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Structural stability of tungsten nanoparticles
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Motivated by contradicting reports in the literature, we have investigated the structural stability of tungsten
nanoparticles using density functional theory calculations. The comparison of BCC, FCC, A15, disordered,
and icosahedral configurations unequivocally shows that BCC is, energetically, the most stable structure when
the number of atoms is greater than 40. A disordered structure is more stable for smaller sizes. This result
conflicts with an earlier theoretical study on transition metal nanoparticles, based on a semi-empirical modeling
of nanoparticles energetics [D. Tománek et al., Phys. Rev. B 28, 665 (1983)]. Examining this latter work in the
light of our results suggests that an inappropriate description of cluster geometry is the source of the discrepancy.
Finally, we improve the accuracy of the semi-empirical model proposed in this work, which will be useful to
calculate nanoparticle energies for larger sizes.
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I. INTRODUCTION

Due to its high melting and evaporation temperatures and
excellent mechanical properties, tungsten is the selected wall
material to be used in fusion reactor divertors like ITER.
Despite a high thermal stability and a good resistance to
sputtering, the interaction with the plasma during operation
leads to the formation of dust composed of tungsten nanopar-
ticles of various sizes [1]. This aspect motivated extensive
investigations on the properties of W nanoparticles, and in
particular their environmental and biological impacts in a
fusionlike environment [2]. Tungsten-based nanomaterials are
also increasingly used in biomedicine applications [3].

The most stable phase of bulk tungsten is named α-W
and has a body-centered structure (BCC). Two metastable
allotropes are known, which can form in specific conditions.
The first one is named β-W and has an A15 cubic structure.
β-W thin films have been extensively studied, owing to the
report of a giant spin Hall effect [4]. The second one is γ -W,
with a face-centered cubic (FCC) structure [5]. Naturally, one
would assume that tungsten nanoparticles are made of the
most stable bulk phase, i.e., α-W [6]. However, in an early the-
oretical paper, Tománek and coworkers predicted that an FCC
structure would be favored in small nanoparticles for several
transition metals, including tungsten [7]. Their conclusions
were based on the argument that surface energies associated
with the FCC structure are typically lower than the ones for
the BCC structure and that this effect will dominate at small
sizes when the surface-to-bulk ratio increases. In the specific
case of tungsten, they calculated a nanoparticle size threshold
of 5 to 6 nm, below which FCC should be the lowest energy
structure. Later x-ray diffraction experiments on nanometer-
sized W clusters confirmed the prediction and determined the
BCC-FCC structural transition at 7 nm [8]. Similar conclu-
sions in support of this argument were reached for Mo and
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Cr clusters [9,10]. However, other experiments led to different
observations. For instance, Iwama and Hayakawa found that
3–20 nm Mo and W nanoparticles show crystalline structures
being either BCC or A15 for Mo, and A15 for W, but not
FCC [11]. More recently, Schöttle and coworkers reported
transmission electron microscopy observations of 1 to 2 nm W
nanoparticles with a BCC structure [12]. These discrepancies
suggest that the observed structure might depend on the prepa-
ration techniques and growth conditions. The substrate and
the presence of impurities or surfactants are factors that can
change the relative stability of phases. In addition, a specific
phase can be kinetically quenched during growth, although
it is thermodynamically metastable, and remains stable at
ambient conditions or during moderate annealings.

On the numerical side, classical molecular dynamics sim-
ulations were carried out for investigating this possible
BCC-FCC transition as a function of the size and shape
in W nanoparticles. Hence, Chen and coworkers reported
that the BCC structure is significantly more stable than the
FCC, except for a singular high-energy shape [13]. This
work confirms an earlier study by Marville and Andreoni,
who found that tungsten nanoparticles were more stable in
a BCC structure than in an FCC or icosahedral arrangement
[14]. These simulations then support the recent microscopy
measurements against the early predictions and experiments.
However, one has to be cautious about definite conclusions,
since interatomic potentials are not always accurate in the
description of undercoordinated atoms at the surfaces and
edges of nanoparticles. For instance, Lin et al. found different
low-energy crystalline structures for W clusters depending
on the used potentials [15]. Another aspect is the poten-
tial stabilization of the A15 phase in the W nanoparticles,
which was overlooked in published numerical works. This
motivates us to perform a thorough investigation of the
structural stability of small tungsten nanoparticles using first-
principles calculations. In particular, we consider numerous
systems with BCC, FCC, A15, disordered, and icosahedral
structures.
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TABLE I. Computed data for tungsten in BCC, FCC, and A15
structures, compared to experimental results when available, and
DFT computed data from the literature. The lattice parameter a0 is
expressed in angstrom, the bulk modulus B in GPa, and the surface
energies γ in J m−2. The bulk energy per atom ε0 is given relatively to
the BCC phase (i.e., ε0(BCC) = 0), and is expressed in eV at−1. Note
that the energies for {110} and {111} surfaces of FCC W (marked
with a *) correspond to the unrelaxed slab configuration (see text for
details).

DFT

Expt. This work Others

BCC a0 3.165a 3.1753 3.1741b, 3.172c

B 310d 311 309e

γ100 4.071 3.954f

γ110 3.265g, 3.675h 3.302 3.230f

γ111 3.569 3.466f

FCC a0 4.13a 4.0256 4.025c, 3.960i

ε0 0.494 0.49c, 0.50i

B 282 286j

γ100 3.284
γ110 3.736∗

γ111 2.637∗

A15 a0 5.05a 5.0665 5.059c

ε0 0.082k 0.093 0.09c

B 298 298f

aRef. [16]; bRef. [17]; cRef. [18]; dRef. [19]; eRef. [20]; fRef. [21];
gRef. [22]; hRef. [23]; iRef. [24]; jRef. [25]; kRef. [26].

II. METHODS

A. Electronic structure calculations

We perform first-principles calculations in the framework
of density functional theory (DFT) for determining the relaxed
structure and the associated energy of various nanoparticle
models. The code pw.x in the Quantum Espresso software
[27] is used for this purpose. A well-converged electronic
structure is achieved by using a plane wave energy cutoff
of 40 Ry and a charge density cutoff of 320 Ry. Exchange-
correlation contributions are described with the Perdew-
Burke-Ernzerhof functional [28]. We use the Projector
Augmented-Wave method [29] for ion-electron interactions,
with the valence electron configuration 5s25p65d46s2. Finally,
the cold smearing method [30] of Marzari and cowork-
ers is applied to improve the convergence of the electronic
structure.

We first compute the lattice parameter and bulk modulus
for the three tungsten allotropes, and their energy differences,
using supercells and a very dense grid of k-points for Brillouin
zone sampling. Our results in Table I are in excellent agree-
ment with other recent calculations and available experiments.
The table also includes the energies of surfaces with low
Miller indexes for BCC and FCC W. Those are calculated
using a slab configuration, a large number of layers, and a k-
point grid of 20 × 20 × 1, in order to obtain converged results.
The relaxation is achieved when all components of all ionic
forces are lower than 2.6 × 10−4 eV Å−1. Calculated surface
energies for BCC W are in good agreement with the literature.

We also consider the canonical surfaces of FCC W, for which
no information seems to be available in the literature. In the
case of the (110) and (111) surfaces, we observe distortions
occurring in the center of the slab during force relaxation. We
have not pursued the analysis of this issue any further, since it
is not the focus of the study. For these two surfaces, we report
in Table I the energies of the unrelaxed initial configuration.

For the relaxation of nanoparticles, we employ supercells
large enough to allow for at least 10 Å between periodic
replicas in all dimensions. The k-point sampling is made
at the �-point as is usual for 0D systems. Finally, forces
are relaxed until all components for all ions are lower than
2.6 × 10−4 eV Å−1.

B. Nanoparticles selection

The shape of 1 to 2 nm nanoparticles, i.e., including about
30 to a few hundred atoms, is often poorly documented, and
tungsten is no exception. Therefore, we follow a well-proven,
standard methodology [31], in order to generate low-energy
initial configurations. For BCC and FCC, for which the en-
ergies of surfaces are known, we use a Wulff construction as
a first option. Alternatively, we also carve nanoparticles out
of bulk, with spherical or smoothed cubic shapes. A coor-
dination analysis is next performed to select configurations
with as few low coordination atoms as possible, since the
latter are associated with a high energy in metals. These
two techniques are both used to obtain initial configurations
of BCC and FCC nanoparticles. To our knowledge, no in-
formation is available regarding possible surfaces for the
A15 structure. It is therefore difficult to generate Wulff-like
nanoparticles. The inspection of the A15 structure reveals
that there are several inequivalent types of (100), (110), and
(111) planes. Since one (100) plane appears denser than the
others, we tried to build cubic nanoparticles with facets cor-
responding to this specific plane. We also generated spherical
nanoparticles. In all cases, poorly coordinated atoms, at cor-
ner edges, for instance, are removed in order to improve the
stability.

The carving strategy is more difficult to implement in the
case of a disordered structure, since bulk tungsten does not
exist in an amorphous phase to our knowledge. Recently,
Jana and Caro performed an extensive search for the most
stable structures of iron nanoparticles including less than 200
atoms [32]. Except for a few crystalline configurations at
magic numbers, they found that most of these structures are
amorphous. We select several of these configurations from
their freely available structures database, which can be used
as initial configurations after a small rescaling. These systems
are labeled D (for disordered) in the remainder of the paper.

Finally, we also consider icosahedral nanoparticles, iden-
tified with the label ‘I’. The two possible candidates in the
investigated size range contain 55 and 147 atoms [33]. Over-
all we select 27 different nanoparticles, with atoms numbers
ranging from 55 to 169, to be used as starting configurations in
first-principles calculations. The set includes 8 BCC, 7 FCC,
5 A15, 5 disordered (D), and 2 icosahedral (I) nanoparticles.

086001-2



STRUCTURAL STABILITY OF TUNGSTEN … PHYSICAL REVIEW MATERIALS 8, 086001 (2024)

FIG. 1. Examples of DFT relaxed tungsten nanoparticles, with
various sizes (given as a number of atoms in the label) and dif-
ferent atomic structures (BCC, FCC, A15, D for disordered, I for
icosahedral).

III. STABILITY

Selected examples of DFT relaxed nanoparticles are repre-
sented in Fig. 1. In most cases we observe limited structural
changes compared to the initial configurations. In particular,
only a slight surface relaxation is observed for BCC and I
nanoparticles, with an energy gain of 0.15 eV/at, on aver-
age. For A15 and FCC systems, the surface relaxation is
greater, with an average relaxation energy of 0.26 eV/at and
0.32 eV/at, respectively. The larger energy gain is obtained
for D nanoparticles, for which significant surface atom dis-
placements are identified. On average, the relaxation of D
nanoparticles yields an energy gain of 0.83 eV/at.

The energy E (with respect to the perfect BCC bulk) of a
relaxed nanoparticle made of N atoms can be written

E = Nε0 + Es(N ), (1)

with ε0 the bulk energy per atom relative to the ground state
BCC structure (ε0(BCC) = 0). Es is an excess energy, akin to
a surface energy, although it can in principle include further
contributions associated with Laplace pressure, surface stress
relaxation, or quantum confinement effects. Assuming that

FIG. 2. Nanoparticle energy per atom (eV) as a function of the
number of atoms N , the reference being the BCC bulk energy, af-
ter DFT relaxation (BCC: blue circles; FCC, orange squares; A15:
magenta diamonds; D: green triangles; I: golden stars). Dashed lines
are obtained by fitting all data points for a given set with Eq. (3) (fit
parameters reported in Table II).

only surface atoms contribute to Es, and that the number of
surface atoms is roughly N2/3, Eq. (1) becomes

E = Nε0 + βN2/3, (2)

with β the average energy contribution to Es from surface
atoms. The energy per atom of a nanoparticle can then be
written

E/N = ε0 + βN−1/3. (3)

Figure 2 shows the nanoparticle energies calculated by
DFT for all configurations. As predicted by Eq. (3), E/N
values increase for N → 0 due to the growing surface con-
tribution and converge to ε0 for N → ∞. The most striking
result is that for a given N , BCC nanoparticles appear to al-
ways be more stable than the others. Fitting Eq. (3) separately
for each kind of structure better highlights this finding (dashed
lines in Fig. 2). We observe overall E (BCC) < E (A15) <

E (D) < E (I) < E (FCC) in the investigated N range. There-
fore, our results disagree with the predictions made in Ref. [7].
In fact, our calculations clearly show that FCC nanoparticles
are not energetically more stable than BCC nanoparticles.
They also reveal that BCC is the lowest energy structure
and that A15, disordered and icosahedral nanoparticles are
more stable than FCC nanoparticles. For N � 120−140, we
estimate an energy difference of 0.18 eV/at between BCC
and icosahedral nanoparticles, in excellent agreement with
previous investigations [34].

The β values determined in the fitting process are reported
in Table II. We adjust β while using ε0 from bulk calculations
(Table I), except for disordered and icosahedral nanoparticles
for which ε0 is also adjusted. Note that only minor changes
are observed when both β and ε0 are adjusted on DFT data
for BCC, FCC, and A15 nanoparticles.

β in Eq. (3) corresponds to an energy per surface atom.
Conversion into the usual surface energies γ , i.e., energies per
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TABLE II. β parameters obtained by fitting Eq. (3) with DFT
calculations (shown in Fig. 2). For BCC, FCC, and A15 nanopar-
ticles, ε0 values calculated for bulk systems are used in the fit. For
disordered (D) and icosahedral (I) nanoparticles, ε0 is computed
together with β by fit. The table also includes the corresponding
surface energies calculated using the spherical model described in
the Appendix, and the number of atoms Nc below which each phase
becomes more stable than BCC.

β (eV) ε0 (eV) γ (J m−2) Nc

BCC 7.149 0.000 3.729
FCC 5.861 0.494 3.019 17
A15 7.000 0.093 3.614 4
D 6.099 0.307 3.142 40
I 5.836 0.433 3.006 27

surface area, is straightforward if one assumes that nanoparti-
cles are spherical (see the Appendix). Computed values are
included in Table II. We find that the lowest γ values are
obtained for I and FCC, followed by D, A15, and, finally,
BCC. This is in agreement with arguments based on a lower
surface to volume ratio for icosahedral and FCC [7,9,33]. We
also observe that γ values for BCC and FCC are in the range
of surface energies calculated for well-defined orientations as
reported in Table I. However, it is difficult to push further the
comparison. Swaminarayan and coworkers proposed that the
surface energy of spherical nanoparticles made of FCC metals
is close to γ110 [35]. This is clearly not verified in the present
work. Our value of 3.019 J m−2 is also larger than predictions
made using an analytical model [36].

The largest surface energy for BCC systems necessarily
implies that other structures will be energetically favored be-
low a given size. Using Eq. (3), the critical transition between
BCC and phase X is predicted to occur at

Nc =
[
β(BCC) − β(X)

ε0(X)

]3

, (4)

since ε0(BCC) = 0. Computed values are reported in
Table II. We find that FCC nanoparticles become more sta-
ble than BCC nanoparticles for N � 17. This is dramatically
smaller than previously reported sizes of Nc = 5660 (Ref. [7])
and Nc = 10470 (Ref. [8]). In addition, such a transition is
not relevant here because our data also suggest that a dis-
ordered state is favored for N � 40. It is well known that a
noncrystalline molecular configuration should prevail for all
metals at the smallest scales. Our computed threshold is close
to a measured value of N = 30, but this good agreement may
be fortuitous given the large experimental uncertainty [8] and
the limited set of disordered configurations considered in our
simulations.

To conclude this section, our DFT calculations unambigu-
ously show that a BCC structure is favored for small tungsten
nanoparticles of 1 to 1.6 nm. Nanoparticles with FCC or A15
structures are always higher in energy. When the number of
atoms is lower than about 40, a disordered state becomes
favorable. These results are at odds with a theoretical analysis
[7] and x-ray diffraction experiments [8]. They are, how-
ever, in agreement with microscopy measurements [12] and

classical molecular dynamics calculations [13,14]. The main
factor explaining the BCC stability over FCC, despite the
higher surface energy contribution, is the large bulk energy
difference in favor of BCC. It is then obvious that the BCC
structure will be favored for nanoparticles larger than those
investigated here. Finally, it is important to keep in mind that
we compute 0 K energy differences, and an evaluation of
nanoparticle-free energies would be needed for more definite
conclusions. As a first hint, the bulk entropy difference be-
tween FCC and BCC is estimated to be approximately 1 kB

per atom [37], thus at least one order of magnitude lower than
the energy differences in Table I at 300 K.

IV. SEMI-EMPIRICAL MODELING

In this section, we focus on the semi-empirical model
proposed by Tománek and coworkers [7]. We first aim to
compare and improve predictions from this model with our
DFT-calculated nanoparticle energies. In the second step, we
try to understand why using this model leads to overestimated
sizes for the BCC-FCC transition.

We summarize the basics of this model in the first place.
Using the second moment approximation, Tománek and
coworkers proposed that Es in Eq. (1) can be approximated
by

Es = Ec

Ns∑
i=1

[(Zi/Zb)λ − 1], (5)

where Ns is the number of surface atoms and λ = 1/2. Ec is
the cohesive energy of the bulk state. Zi is an effective co-
ordination number including both first and second neighbors:
Zi = Z1

i + ηZ2
i where Z1

i and Z2
i refer to nearest neighbors and

next-nearest neighbors, respectively. In their paper, Tománek
and coworkers reported that appropriate values for parameter
η are 0.08 for FCC and 0.4 for BCC [7]. They also defined
surface atoms as those with Zi lower than 10. Finally, Zb is
the coordination for bulk atoms, which depends on the atomic
structure.

We first compute Zi for all BCC and FCC nanoparticles
studied in the present work, from the DFT relaxed config-
urations and following the rules mentioned above. Using
Ec(BCC) = −8.90 eV/at [38] and Ec(FCC) = −8.90 + ε0 =
−8.406 eV/at, Es is calculated according to Eq. (5). The
results are plotted against DFT data in Fig. 3, and labeled as
‘Opt0’. It appears that compared to DFT Es for BCC systems
is systematically underestimated, whereas it is overestimated
for FCC systems. The root mean square deviations (RMSD)
are reported in Table III. One can see that the error is signifi-
cant, in particular for BCC nanoparticles.

Nanoparticles with A15, disordered and icosahedral struc-
tures are not considered in Ref. [7], and we have to determine
an appropriate guess for model parameters. For disordered D
and icosahedral I nanoparticles, we use the same parameters
as for FCC ones. We know that Ec(D) = −8.593 eV/at and
Ec(I) = −8.467 eV/at, using ε0 from Table II. In the A15
structure, there are eight atoms in the elementary cell, with
two different atomic environments. Two of them have 12
neighbors at 2.83 Å, and the remaining 6 have 2 neighbors
at 2.53 Å, 4 at 2.83 Å, and 8 at 3.102 Å. We assume that
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FIG. 3. Surface energy Es computed with the Eq. (5) plotted
against Es calculated by DFT, for all nanoparticles (BCC: blue
circles; FCC, orange squares; A15: magenta diamonds; D: green
triangles; I: golden stars). Open symbols show values obtained using
the initial parameters as given in Ref. [7] and reported in Table III
(Opt0, see text for details), while filled symbols correspond to those
obtained using optimized parameters (Opt2). The dashed black line
marks the perfect agreement. The inset graph shows the RMSD for
each set (lines with the same colors as the points in the main graph)
and different optimization levels (Table III).

the first neighbors distance is lower than 2.95 Å, i.e., Z1
i =

7.5 on average. Neighbors atoms at 3.102 Å are considered
second neighbors, i.e., Z2

i = 6 on average. We use η = 0.4
as an initial guess by analogy with BCC, and Ec(A15) =
−8.807 eV/at. In all cases, atoms are identified as belonging
to the surface if their effective coordination number is lower
than 10, as in Ref. [7]. Es values computed with the model
for A15, D and I nanoparticles are included in Fig. 3. In most

TABLE III. RMSD, in eV of Es(DFT)-Es Eq. (5) for each set and
different optimization levels. Opt0: Es Eq. (5) is calculated using the
original parameters (λ, η) given in Ref. [7]. Opt1: η is optimized.
Opt2: both λ and η are optimized.

Opt BCC FCC A15 D I

0 η 0.4 0.08 0.4 0.08 0.08
λ 0.5 0.5 0.5 0.5 0.5

RMSD 23.17 13.06 29.46 22.01 9.84

1 η 1.00 0.20 0.42 0.00 0.33
λ 0.5 0.5 0.5 0.5 0.5

RMSD 12.91 11.19 27.76 17.94 4.15

2 η 1.00 0.20 0.77 0.04 0.12
λ 0.546 0.461 0.579 0.619 0.540

RMSD 4.35 7.17 2.20 2.76 0.00

FIG. 4. δ(N ) as a function of N , the number of atoms: data from
Fig. 3 in Ref. [7] (blue line), and computed from DFT data using
Eq. (9) (orange line). The dotted blue line shows the best fit of δ(N )
data in Ref. [7] with the expression μN−1/3. The dashed green line
is positioned at (Ec(BCC) − Ec(FCC))/Ec(BCC) = 0.0555 (using
Ec(BCC) = −8.90 eV and Ec(FCC) = −8.406 eV).

cases they are underestimated compared to the DFT results.
The RMSD for D and A15 are similar to the BCC value
(Table III). Note that the low RMSD value for I is due to the
limited size of the set (two nanoparticles).

In order to improve the accuracy of the semi-empirical
model, an optimization method is applied with η as a variable
parameter (Opt1). The new η and RMSD values are shown in
Table III. The best improvements are obtained for BCC and
I, but only a moderate RMSD reduction is observed for FCC,
A15, and D nanoparticles. Finally, we allow both η and λ to
vary during the optimization (Opt2). Final results are plotted
in Fig. 3. A remarkable refinement is achieved for A15, D, and
BCC systems, and to a lesser extent, for FCC. This is clearly
demonstrated by the RMSD values which become lower than
3 eV for D and A15. Overall, we find that the model is
highly sensitive to λ, and much less to η. Except for FCC,
a λ value slightly greater than 0.5 greatly increases the model
accuracy.

Surface energies calculated using the original model in
Ref. [7] are therefore not very accurate, but it is not clear
whether this is the main reason behind the difference in pre-
diction for the BCC-FCC transition. In the same paper, the
following expression is defined:

δ(N ) = 1

N

⎡
⎢⎣

Ns∑
i=1
FCC

[(Zi/Zb)1/2 − 1] −
Ns∑

i=1
BCC

[(Zi/Zb)1/2 − 1]

⎤
⎥⎦.

(6)
δ(N ) depends only on the cluster geometry and is repre-

sented in Fig. 3 of Ref. [7] and reproduced in our Fig. 4.
Tománek and coworkers proposed that the FCC-BCC transi-
tion occurs when the following condition is met:

δ(N )
N=Nc= Ec(BCC) − Ec(FCC)

Ec(BCC)
, (7)

with the right-hand side a constant, plotted as a dashed line in
Fig. 4. They found that Nc = 5660 using their δ(N ) values.
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We remark that δ(N ) can also be computed from the β

values in Table II determined from DFT results. In fact, using
Eq. (5), we can write

δ(N ) = 1

N

[
Es(FCC)

Ec(FCC)
− Es(BCC)

Ec(BCC)

]
. (8)

Since Es = βN2/3, we finally obtain

δ(N ) = N−1/3

[
β(FCC)

Ec(FCC)
− β(BCC)

Ec(BCC)

]
. (9)

Figure 4 shows δ(N ) computed with Eq. (9), β values in
Table II, Ec(BCC) = −8.90 eV and Ec(FCC) = −8.406 eV.
Note that a closely matching curve is obtained if δ(N ) is
calculated using Eqs. (5) and (8), and the Opt2 set of param-
eters. There is clearly a large difference with δ(N ) as given in
Ref. [7], which likely explains the disagreement concerning
the critical size of the BCC-FCC transition. With our data
and using Eq. (7), we find a transition at Nc = 7. The small
difference with Nc = 17 in Table II can be explained by the
fact that an additional approximation is made in Ref. [7] to
derive Eq. (7).

It is also noteworthy that the δ(N ) curve provided in
Ref. [7] does not seem physically correct. In fact, it should
mainly obey a N−1/3 variation. The best fit of δ(N ) with
the expression μN−1/3 is represented as a dotted blue line
in Fig. 4, with μ = 0.6646. The agreement is obviously
not satisfactory. This cast some doubts about the accuracy
of these δ(N ) data. In addition, according to Eq. (9) one
can write

μ = β(FCC)

Ec(FCC)
− β(BCC)

Ec(BCC)
. (10)

This expression can be employed to compute β(FCC)
assuming that β(BCC) = 7.149 eV, Ec(BCC) = −8.90 eV,
Ec(FCC) = −8.406 eV, and μ = 0.6646. We find β(FCC) =
1.166 eV, which corresponds to γ = 0.601 J m−2 (see the
Appendix). Such a surface energy value is too low for W
to be physically meaningful. This confirms that the main
source of discrepancy between our calculations and predic-
tions made in Ref. [7] is the δ(N ) curve. Since the latter is not
a material-dependent quantity, this unfortunately questions
their predictions for other metals.

V. CONCLUSIONS

In this paper, we report investigations on the structure and
stability of tungsten nanoparticles, based on first-principles
DFT calculations. In particular, various nanoparticles with
BCC, FCC, A15, disordered and icosahedral structures, are
considered. These models include 55 to 169 atoms, equiv-
alent to sizes of about 1 to 1.6 nm. Our first conclusion is
that BCC nanoparticles are the most stable energetically, fol-
lowed by A15, disordered, icosahedral, and FCC, in this order.
Variations of nanoparticle energy as a function of size reveal
a BCC-disordered transition at small sizes (at 40 atoms), and
no BCC-FFC transition. It contradicts an earlier benchmark
theoretical study on transition metal nanoparticles [7]. Our
investigations suggest that the discrepancy could be explained
by an inappropriate description of the cluster geometry in this
study. Finally, we also analyze the proposed semi-empirical

model based on the second moment approximation and im-
prove its accuracy by adjusting the model parameters with
respect to our DFT data. This will be useful for accurately
calculating the energy of tungsten nanoparticles for all inves-
tigated structures, at much larger sizes and without the need
of explicit atomistic calculations.

As it stands, our calculations do not explain why A15 and
FCC tungsten nanoparticles were observed [8,11], and not
only BCC ones [12]. The most likely rationale is that in these
experiments several factors like the substrate, the presence
of impurities, or surfactants, could have influenced the rel-
ative stability of the different phases. A thermodynamically
metastable structure could also form due to favorable kinetics
during the synthesis and remains stable at ambient conditions
or during moderate annealings.

In perspective to this study, in the light of the results pre-
sented here, it seems worthwhile to perform DFT calculations
of the structure and stability of nanoparticles made of other
transition metals, in particular those for which a BCC-FCC
transition was predicted, like Mo, Ta, Nb, Cr, and V.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX: SPHERICAL NANOPARTICLE MODEL

A general expression of the energy E of a nanoparticle of
N atoms is

E = Nε0 + γ S(N ), (A1)

with S(N ) the surface of the nanoparticle, γ the surface en-
ergy, and ε0 the energy per atom of the corresponding bulk
phase. This is equivalent to Eq. (1) if Es(N ) = γ S(N ). As-
suming a spherical shape for the nanoparticle and a radius r,
the nanoparticle surface is

S = 4πr2, (A2)

and the nanoparticle volume is

V = 4π

3
r3 = Nv0, (A3)
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with v0 the volume of one atom. Combining Eqs. (A2) and
(A3), we obtain

r =
(

3v0N

4π

)1/3

, (A4)

and

S = 4π

(
3v0

4π

)2/3

N2/3. (A5)

Finally, Eq. (A1) can be written

E = Nε0 + 4γπ

(
3v0

4π

)2/3

N2/3, (A6)

and

E/N = ε0 + 4γπ

(
3v0

4π

)2/3

N−1/3. (A7)

In comparison with Eq. (3), we finally get

γ = β

4π

(
4π

3v0

)2/3

. (A8)

v0 is taken to be equal to the bulk atomic volume, assuming
that the nanoparticle relaxation is small, and that v0 is the
same for all nanoparticle atoms. v0 is then easily calculated for
each crystalline structure using DFT determined a0 (given in
Table I). For the disordered D and icosahedral I nanoparticles,
we use the same v0 as for the FCC structure.
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