the three-point (m = 3) and four-point correlations kernels
(m = 4). As a first analysis of this VXPFC model, we fol-
low Refs. [15,17] and assume a temperature dependence of
B0 and C0, namely,

B0 ≡ B00 + B01τ,

C0 ≡ C00 + C01τ. (24)

The parameters in Eqs. (20), (23), and (24) are
shown and/or defined in Table II.

We note that for simplicity Eq. (23) does not contain a
Debye-Waller-like factor as the temperature dependence is
kept in the aforementioned two-point kernel only. More gen-
eral forms will be considered in future applications. It is noted
that the first vapor PFC model by Kocher and Provatas [12],
and the extended version of Jreidini et al. [16,17], can be in-
terpreted as particular cases of Eq. (20). Namely, both of them
couple the density field to powers of its mean field, which can
be interpreted as higher-order excess terms in which the corre-
lation functions operate only over long wavelength ranges, as
shown by Eqs. (A1) and (A2), respectively. It is also reiterated
that if the correlation kernel is designed in real space by an
expansion of gradients, we recover the model of Wang et al.
[15] in Eq. (A3) (see Appendix A).

III. EQUILIBRIUM PROPERTIES

The VXPFC model contains short-wavelength interactions
in the two-, three-, and four-point correlation functions, which
allow for robust and quantitative control over the stability and
properties of the solid phase relative to the uniform phases, the
latter of which emerge from the long-wavelength properties of
said correlation functions. This is demonstrated in this section,
which examines the equilibrium properties and phase diagram
of the model. The parameters in Eqs. (20)–(23) are chosen
to quantitatively reproduce the aluminum phase diagram in
(T, ρ̄) space, and the triple point (T = 933 K) and critical
point (TCP) of the aluminum phase diagram in (T, P) space.
Data for the aluminum phase diagram are obtained from a
multiphase equation of state (EOS) model in Ref. [36]. Unless
otherwise stated, all parameters used are displayed in Table II.

The starting point to examine the equilibrium properties
of the model is to approximate the PFC density by a mode
approximation (ansatz), which captures the periodic structure
of the solid lattices being considered. Following the works
in Refs. [8,15,21], the density field is expanded as

n(r) = n̄ +
∑

j

{Aje
iG j ·r + A∗

j e
−iG j ·r}, (25)

where n̄ corresponds to the phase’s average density, and Aj is
the amplitude (or order parameter) controlling density oscil-
lations along the lattice planes represented by the reciprocal
lattice (wave) vectors G j of the crystal. In this representation,
uniform phases correspond to Aj = 0, while solid phases cor-
respond to at least one of the Aj > 0, and whose values are
determined from equilibrium considerations, described below.

A. Solid-liquid-vapor phase coexistence in two dimensions:
Triangular phase

We first consider the equilibrium properties of the VXPFC
model for the case where Ĉ2(q) given by Eq. (8) has a single

peak at |q10|, which will lead to a solid phase with a triangular
lattice in two dimensions. Substituting the three reciprocal
lattice vectors G = |q|(0, 1) and |q|(±√

3/2, 1/2) of a 2D
triangular phase into Eq. (25), assuming Aj are all equal,
yields the following one-mode ansatz for the PFC density field
[6,15]:

n(r⊥) = n̄+A

[
2 cos(|q|y) + 4 cos

(
1

2
|q|y

)
cos

(√
3

2
|q|x

)]
,

(26)

where r⊥ = (x, y), n̄ is the average density of a phase and
Aj = A for all j, and q → q10, in this work. Substituting
Eq. (26) into Eq. (20) and integrating the result over the 2D
hexagonal unit cell area yields the equilibrium free-energy
density in terms of the variables n̄ and A, i.e.,

ftri(q, A; n̄, τ ) = − τ

[
B0n̄ + 1

2
C0n̄2 + 1

3!
D0n̄3 + 1

4!
E0n̄4

]

− 3τ

[
( ˆ̃C2(q) − 1) + 1

3
n̄
(
3 + 2D1

ˆ̃C3(q)

+ D2
ˆ̃C2

3 (q)
) + 1

12
n̄2

(
3E1

ˆ̃C4(q)

+ E2
ˆ̃C2

4 (q) − 12
)]

A2 − τ

[
2
(
D1

ˆ̃C3(q)

+ D2
ˆ̃C2

3 (q) + 1
) + 1

2
n̄
(
3E1

ˆ̃C4(q)

+ 2E2
ˆ̃C2

4 (q) + E3
ˆ̃C3

4 (q) − 8
)]

A3

− 15

4
τ
[
E1

ˆ̃C4(q) + E2
ˆ̃C2

4 (q)

+ E3
ˆ̃C3

4 (q) − 2
]
A4, (27)

where the correlation kernels ˆ̃Cm(q) are kept in a general form,
highlighting the connection with other PFC models using
higher-order correlations designed in real space by expansions
in gradient terms (see Appendix A). We note that in the
long-wavelength limit (q → 0), coefficients from the excess
free-energy terms act only on the polynomial terms in average
density, i.e., not involving the amplitude, A. The coefficients
of the correlation kernels ˆ̃C2, ˆ̃C3, and ˆ̃C4 in Eq. (27) are given
by Table II. A plot of the free-energy landscape described by
Eq. (27) for q = q10, at the triple point (T = 933 K, τ = 1.0),
is shown in Fig. 3. Equation (27) is used to find the free-energy
density for the uniform phases (vapor and liquid) by setting
A = 0, which gives

funiform(n̄, τ ) = −τ

[
B0n̄ + 1

2
C0n̄2 + 1

3!
D0n̄3 + 1

4!
E0n̄4

]
.

(28)

The equilibrium free-energy density of the solid is found
by first minimizing Eq. (27) with respect to A, i.e., solving
∂ ftri/∂A = 0, which yields an expression A = A[n̄, τ ]. Sub-
stituting this back into Eq. (27) yields a function ftri(n̄, τ ).
Some typical plots of the equilibrium free-energy densities
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FIG. 3. The landscape of the VXPFC model free energy in
Eq. (27), after integration over the unit cell of the triangular phase for
q = q10, at the triple point τ = 1.0 (T = 933 K), using parameters
in Table II. The dots are the minimum values corresponding to the
vapor (black), liquid (blue), and solid (red) phase wells. The liquid
well corresponds to a minimum at (n̄, A) = (0, 0) as the reference
mass density is that of the liquid phase (ρ̃0 = 2368 kg m−3), and
n̄ = (ρ̄ − ρ0 )/ρ0, with a corresponding reference particle density
ρ0 = ρ̃0(NA/mi ).

funiform and ftri are shown in Fig. 4, for three values of the
Q4 parameter.

The equilibrium free-energy densities can be analyzed to
find the densities of coexisting phases. These are obtained
by applying the common tangent rule at each temperature

FIG. 4. Equilibrium free-energy density, ftri (n̄, A), in Eq. (27),
considering the amplitude as a function of the average density (n̄)
and temperature A = A[n̄, τ ], at the triple point temperature τ = 1.0
(T = 933 K). The curves correspond to the uniform (blue) and trian-
gular solid (red) phases as a function of n̄, considering the one-mode
approximation, for three values of Q4. All other parameters are listed
in Table II.

(or Maxwell equal area construction), which amounts to
equating the chemical potentials and pressures of coexisting
phases (1 and 2), thus yielding the following equations:

∂ f (n̄1)

n̄1

∣∣∣∣
τ

= ∂ f (n̄2)

n̄2

∣∣∣∣
τ

= μeq,

μeq = f (n̄1) − f (n̄2)

n̄1 − n̄2
, (29)

where μeq is the equilibrium chemical potential, which is
equal for both phases. The solution of these three equa-
tions gives the coexistence densities, n̄1 and n̄2, for phases 1
and 2, respectively, as well as their common chemical poten-
tial μeq. Applying Eqs. (29) to Eq. (28) yields

n̄�,v = ( − D0 ±
√

3D2
0 − 6C0E0

)
/E0, (30)

where n� and nv correspond to the coexistence densities for
the liquid and vapor, respectively. The spinodal curve is given
by solving ∂2 funiform/∂ n̄2 = 0, which gives

n̄spinodal = (−D0 ±
√

D2
0 − 2C0E0

)/
E0. (31)

Applying Eq. (29) to ftri, in Eq. (27), similarly gives the
solid-liquid phase coexistence densities, which are now solved
for numerically. Figure 5(a) shows the complete (ρ̄, T ) phase
diagram for the VXPFC model for the case of a triangular
(2D) solid phase.

We also compute the pressure difference of the uniform
phases (vapor, liquid, or coexisting vapor and liquid) by con-
sidering the case of a fixed total number of particles, N , and
volume V of the system, i.e., N = ∫

drρ = ρ̄V = ρ0(n̄ +
1)V , and recalling that F = �F + f0 V , where, under equilib-
rium conditions, �F = (kBT0ρ0) f V (where f = funiform with
the subscript dropped for ease of notation). This gives

P = −∂F

∂V

∣∣∣∣
T,N

= f0 + kBT0ρ0

[
− f + (n̄ + 1)

∂ f

∂ n̄

]
, (32)

from which the dimensionless pressure becomes

P∗ = P∗
0 − f + (n̄ + 1)

∂ f

∂ n̄
, (33)

where P∗
0 = f0/(kBT0ρ0) is the reference pressure. In this

work, it was chosen to be the pressure at the triple point,
arbitrarily set to P∗

0 = 1.46877 × 10−4 (P0 = 10 MPa). Sub-
stituting Eq. (28) into Eq. (33) and evaluating at the density of
the liquid corresponding to vapor-liquid coexistence gives the
equilibrium pressure difference between uniform phases,

�P∗
uniform = − τB0 − τ

2
C0(n̄2 + 2n̄) − τ

3!
D0(2n̄3 + 3n̄2)

− τ

4!
E0(3n̄4 + 4n̄3). (34)

By proceeding as above, but evaluating Eq. (33) at the den-
sity of the vapor corresponding to solid-vapor coexistence
and at the density of the liquid corresponding to solid-liquid
coexistence, it yields the respective P∗ vs τ curves for both
coexistence lines. Figure 5(b) shows the phase diagram for the
solid-liquid-vapor system corresponding to a triangular phase
in (P, T ) space, or equivalently, in (P∗, τ ) space.

The above analysis using the one-mode expansion in
Eq. (25) results in a free-energy density for the uniform phases
in Eq. (28) and depends on six parameters [recalling Eq. (24)].
The common tangent rule for the liquid-vapor coexistence
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FIG. 5. (a) Temperature-density (T -ρ̄) phase diagram of the VXPFC model for aluminum (Al), where n̄ = (ρ̄ − ρ0 )/ρ0. The reference
density is taken to be that of liquid Al at the triple point, ρ̃0 = 2368 kg m−3. All other parameters are specified in Table II. Solid lines
are equilibrium coexistence boundaries (binodal, liquidus, and solidus). The dashed line is the spinodal curve. The open circles indicate
the temperature-density (T -ρ̄) phase diagram obtained for aluminum via equation of state (EOS) calculations by Lomonosov [36]. (b) The
corresponding pressure-temperature (P-T ) phase diagram, where solid lines indicate the sublimation, fusion, and vaporization curves. The
critical point and triple point are indicated by blue and black circles, respectively.

yields a quadratic function in the parameters (C00, D0, and
E0). These parameters are obtained by fitting Eq. (30) to a
parabolic fit of the corresponding part of the real aluminum
phase diagram. Further, we use the equilibrium pressure at
the critical point (TCP) to find B00, the pressure at the triple
point to determine B01, while C01 is found by forcing liquid
coexistence density along the vapor-liquid coexistence to ter-
minate at the triple point. The above fitting procedure can also
be extended to better approximate the temperature-dependent
slopes of the phase diagram in (P, T ) space using the spe-
cific heat and Clausius-Clapeyron relation. Furthermore, these
approaches can also be used to calculate the parameters of
the solid-liquid and solid-vapor coexistence line in the phase
diagram. This will be left for future work.

We note that the phase diagram for the uniform phases
(vapor and liquid) cannot be entirely fit quantitatively due to
the limitation of expanding the logarithms in the ideal free-
energy term in a Landau type of polynomial form. This limits
the solution for the coexistence lines of the uniform phases to
quadratic order in density, which holds quantitatively around
the critical point as predicted by mean-field theory, but devi-
ates from the true gaseous curve at lower average densities.
This could be circumvented by adding more parameters to
the model to better match vapor density below the critical
density, although all polynomial expansions would ultimately
fail at sufficiently low density. This compromise is done for
dynamical stability, and is not expected to impact physical
processes such as cavitation, voids, cracks, and surfaces.

B. Solid-liquid-vapor phase coexistence in two dimensions:
Square phase

This section examines the equilibrium properties of the
VXPFC model for the case where Ĉ2(q) defined in Eq. (8)
contains two peaks at |q10| and |q11|, which will lead to a
solid phase with a square lattice in two dimensions. To study

equilibrium properties of the model for a square solid phase,
we expand the density field in Eq. (25) by substituting the two
reciprocal lattice vectors G = |q|(1, 0) and |q|(0, 1) of a 2D
square, with different Aj . This yields the following two-mode
approximation [21]:

n(r⊥) = n̄ + A10[(3
√

2 − 2) cos(|q|y) − 2 cos(|q|x)]

− A11 cos(|q|x) cos(|q|y), (35)

where q → q10, when generating the phase diagram. Follow-
ing a similar procedure outlined in the previous section for a
system with a triangular lattice, the equilibrium free-energy
density must now be numerically minimized with respect to
two amplitudes A10 and A11, which then are substituted into
the free-energy density of the square lattice. The results are
shown in the phase diagram in Fig. 6, which shows coex-
istence regions between vapor, liquid, and the square solid
phase.

IV. DYNAMICAL ANALYSIS OF MODEL

This section explores microstructure dynamics in the
VXPFC model. The parameters of the model used in all
dynamical simulations are listed in Table II, which were se-
lected to quantitatively match some equilibrium properties
of aluminum, whose phase diagram is shown in Fig. 5. We
first present the time-evolution equation governing the density
field n(r, t ), which is discretized via the numerical scheme
outlined in Appendix C. Second, we address the main mo-
tivation for developing the VXPFC formalism introduced in
Sec. II, namely, how interfaces between solid, liquid, and
vapor phases are free of dynamical artifacts. Finally, we ex-
plore various modalities of microstructure evolution that can
emerge during solidification of a pure material driven by the
VXPFC model, highlighting that the model lends itself to the
investigation of defects and void formation in rapid solidifica-
tion processes.
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FIG. 6. Temperature-density (T -ρ̄) phase diagram for the
VXPFC model for the case of a solid with a square (2D) lattice.
Model parameters used are listed in Table II.

A. Evolution equation of the PFC density field

As with all PFC models, n(r, t ) consists of a reduced
number density that must be conserved in a closed system. Its

evolution must be governed by the continuity equation, with
a flux driven by gradients in the chemical potential, derived
from the free-energy functional. This is formally derivable
from considerations of the dynamical density functional the-
ory (DDFT) formulation [37], and also heuristically derived
[38]. Following the original works with the PFC framework
[7–9], the conserved dynamics for the reduced density field,
in the limit of constant mobility, becomes

∂n(r, t )

∂t
= ∇2

(
δ�F
δn(r)

)
+ ξ (r, t ), (36)

where the noise is a Gaussian stochastic variable satisfying
〈ξ (r, t )〉 = 0 and 〈ξ (r, t ) ξ (r′, t ′)〉 = −N2

a ∇2
c δ(r − r′)δ(t −

t ′), where N2
a is the amplitude, arbitrarily chosen. We note that

Na typically depends on temperature, although not explicitly
defined here. The subscript “c” in ∇2

c indicates the cutoff
around the interatomic length scale, necessary for attaining
a quantitative match with capillary fluctuation theory [12,39],
which is important, but not addressed in this work. The com-
putational implementation of the noise (and cutoff) in the
simulations is also described in Appendix C. The value of
Na used in all simulations in this section is given in Table II.
Taking the first functional derivative of the model in Eq. (20)
yields

∂n

∂t
= τ∇2

{
−C0n − C̃2 ∗ n − 1

3!
[3D0n2 + D1(2nη(3) + C̃3 ∗ n2)] + D2

(
η2

(3) + 2C̃3 ∗ (nη(3) )
)

− 1

4!

[
4E0n3 + E1(3n2η(4) + C̃4 ∗ n3) + E2

(
2nη2

(4) + 2C̃4 ∗ (n2η(4) )
) + E3

(
η3

(4) + 3C̃4 ∗ (
nη2

(4)

))]} + ξ (r, t ), (37)

where η(m) = {Cm ∗ n}(r) is to be computed as the inverse
Fourier transform [Ĉm(q)n̂q]r, and it is understood that in
dynamics n ≡ n(r, t ).

The following sections examine different applications of
Eq. (37) to interfaces and microstructure evolution. It is noted
that Eq. (37) can also be utilized in tandem with recent ef-
ficient numerical integration schemes for PFC modeling of
dislocation dynamics, ballistics, and thermal response in com-
plex material structures [35,40].

B. Interfacial energy properties of model

We additionally conducted dynamical simulations to study
the interfacial energy of solid-vapor, and liquid-vapor inter-
faces using the VXPFC model. In particular, we examined
the robustness of our model to independently control inter-
face energy between different phases. Solid-liquid interfaces
behave similarly in this model as in other PFC models that
have analyzed such interfaces, and thus will not be discussed
here. Each simulation is initially set up analogously to Fig. 9,
with arbitrary fractions of solid, liquid, and vapor at their
coexistence average densities (n̄), and dynamically evolved
based on Eq. (37). The initially sharp interface profiles seeded
between phases evolve into smooth profiles by following the

dynamical relaxation of the density field, yielding a particular
interface width for late times.

The parameters α and β in the correlation functions
in Eq. (8) are expected to control the interface energy of
uniform-solid phases and liquid-vapor phases, respectively.
Straightforwardly, one can analytically derive a theoretical
prediction to the lowest order in q from the model’s free
energy in Eq. (20) by expanding separately around (|q|2i −
|q|2) → 0 and |q| → 0 and a subsequent integration by parts.
This is expected to contain up to two contributions to the
interface energy, one of the form

∫
dr β−1|∇n̄|2, arising from

variations of the average density. The other is of the form∫
dr α−1|∇A|2, where A is the amplitude of the solid phase

in the lowest-order mode expansion.
The numerically calculated interfacial energies for liquid-

vapor and solid-vapor interfaces are shown in Fig. 7. Interface
energy was calculated via the dimensionless excess free en-
ergy (γexcess), following the procedure in Appendix C. The
behavior of the interface energy is examined for several values
of β in the left-hand columns of the figure. Meanwhile, the
behavior of the interface energy is examined for several values
of α in the right-hand columns of the figure.

In Fig. 7(a), we observe that the variation of the liquid-
vapor excess energy with β fits well to a power-law form
γexcess = 0.00606β−1 + 0.02630 with an R2 value of 0.999,
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FIG. 7. Interface energy as a function of β ∈ [0.1, 0.4], and
α ∈ [0.1, 0.4] for each of the following cases: [(a), (b)] liquid-
vapor and [(c), (d)] solid-vapor interfaces. An inverse power law
is shown for comparison in each case: (a) 0.00606β−1 + 0.02630,
(b) 18.41639α−0.00021 − 18.39050, (c) 9.49633β−0.00038 − 9.46985,
and (d) 0.00545α−1 + 0.12367. In (c), the range 0.35 < β < 0.4
corresponds to a pure material whose average density is shifted from
values from the phase diagram in Fig. 5. We observe that the excess
energy associated with vapor-liquid interfaces is inversely propor-
tional to β, such that interfacial energy ∼ ∫

drβ−1|∇n̄|2, while it is
∼ ∫

drα−1|∇A|2 for interfaces between solid and a uniform phase
(liquid or vapor).

which is as expected. Conversely, Fig. 7(b) shows that the
variation of the excess energy of the liquid-vapor interface
with α is negligible, which is also as anticipated since the
liquid-vapor interface energy is expected to be dominated by
long-wavelength variations, controlled by β. In Fig. 7(c), the
variation of the excess energy of the solid-vapor interface
with β is very minor, which is also anticipated, because the
solid-vapor interface energy is expected to be dominated by
amplitude variations, controllable via α, separately shown
in Fig. 7(d), which fits well to a power-law form γexcess =
0.00545α−1 + 0.12367 with an R2 value of 0.999.

The parameter β can also be used to explore other types
of phase diagrams where the solid phase can be shifted in
average density relative to the one shown in Fig. 5. For ex-
ample, in the range 0.3 < β < 0.4 [red circles in Fig. 7(c)],
one produces a shift in the solid region of the phase diagram
of a pure material. For β > 0.4, one obtains a phase diagram
corresponding to a material with anomalous density changes,
where the equilibrium density of the solid phase lies between
that of the liquid and vapor phases [16]. It is also noted that
the parameter β in the VXPFC model plays an analogous
role as the “smoothing” parameter λ in previous models that
couple the density to its mean field (nm f ). As a result, for
low values of β (β < 0.1), the correlation function starts to

oversmooth the density field, which may lead to the type of
artifacts discussed above. However, we expect that the range
of β shown is adequate to cover a wide range of the phase
space of a pure material.

C. Comparison of solid-vapor interfaces to previous models

In this section we examine the dynamics of solid-vapor
interfaces, specifically addressing an artifact reported to dy-
namically occur at such interfaces simulated by the model of
Kocher and Provatas [12], for specific density and temperature
ranges. Kocher and Provatas [12] introduced couplings of the
PFC density field with powers of its mean field in the free
energy of the model [as in Eq. (A1)], an approach similar to
that examined in Refs. [16,17,41]. In these approaches, these
couplings (effectively excess terms) multiplied n(r) in the
free energy by powers of the expression nm f (r) = ∫

dr′χ (r −
r′)n(r′), where the correlation kernel χ (r − r′) is designed
to operate only on long wavelengths. The expression nm f (r)
can also be seen to be a smoothing of the microscopic density
n(r).

In the above models, certain artifacts around solid-
vapor interfaces that developed during dynamical simulations
of sublimation or vaporization of solids were observed.
Figure 8 shows three examples of this dynamical artifact,
which we simulated here using the model and dynamics used
by Kocher and Provatas in Eq. (A1). In particular, Fig. 8(a)
shows a snapshot in the time evolution of an initially circular
solid crystal growing into a vapor, while Fig. 8(b) shows an
essentially stabilized slab of solid coexisting with its vapor.
In both cases, the quenches are at a model temperature (�B)
below the triple point, with the other parameters indicated in
the figure caption. These images show that there is a sharp
beading in the crystal structure at the solid-vapor interface. It
was hypothesized in Ref. [18] to be caused by the coupling
of the microscopic density field to its mean field, which fil-
ters out wavelengths shorter than some cutoff, thus limiting
dynamical access to a wide range of wavelengths. We further
examined this here by examining the free-energy landscape
of this model at different model temperatures. We found that
this artifact is, in fact, due to the presence of a stripe phase
of lower energy which sits very close to the solid density.
An example of this is shown in Fig. 8(d). The proximity in
density of the stripe and solid phase makes it easy to spawn
a stripe phase in the higher-energy region of the vapor-solid
interface, activated by inevitable numerical fluctuations. To
further support this hypothesis, we simulated the growth of
a solid crystal growing in its vapor, shown in Fig. 8(c), using
a smaller value of the smoothing parameter λ (discussed in
Appendix A). This value of λ comes closer to the limit of
validity of the simplified dynamics employed by Kocher and
Provatas in Ref. [12]. Here we see that a more complete-
looking stripe phase grows into the hexagonal crystal. We
observed that the width of this striped region becomes larger
as the smoothing parameter λ is further decreased. As a
comparison, we used the VXPFC model introduced in this
work to simulate the similar vapor-solid structures as shown in
Fig. 8. These results are shown in Fig. 9 for a quench similarly
below the triple point of the phase diagram in Fig. 5 as it
was for the phase diagram of Ref. [12]. The VXPFC model
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Kocher et al. model

FIG. 8. Nonequilibrium coexistence of solid and vapor phases
in 2D systems simulated using the previous vapor-forming PFC
model in Eq. (A1) following the conserved dynamics described in
the Supplemental Material of Ref. [12]. All simulations were ini-
tialized with a system containing a crystal seed and average density
set to n̄ = 0.2, and quenched below the triple point at the effective
temperature �B = 0.02 following the corresponding phase diagram
in Refs. [12,18] with this choice of parameters: Bx = 0.3, a = 33.5,
b = −12.01, and c = 35. The smoothing parameter is set to λ = 0.2
in (a) and (b), and λ = 0.05 in (c). We have used a time step �t =
0.1, and N = 5122 grid points. The solid-vapor interface in (a) and
(b) features a “single stripe” region, while in (b) a larger stripe phase
bulk forms. The free-energy density curves for triangular, stripes, and
liquid phases are shown in (d) for reference.

parameters used are shown in the caption of Fig. 9. The
VXPFC density field was relaxed in all cases following the dy-
namics in Eq. (37). As shown in all cases of Fig. 9, the VXPFC
simulations do not produce any beading or striping artifacts.
An examination of the free-energy curves of the triangular
and stripe phases in Fig. 9(d) further reveals that the stripe
phase is well above the energy of the triangular phase, thus
making it difficult, if not impossible, to trigger a stripe phase,
or beading—a manifestation of the stripe phase—anywhere
in our solid crystal. This was also the case for other densities
and quench temperatures in the regions of the VXPFC phase
diagram in Fig. 5.

The above discussion reveals that the “artifacts” in the
model of Kocher and Provatas [12] and its derivatives
[16,17,41] are fundamentally caused by the model having a
stripe phase—as do most PFC models—that cannot be con-
veniently moved far enough away in density space from the
triangular phase of interest. Analogously to the work of Wang
et al. [15], one of the innovations of our model is it use
of higher-order correlations, which allow us to more easily

VXPFC model

FIG. 9. Nonequilibrium coexistence of solid and vapor phases in
2D systems simulated using the VXPFC model in Eq. (20) with the
dynamics in Eq. (37). All simulations were initialized with a system
containing a crystal seed and average density set to n̄ = 0.05, and
quenched below the triple point at the scaled temperature τ = 0.01
following the corresponding phase diagram in Fig. 5 and parameters
in Table II. The smoothing parameter is set to β = 0.25 in (a) and
(b), and β = 0.1 in (c). We have used a time step �t = 0.01, and
N = 5122 grid points. All cases (a), (b), and (c) do not present
any artifacts at the solid-vapor interface. The free-energy density
curves for triangular, stripes, and liquid phases are shown in (d) for
reference.

manipulate the depth of the solid-phase energy, which effec-
tively allows us to place the stripe phase conveniently far from
solid phases of interest.

D. Crystallization from phase-separating fluid

The VXPFC model lends itself to study phase separation
between liquid and vapor (uniform phases). In this limit, one
can regard the model as a classic “phase field” model whose
order parameter is density difference. However, because the
order parameter is naturally capable of ordering, it is also
possible to follow phase transitions wherein the vapor or
liquid can nucleate crystalline phases, the latter of which
can exhibit elastoplasticity. As a demonstration of this, we
studied a system that was initialized with a supercritical fluid
with an average density of n̄ = −0.85 (ρ̄ = 0.3552 g/cm3)
cooled to τ = 0.32154 (T = 300 K), below the triple point.
Equation (37) was then used to follow the subsequent mi-
crostructure evolution, based on the parameters in Table II
and the correlation function used to make the triangular phase
in Fig. 5. Snapshots of the system evolution are illustrated
in Fig. 10. At early times, the metastable fluid nucleates
metastable liquid (gray regions) drops that grow into and
deplete the surrounding matrix of vapor (black regions). After
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FIG. 10. The system initially undergoes phase separation into vapor (black) and metastable liquid (gray) phases emergent from the initial
supercritical fluid n̄ = −0.85 (ρ̄ = 0.3552 g/cm3), quenched to τ = 0.32154 (T = 300 K). We use N = 10242 and system parameters as in
Table II and the phase diagram in Fig. 5. After t/�t = 72 000 time steps, a crystal nucleate from the metastable liquid drops, with the formation
of the first full solid crystal at t/�t = 72 500. Coarsening dynamics follows into late times until two larger circular-shaped (due to surface
energy minimization) crystal grains remain by t/�t = 500 000. Further coarsening would result in a single solid mass remaining.

t/�t = 72 000 time steps, crystal nucleation and growth is
observed within the metastable liquid drops. At later times
(∼t/�t = 500 000), the system is essentially full of coars-
ening crystal grains in a vapor matrix, which continue to
grow more slowly based on surface energy minimization.
Further coarsening would result in a single solid mass, with
the amount of vapor and solid phases expected to follow the
lever rule on the phase diagram, i.e., larger volume fraction of
vapor than liquid.The results of Fig. 10 are the pure-material
analog of those obtained in Ref. [42], which examines crys-
tallization from a phase-separating binary alloy in order to
explain neutron scattering experiments of this phenomenon
[43], which we also expect to occur in pure materials. We also
note that quenching into a liquid-vapor coexistence region
close to the critical density in Fig. 5 would lead to spinodal de-
composition into liquid-vapor domains, as described by, e.g.,
the Cahn-Hilliard equation. This case was studied by Frick
et al. [18] using a recent two-field solid-liquid-vapor PFC
model. This is in contrast to the example in Fig. 10 examined
herein, where the system rapidly evolves to a configuration of
many small droplets via nucleation, which subsequently also
undergo Ostwald ripening at late times.

E. Dendritic solidification from an undercooled melt

In order to probe the solidification kinetics at fixed vol-
ume with the VXPFC model, we perform two simulations
of anisotropic crystal growth of dendritic crystals into an
undercooled melt in two dimensions. This is demonstrated in
Fig. 11(a), corresponding to growth of a solid with a triangular

lattice produced by the single dominant high-q peak in Ĉ2(q)
as in Fig. 1(a). The first frame shows the system initialized
with a crystal seed surrounded by undercooled liquid (gray)
at n̄ = 0.1 (ρ̄ = 2.6048 g/cm3), and quenched to τ = 1.286
(T = 1200 K), according to the phase diagram indicated in
Fig. 5. The subsequent frames show the averaged atomic
density, smoothed over a unit cell according to nsmooth(r) =
[ exp(−q2/0.12)n̂q]r, where [·]r represents the inverse Fourier
transform, and n̂q is the Fourier transform of n(r). A section of
the atomic density field around the dendritic arm is also shown
in the insets. After an initial transient time, the spherical
morphology becomes unstable, and the solid shape begins
to express the preferred growth directions of the underlying
crystal due to the surface energy anisotropy of the sixfold
triangular lattice.

Figure 11(b) shows a simulation of the dendritic growth of
a solid phase with a square lattice symmetry [two dominant
high-q peaks in Ĉ(q)] as in Fig. 1(b). An undercooled liquid
(gray) at n̄ = 0.2 (ρ̄ = 2.8415 g/cm3) is quenched to τ =
1.608 (T = 1600 K), in the phase diagram in Fig. 6. After an
initial transient, the spherical morphology becomes unstable,
and the solid shape begins to express the preferred growth
directions of the underlying crystal due to the surface energy
anisotropy of the fourfold symmetry of the square lattice.

We also examined dendritic growth, involving kinetics
between all three phases. This is shown in Fig. 12. In
this case, a uniform liquid at n̄ = 0.02 (ρ̄ = 2.4154 g/cm3)
was quenched to τ = 0.6431 (T = 600 K), i.e., into the
solid-vapor coexistence of the phase diagram indicated in
Fig. 5, and a solid crystal (triangular phase) is seeded in
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FIG. 11. Two-dimensional (2D) anisotropic crystal growth of dendritic crystals into an undercooled melt. The first row (a) corresponds
to the triangular solid phase growth. The system is initialized at t/�t = 0 (first frame) with a crystal seed surrounded by undercooled liquid
(gray) at n̄ = 0.1 (ρ̄ = 2.6048 g/cm3), and quenched to τ = 1.286 (T = 1200 K) in the phase diagram in Fig. 5. The atomic density field
n(r) is shown in gray scale. The subsequent time steps show the averaged density field, smoothed over a unit cell. A section of the atomic
density field around a dendritic arm is enlarged in the inset of each frame. The second row (b) corresponds to the growth of a solid with a
square lattice. Growth occurs from an undercooled liquid (gray) at n̄ = 0.2 (ρ̄ = 2.8415 g/cm3) and quenched to τ = 1.608 (T = 1600 K) in
the phase diagram in Fig. 6. For both simulations, we used N = 10242.

the metastable liquid. As the surrounding liquid density is
depleted by the growing solid, vapor pockets nucleate in high-
depletion areas. This then further drives the formation of the
crystal phase. Rapid solidification kinetics leads to charac-
teristic tip splitting of the initial sixfold crystal, that leads to
seaweedlike dendrite, analogously to what is seen in the sta-
bility of doublon formation [44]. This type of dendritic growth
via vapor deposition has been also examined in Refs. [12,18]
using a previous generation of vapor-forming PFC model
described in the Introduction, and shown in Appendix A to
be a special case of the VXPFC model proposed in this work.

We close this section by illustrating the transition of the
VXPFC model from the long-wavelength “phase field” limit
at low densities, where liquid and vapor phases are described
by a smooth order parameter, to the PFC limit where the or-
der parameter becomes periodic to support crystalline phases.
We perform a linear stability analysis of the model around
a uniform fluid state of average density n̄, and the two peak
correlation kernels to characterize the solid phase, from which
one can generate a triangular or square phase. The details
of the calculation are outlined in Appendix B. We derive
the corresponding Ursell function, Ŝnn(q), which is plotted in
Fig. 13 for various values of n̄. As the average density of the
uniform fluid state decreases, i.e., approaches values closer
to the vapor densities, the Ursell function behaves, to the
lowest order, as Ŝnn(q) ∼ Ŝnn(0) − |q|2 . This indicates that

the total direct correlation function of the model, Ĉnn(q) =
[1 − Ŝnn(q)]/Ŝnn(q), does not feature prominent contributions
from high-q peaks. Conversely, as the average density of a
fluid increases, the rise of high-q peaks signals the emergence
of an atomically ordered crystal phase.

F. Void formation at grain boundaries

One of the main motivations and interest in the develop-
ment of the VXPFC model is the ability to simulate cavitation
and void formation in metals and their alloys, which are
key defect mechanisms in processes ranging from additive
manufacturing to hydrogen embrittlement (HE). It is typically
during manufacturing that void nucleation, growth, and co-
alescence take place. Voids are formed by the accumulation
of vacancies through bulk diffusion, which may be driven
by residual stress gradients or simply to reduce the surface
free energy. Voids have been shown to initiate cracks at grain
boundaries (GBs) that drive intergranular fracture in poly-
crystalline materials [45,46]. This failure mechanism can be
enhanced by the presence of nonmetallic impurities, such as
hydrogen (H), which tends to segregate at grain boundaries
and form voids, thus negatively affecting mechanical perfor-
mance of metals [47]. Recent work by Fotopoulos et al. has
also examined this reduction in the ductility (yield stress) of
a metal due to absorbed H in bicrystalline Cu films using
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FIG. 12. Two-dimensional (2D) seaweed growth into an under-
cooled melt through vapor (black) deposition from depletion zones
formed in a metastable liquid (gray). A uniform liquid at n̄ = 0.02
(ρ̄ = 2.4154 g/cm3) was quenched to τ = 0.6431 (T = 600 K), i.e.,
into solid-vapor coexistence in the phase diagram in Fig. 5. The
metastable liquid is seeded with a solid crystal that grows with a
sixfold symmetry of a triangular lattice. As the solid depletes the sur-
rounding liquid density, vapor pockets nucleate in the high-depletion
areas, driving further dendritic growth, which forms a seaweedlike
structure at late times. We use N = 10242.

theoretical calculations (DFT) and bond-order potential
molecular dynamics (MD) simulations [48,49]. We expect
that future VXPFC modeling can complement such studies to
elucidate this phenomenon over much longer timescales and
on larger system domains.

In PFC modeling, it was recently shown that vacancies
can be represented by changes in the local density amplitude
[50,51]. We thus expect that the VXPFC type of model can
fully capture the interplay of vacancy and void formation. We
examined the phenomenon of void nucleation at grains using
the VXFPC model by first quenching a liquid into the trian-
gular solid region on the phase diagram in Fig. 14(a), where
n̄ = 0.2 (ρ̄ = 2.8416 g/cm3) and τ = 0.322 (T = 300 K).
This leads to a polycrystalline structure (triangular symme-
try) containing dry grain boundaries by time t/�t = 15 750.
In order emulate the placement of a polycrystalline sam-
ple in a vapor-rich environment (as simple demonstration,
only, in this work), we then uniformly subtract average den-
sity directly from the density field n(r), which corresponds
to shifting the average density of the sample to n̄ = −0.2
(ρ̄ = 1.8944 g/cm3), while maintaining the same tempera-
ture; i.e., the system is placed into solid-vapor coexistence. A
metastable intermediary liquid phase forms preferentially at
sites of high energy (e.g., GBs) seen between t/�t = 17 500
and t/�t = 27 500, and then the phase transforms into the
stable vapor phase.

FIG. 13. The Ursell function, Eq. (B6), derived in Appendix B
for different values of the average density n̄, using a two-point direct
correlation Ĉ2(q) with two high-q peaks, which support the emer-
gence of both triangular and square phases in two dimensions. The
parameters used are D0 = 8.139, D1 = 9.139, D2 = 2.2845, κ1,3 =
−3.0, κ1,4 = −3.0, κ2,3 = κ2,4 = 0, and the ones listed in Table II.

V. CONCLUSION

We have extended the XPFC modeling formalism to in-
clude high-order (three- and four-point) direct correlation
functions to study transitions and coexistence among va-
por, liquid, and crystalline solid phases within a framework
of a single continuum density-field description. The model
was coined VXPFC. The higher-order correlations of the
model are built up as a sum of products of two-point ker-
nels, each designed in reciprocal space to operate at both
short and long wavelengths of the density field. Through
both theoretical analysis and numerical computation, the
properties of phase coexistence were examined, yielding
temperature-density (T -ρ̄) and pressure-temperature (P-T )
phase diagrams incorporating the solid-liquid-vapor triple
point and the liquid-vapor critical point of a pure material.
We demonstrated qualitative and quantitative agreement of
the model phase diagram with experimental and atomically
generated phase diagrams of aluminum over experimentally
relevant ranges of temperature and density.

We studied microstructure evolution with the proposed
model, demonstrating, crucially, that it is free of numerical
artifacts in the description of solid-vapor interfaces, which
were found to exist in a previous vapor-forming PFC model
[41]. We then examined vapor-liquid and vapor-solid phase
coexistence, and how to control their corresponding interface
energy as a function of the parameters of the model’s corre-
lation function. To illustrate that our approach can be used to
describe other complex lattice structures, two types of crystal
lattices were studied in two dimensions: the triangular and
the square phases. As the approach developed here is easily
extendable to three dimensions and a robust range of crystal
structures, we expect that this modeling formalism can serve
as a valuable tool for modeling microstructure evolution in
systems involving multiphase interactions with grain bound-
aries, defects, voids, and cracks in phenomena ranging from
solidification to physical and chemical vapor deposition.
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FIG. 14. Nucleation and growth of voids at the grain boundaries of a polycrystalline material simulated by the VXPFC model in two
dimensions. The first row (a) displays the evolution of a polycrystal (triangular symmetry) from a noise-perturbed liquid state (gray) at n̄ = 0.2
(ρ̄ = 2.8416 g/cm3) and quenched to τ = 0.322 (T = 300 K) in the phase diagram in Fig. 5. The atomic density field n(r) is represented in
gray scale as shown in the t/�t = 0 frame. The second row (b) shows nucleation and growth of vapor pockets at the grain boundaries of the
polycrystalline sample in (a). The system in (b) is initialized from the microstructure at the time step t/�t = 15 750 in row (a), but had its
average density shifted to n̄ = −0.2 (ρ̄ = 1.8944 g/cm3), at the same temperature, thus placing it into the solid-vapor coexistence region of
the phase diagram. This was done as a simple way to demonstrate the placement of a polycrystalline sample in a vapor-rich environment. From
time step t/�t = 17 500 to t/�t = 27 500, grain boundary premelting starts to occur, since the free energy of solid-liquid interfaces is lower
than that of a dry GB. The formation of metastable liquid pools comprises an intermediate step for the subsequent nucleation of vapor pockets
(black) at locations near high-energy crystalline defects. We use N = 5122 and parameters as in Table II.

ACKNOWLEDGMENTS

D.L.C. thanks Paul Jreidini and Matthew Frick for insight-
ful discussions and valuable assistance. N.P. acknowledges
the Natural Science and Engineering Research Council of
Canada (NSERC), Canada Research Chairs (CRC) Program,
for funding and Calcul Québec for computing resources.

APPENDIX A: PREVIOUS SINGLE-FIELD PFC MODELS
FOR SOLID-LIQUID-VAPOR SYSTEMS

Here, we show how to recover three recent vapor-forming
PFC models, following a single-field approach, discussed in
the Introduction. The first is that of Kocher and Provatas [12],
which can be written as

�F

kBT ρ0ad
=

∫
dr

[
1

2
n2(r) − 1

6
n3(r) + 1

12
n4(r)

− 1

2
n(r)

∫
dr′C2(|r − r′|)n(r′)

+ 1

3
(a�B + b)n(r)n2

m f (r) + 1

4
cn(r)n3

m f (r)

]
,

(A1)

where nm f (r) = ∫
dr′χ (r − r′)n(r′) is defined as the “density

mean field.” The bulk compressibility and the strength of the

anisotropy in the periodic phase is controlled by Bx, while
B� corresponds to the inverse compressibility of the liquid
phase, such that �B = B� − Bx acts as an effective temper-
ature parameter. This model considers the original two-point
correlation function proposed by Elder et al. [7–9], i.e.,
Ĉ2(q) = 1 − �B − Bx(|q|2 − 1)2, in Fourier space, which
produces a triangular (bcc) solid phase in two (three) di-
mensions. The terms coupling the density to its mean field
result from incorporating higher-order correlations, which
are defined as smoothing kernels designed to operate only
on the long wavelength of the density field as χ̂ (q) =
exp[−|q|2/2λ2]. This approach was the starting point of this
class of vapor PFC models that considers effective higher-
order correlations to control the liquid and vapor phases. It
can also be interpreted as a particular case of the model in
Sec. II for η(2) = {C2 ∗ n}(r), η(3)(r) = η(4)(r) = nm f (r), and
this suitable choice of parameters: C0 = −1, D0 = 1, D1 = 0,
D2 = −2(a�B + b), E0 = −2, B0 = E1 = E2 = 0, and E3 =
−6c. We also note that there is another possible choice of cor-
relation kernels and parameters, which is found by expanding
the η functions following Eq. (6); this could be useful when
fitting self-interaction terms independently. Building upon the
approach in Eq. (A1), a follow-up work by Kocher et al. also
considered an expansion of the PFC free energy about a van
der Waals fluid, which led to a new model shown to be robust
enough to match phase diagrams rather well quantitatively
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[52]. Jreidini et al. considered a more generalized version
of Kocher’s model, in which all parameters are temperature
dependent (up to second order), and now the two-point direct
correlation is designed as in XPFC models, with Gaussian
peaks [16,17]:

�F

kBT ρ0ad
=

∫
dr

[
1

2
p2(τ )n2(r) + 1

3
p3(τ )n3(r)

+ 1

4
p4(τ )n4(r) + 1

2
q2(τ )n(r1)nm f (r)

+ 1

3
q3(τ )n(r1)n2

m f (r) + 1

4
q4(τ )n(r1)n3

m f (r)

]

− 1

2!

∫
dr n(r)

∫
dr′C2(|r − r′|)n(r′), (A2)

which is similar to the model in Eq. (20) for the following
choice of parameters: C0 = −p2(τ ), D0 = −p3(τ ),
E0 = −2p4(τ ), D2 = −2q3(τ ), E3 = −6q4(τ ), B0 = D1 =
E1 = E2 = 0, η(2) = −[q2(τ )nm f + ∫

dr′C2(|r − r′|)n(r′)],
and η(3)(r) = η(4)(r) = nm f (r). Additionally, the mean-field
density is defined similarly to the one in Eq. (A1). The
temperature dependence of the above parameters was
chosen to be polynomial expansions up to O(τ 2). Wang and
co-workers developed a formalism in Ref. [26] from which
they proposed a minimal PFC model for including the vapor
phase [15,28]. For achieving the latter, they incorporated
higher-order terms through three- and four-point correlations,
expressed in real space as an expansion in gradients of the
density [26]. Their minimal vapor-forming PFC model can be
written as

�F

kBT ρ0ad
=

∫
dr

{
−B0n(r)

− 1

2
n(r)

∫
dr′ (C0 + C2∇2 + C4∇4

+ C6∇6)δ(r − r′) n(r′)

− 1

3!
[D0n3(r) + D11n2(r)∇2n(r)]

− 1

4!
[E0n4(r) + E1122n2(r)[∇2n(r)]2]

}
, (A3)

which can be achieved by considering our model in Eq. (20),
defining the correlation kernels in real space as C̃2(r − r′) =
(C2∇2 + C4∇4 + C6∇6 ) δ(r − r′), C̃3(r − r′) = ∇2δ(r − r′),
C̃4(r − r′) = ∇2δ(r − r′), and choosing parameters, such that
D1 = D11, D2 = 0, E1 = 0, E2 = E1122, and E3 = 0.

APPENDIX B: LINEAR STABILITY ANALYSIS
AND STRUCTURE FACTOR OF UNIFORM STATES

The general expression for the structure factor (or rather,
the Ursell function) can be derived for the VXPFC model
by performing a linear stability analysis of the dynamical
equation in Eq. (37) around a uniform state (n̄), follow-
ing the similar approach as in Ref. [15]. The evolution
equation for the density field is cast in the form ∂t n(r) =
G[n(r, t )] + ξ (r, t ), where G = M∇2[δ�F/δn(r)], and we
have introduced a mobility constant M, for generality. The
noise ξ (r, t ) is a random function with zero average value

〈ξ (r, t )〉 = 0 with a characteristic timescale much smaller
than that of δn(r, t ) and its time autocorrelation function can
be approximated by a δ function, such that 〈ξ (r, t )ξ (r′, t ′)〉 =
−N2

a ∇2
r′δ(r − r′)δ(t − t ′), where N2

a = 2MkBT is the ampli-
tude of the noise. The motion of the nonlinear system is
assumed to be in the vicinity of that from an arbitrary uni-
form state (n̄), such that the density field can be decomposed
as n(r, t ) = n̄ + δn(r, t ), where δn(r, t ) represents a small
perturbation. Then, the right-hand side of the dynamical equa-
tion can be Taylor expanded to first order as

G[n̄ + δn(r, t )] = G[n̄] + δG

δn

∣∣∣∣
n=n̄

δn(r, t ).

Since G[δn(r, t )] = G[n̄ + δn(r, t )] − G[n̄], we have

∂tδn(r, t ) = −�(n̄, r, r′)δn(r, t ) + ξ (r, t ), (B1)

where �(n̄, r, r′) = −M∇2[δ2�F/δn(r)δn(r′)]n=n̄ is the lin-
ear operator acting on δn(r, t ). In Fourier space, Eq. (B1)
reads

∂tδn̂(q, t ) = −γqδn̂(q, t ) + ξ̂ (q, t ), (B2)

where 〈ξ̂ (q, t )ξ̂ (q′, t ′)〉 = 2MkBT |q|2δ(q − q′)δ(t − t ′), and
for which the solution is

δn̂(q, t ) = e−γqtδn̂(q, 0) + e−γqt
∫ t

0
dt ′eγqt ′

ξ̂ (q, t ′). (B3)

Here, δn̂(q, t ) and γq are the Fourier transforms of δn(r, t )
and the operator �(n̄, r, r′), respectively. The linear growth in
Eq. (B2), for the VXPFC model, is

γq

τ |q|2M

= −[C0 + ˆ̃C2(|q|)] − 1

3!
n̄[6D0 + 4(D1 + D2) ˆ̃C3(q)]

− 1

4!
n̄2

[
12E0 + 2(E1 + E2) ˆ̃C4(q) + E3

ˆ̃C2
4 (q)

]
. (B4)

We note that Eq. (B4) also lends itself to the study of how
model parameters can affect numerical stability, which can
also guide the appropriate choice of grid spacing and time
step in dynamical simulations. We define the Ursell function
as Ŝnn(q, t ) = 〈δn̂(q, t )δn̂(−q, t )〉 = 〈|δn̂(q, t )|2〉, such that,
using Eq. (B3), it yields

Ŝnn(q, t ) = e−2γqt Ŝnn(q, 0) + MkBT |q|2
γq

(1 − e−2γqt ). (B5)

For times much greater than the characteristic timescale of the
problem (t � γ −1

q ), the system is assumed to have reached
equilibrium, and the Ursell function reduces to Ŝnn(q) =
Ŝnn(q, t � γ −1

q ) = MkBT |q|2/γq, which gives

Ŝnn(q)

kBT0
=

{
−[C0 + ˆ̃C2(|q|)] − 1

3!
n̄[6D0

+ 4(D1 + D2) ˆ̃C3(q)] − 1

4!
n̄2

[
12E0

+ 2(E1 + E2) ˆ̃C4(q) + E3
ˆ̃C2

4 (q)
]}−1

, (B6)
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using Eq. (B4). In the continuum limit, the structure factor
of a uniform fluid reads s(q) = Ŝnn(q) + ρ̄2(2π )3δ(q), which
corresponds to the Ursell function away from |q| = 0. At
the uniform liquid reference density (n̄ = 0), Eq. (B6) only
has contributions from the direct two-point correlation, which
then serves as a “template” for solid crystal growth.

APPENDIX C: COMPUTATIONAL METHODOLOGY

We utilize a pseudospectral semi-implicit scheme to nu-
merically solve Eq. (37), following the approach outlined
in Ref. [53], employed for modeling the smetic phase of
liquid crystals using phase field methods. Linear terms are
computed in Fourier space, while nonlinear terms are com-
puted in real space. This choice avoids the computational
overhead associated with Fourier mode convolutions, thereby
reducing computational costs. Additionally, we employ a
second-order-accurate scheme in time. Our fast Fourier trans-
form (FFT)-based code solves the evolution equation for the
order parameter through an in-house developed C/C++ code,
which relies on the FFTW library [54,55] and standard MPI
libraries for parallelization. The equation of motion for the
conserved density field, n(r, t ), can be rewritten as ∂t n(r, t ) =
L[n(r, t )] + N [n(r, t )] such that in reciprocal space the dy-
namics for the Fourier coefficients becomes ∂t n̂q = L̂q + N̂q ,
where q denotes the corresponding wavenumber. The Fourier
transform of the linear terms, L̂q, and of the nonlinear terms,
N̂q, are respectively defined as

L̂q := − τ |q|2[−C0 − ˆ̃C2(q)]n̂q,

N̂q := − τ |q|2
{

− 1

3!

[
3D0n2 + D1(2nη(3) + C̃3 ∗ n2)

+ D2(η2
(3) + 2C̃3 ∗ {nη(3)})

]
− 1

4!

[
4E0n3 + E1(3n2η(4) + C̃4 ∗ n3)

+ E2
(
2nη2

(4) + 2C̃4 ∗ {n2η(4)}
)

+ E3
(
η3

(4) + 3C̃4 ∗ {
nη2

(4)

})] + ξ (r, t )

}
q
, (C1)

where {·}q represents the forward transform, and linear
terms can be written as L̂q := ωqn̂q, so that we can iden-
tify ωq as the linear growth rate. We also note that some

terms in N̂q are computed following {C̃m ∗ f }q = ˆ̃Cm(q) f̂ (q),
where f is just a generic function. A second-order semi-
implicit scheme is implemented as a combination of the
Crank-Nicolson (CN) scheme for the linear terms with
an explicit second-order Adams-Bashforth (AB) scheme

for the nonlinear terms in Fourier space [53]. The target
scheme reads (n̂m+1

q − nm
q )/�t = 1

2 [L̂m+1
q + L̂m

q ] + 1
2 [3N̂m

q −
N̂m−1

q ] , where the linear multiplier ωq is evaluated just once
before the main loop. The iteration scheme for the numerical
solution at the new time step is

n̂m+1
q =

(
1 + �t

2 ωq
)
n̂m

q + �t
2

(
3N̂m

q − N̂m−1
q

)
(
1 − �t

2 ωq
) , (C2)

where the numerical solution (n̂m+1
q ) is converted back to real

space via inverse fast Fourier transform (iFFT) as nm+1(r) =
[nm+1

q ]r := ∑
q∈Zd n̂m+1

q eiq·r.
In this work, we use periodic boundary conditions for the

density field in all simulations, and the computational domain
is � = [0, L]2, where L is the domain side length. We define
the grid spacing as h = 2π/8|q10|, using the first lattice peak
wavenumber given in Table II. This way, the resolution of the
grid is 8 points per wavelength, which is shown to offer a sat-
isfactory trade-off between precision and computational cost,
considering the high spatial accuracy of spectral methods. The
total number of nodes, or grid points, is N (generally 5122,
10242, 20482, specified in each case), such that L = N1/2h.
We used a fixed time step of �t = 0.01 in all simulations,
unless otherwise stated. The Gaussian noise is generated in
real space for a discrete mesh, and then filtered in reciprocal
space by a cutoff of wavelengths shorter than the lattice con-
stant 2π/|q10|, such that 〈ξi(t ) ξ j (t ′)〉 = (N2

a /h2�t )q2δi jδt,t ′ ,
for |q| < |q10|, where the standard deviation is Na/(h2

√
�t ),

hence the variance is N2
a /(h2�t ).

Calculation of interfacial free energy between phases

The interfacial energy of a system in a phase coexistence
state can be calculated by subtracting the free energy of the
bulk phases from the total free energy of the system. Although
we consider simulations involving solid, liquid, and vapor in
this work, we only compute the interfacial energy between
two of these phases, i.e., phases 1 and 2. Based on the work of
Wu and Karma [56], this free-energy difference is calculated
by means of the dimensionless excess free energy, defined as

γexcess = 1

L

∫
dr

[
f −

(
f1

n(r) − n̄2

n̄1 − n̄2
− f2

n(r) − n̄1

n̄1 − n̄2

)]
,

(C3)

where L is the domain side length. Here, the free-energy
density f is the integrand of the VXPFC model, in Eq. (20),
i.e., �F = ∫

dr f (r, n(r)), and n̄i and fi are the mean values
of the numerically relaxed density field n(r) and free-energy
densities for phases 1 and 2, respectively. This form is also
addressed in Ref. [57].
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