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density of states: Comparison with experiments
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Thermal transport coefficient κ is an important property that often dictates broad applications of a polymeric
material, while at the same time its computation remains challenging. In particular, classical simulations
overestimate the measurements of κ in comparison to those of the experiments and thus hinder their meaningful
comparison. This is even when very careful simulations are performed using the most accurate empirical
potentials. A key reason for such a discrepancy is because polymers have quantum-mechanical, nuclear de-
grees of freedom whose contribution to the heat balance is nontrivial. In this work, two semianalytical approaches
are considered to accurately compute κ by using the exact vibrational density of states g(ν ). The first approach
is based within the framework of the minimum thermal conductivity model, while the second uses computed
quantum heat capacity to scale κ . The computed κ of a set of commodity polymers compares quantitatively
with κexpt.
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I. INTRODUCTION

Thermal transport coefficient κ measures the ability of a
material to conduct the heat current [1–5]. Here, κ is di-
rectly related to the heat capacity c, the group velocity vg,
and the phonon mean free path � = τvi, with τ being the
phonon lifetime [6]. Traditionally, extensive efforts have been
devoted to investigating κ behavior in the crystalline materials
[2,7–9]. The recent interest is more devoted to the polymeric
solids [3,4,10–13]. This is particularly because polymers are
an important class of soft matter, where the relevant energy
scale is of the order of kBT at a temperature T = 300 K and
kB being the Boltzmann constant, and thus their properties
are dictated by large conformational and compositional fluc-
tuations [14–17]. This soft nature of polymers makes them
important in designing flexible advanced materials with tun-
able thermal properties.

Polymers are a special case, where there are two main
microscopic interactions, i.e., the intramolecular interactions
along a chain contour and the nonbonded interactions between
the neighboring monomers. In this context, κ of amorphous
polymers is dictated by the localized vibrations that are usu-
ally only within the range of direct nonbonded contacts (i.e.,
� is very small) and thus are dominated by the monomer-
monomer interactions [18,19], which in the nonconducting
polymers can either be van der Waals (vdW) or hydrogen
bonded (H bond) [17,20]. Because of the above reasons,
polymers fall in the low κ materials [3,4], having typical
values that are several orders of magnitude smaller than the
standard crystals [1,2]. For example, the experimentally mea-
sured κexpt � 0.1–0.2 W/Km in vdW polymers [11,21], while
κexpt → 0.4 W/Km in the H-bonded systems [10,11].
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Extensive experimental and simulation efforts have been
devoted to establish a structure-property relationship in poly-
meric solids with a goal to obtain a tunable κ . Here, the
standard classical simulation techniques are of particular im-
portance. However, routinely employed classical setups often
overestimate κcl in comparison to κexpt [22–24] and thus
hinders their meaningful comparison. Complexities get even
more elevated when dealing with systems at different ther-
modynamic state points [25,26], complex macromolecular
architectures [27,28], and/or relative compositions in the case
of multicomponent mixtures [10,11,29].

One can simply argue that κcl > κexpt might be due to
the inaccuracies in classical force-field parameters and in
the κcl calculations. While simulation errors are certainly in-
evitable, it may still be presumptuous to come to such a trivial
conclusion because of the complexities of underlying macro-
molecular systems. A closer look at an amorphous polymer
reveals that the nonbonded interactions are soft that dictate
polymer properties (i.e., low ν anharmonic classical modes),
while the intramolecular interactions along a chain backbone
are stiff [23,30,31]. For example, the vibrational frequency of
a C-H bond in polymers is ν � 90 THz [23,30]. Note that C-H
is a common building block of most commodity polymers.
Such a stiff mode and many other modes in a polymer remain
quantum mechanically frozen at T = 300 K (with a represen-
tative frequency νroom � 6.2 THz). On the contrary, however,
a classical setup by default considers all modes (irrespective of
their nature), and thus overestimates c [23,32] or κ [21,23,24]
in polymers.

The discussions above pose a grand challenge on how
to accurately compute κ in polymeric solids with a goal to
achieve their meaningful (quantitative) comparison with κexpt.
Motivated by this need, the present work uses two simple
semianalytical approaches using the exact vibrational density
of states g(ν) to estimate κ at different thermodynamic state
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FIG. 1. Schematics representation of the commodity polymeric
structures investigated in this study. The red panel compiles the
van der Waals (vdW) based systems, i.e., poly(lactic acid) (PLA),
poly(methyl methacrylate) (PMMA), and poly(N-acryloyl piperi-
dine) (PAP). The blue panel shows two examples of hydrogen bonded
(H bond) polymers, i.e., poly(acrylic acid) (PAA) and polyacry-
lamide (PAM).

points. While the first approach (Approach I) is based within
the well-known framework of the minimum thermal conduc-
tivity model (MTCM) [33], another approach (Approach II)
estimates κ by the accurate computation of quantum c [23].
To validate our scenarios, this work investigates a set of ex-
perimentally relevant amorphous (commodity) polymers (see
Fig. 1).

The remainder of the paper is organized as follows: In
Sec. II the system specific details and the corresponding force
field parameters are highlighted. The results are discussed in
Sec. III and finally the conclusions are drawn in Sec. IV.

II. MATERIALS, MODEL, AND METHOD

In this work, a set of five commodity polymers,
covering across vdW and H-bonded systems, namely,
poly(lactic acid) (PLA), poly(methyl methacrylate) (PMMA),
poly(N-acryloylpiperidine) (PAP), polyacrylamide (PAM),
and poly(acrylic acid) (PAA) are investigated. The monomer
structures of these systems are shown in Fig. 1. The specific
systems are chosen because their detailed experimental data
are available [11,19,25,34] and also because of their available
well-equilibrated configurations for all these samples [21,23].
In particular, the computed κ are compared with κexpt at one
thermodynamics state point for PMMA, PAP, PAM, and PAA,
while the T-dependent κ (T ) are only shown for PMMA and
PLA. The latter is because, to the best of our knowledge, the
experimental data for κ (T ) is not available for PAA and PAM.

The chain length N� = 30 is taken for all systems, except
for PAM where N� = 32. Each system consists of 200 chains
within a cubic simulation box. The standard OPLS–AA force-
field parameters [35] are used for PLA, PAP, and PAA, while
a set of modified parameters are used for PMMA [36] and
PAM [37]. Simulations are performed using the GROMACS

package [38].
Temperature is imposed using the velocity-rescaling ther-

mostat [39] with a damping time of τT = 1 ps, and the
pressure is set to 1 atm with a Berendsen barostat [40] with
a time constant τp = 0.5 ps. Electrostatics are treated using
the particle-mesh Ewald method. The interaction cutoff for
the nonbonded interactions are chosen as rc = 1.0 nm. The
simulation time step is set to �t = 1 fs during equilibration

and the equations of motion are integrated using the leapfrog
algorithm.

All these polymers were equilibrated earlier in their
(solvent-free) melt states at T = 600 K for at least 1 µs each
sample, i.e., 500 ns in Ref. [21] and another 500 ns in
Ref. [23]. Note that T = 600 K is at least 150 K above their
calculated glass transition temperatures [21]. For this study,
these melt equilibrated samples were individually quenched
to T = 300 K with a rate 0.04 K/ns for a total of 7.5 µs per
sample. The total simulation time accumulated for this study
alone is over 40 µs.

III. RESULTS AND DISCUSSIONS

A. Vibrational density of states

A key observable for this study is g(ν). For this purpose,
the mass-weighted velocity autocorrelation function is calcu-
lated using

cvv(t ) =
∑

i

mi〈−→v i(t ) · −→v i(0)〉. (1)

Here, mi and −→v i are the mass and the velocity of ith particle,
respectively. cvv(t ) is calculated under the microcanonical
ensemble with �t = 0.1 fs and the data is sampled for 10 ps
with an output data frequency of 5 × 10−4 ps. A representative
cvv(t )/cvv(0) for PLA is shown in Fig. 2(a). The long-lived
fluctuations are clearly visible in the global cvv(t ) that orig-
inates from the superposition of normal modes and thus its
Fourier transform results in g(ν) [23,41] using

g(ν) = 1

C

∫ ∞

0
cos(2πνt )

cvv(t )

cvv(0)
dt, (2)

where the prefactor C ensures
∫

g(ν)dν = 1. Figures 2(b)
and 3 show g(ν) for a PLA, and another set of four com-
modity polymer samples, respectively. It can be appreciated
that there are many high ν modes in these systems, i.e., for
ν > νroom � 6.2 THz, that contribute rather nontrivially at a
given T .

Given the discussions above, if the contributions of differ-
ent modes are not properly accounted within a calculation, it
will automatically lead to a wrong estimate of κ . Therefore, in
the next sections, g(ν) shown in Figs. 2 and 3 will be used to
accurately compute κ .

B. Approach I: Computation of κ using g(ν)

The first approach is based within the framework of the
well-known minimum thermal conductivity model (MTCM)
[33]. To this end, the general expression of κ for a three-
dimensional isotropic material reads [6]

κ (T ) =
(

ρNh2

3kBT 2

) ∑
i

∫
τ (ν)v2

g,i(ν)
ν2ehν/kBT

(ehν/kBT − 1)2 g(ν)dν,

(3)
where ρN = N/V (T ) is the total atomic number density, N
the total number of atoms, and h the Planck constant. Starting
with Eq. (3) and for the nonconducting amorphous solids,
MTCM proposed that � is limited to half the phonon wave-
length and thus approximates τ (ν) = 1/2ν [6,33]. Also, vg �
vi with vi being the components of sound wave velocity. This
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(a)

(b)

FIG. 2. Part (a) shows a normalized mass-weighted velocity au-
tocorrelation function cvv(t )/cvv(0) for poly(lactic acid) (PLA) at a
temperature T = 300 K. The vibrational density of states g(ν ) of
PLA is shown in part (b), where g(ν ) is calculated using Eq. (2).
The arrow in part (b) indicates the vibrational frequency νroom � 6.2
THz corresponding to T = 300 K.

description gives

κ =
(

ρNh2

6kBT 2

)(
v2

� + 2v2
t

)
I (T ) (4)

FIG. 3. Same as Fig. 2(b); however, for four other commod-
ity polymers, namely, poly(N-acryloyl piperidine) (PAP), poly-
acrylamide (PAM), poly(acrylic acid) (PAA), and poly(methyl
methacrylate) (PMMA). Individual g(ν ) are shifted for a clearer
representation.

and

I (T ) =
∫

νehν/kBT

(ehν/kBT − 1)2 g(ν)dν. (5)

v� = √
C11/ρm and vt = √

C44/ρm are the longitudinal and the
transverse sound wave velocities, respectively. Here, C11 =
K + 4C44/3, K is the bulk modulus, C44 is the shear modulus,
and ρm is the mass density. It can be appreciated in Eq. (4) that
κ is directly related to the materials stiffness via v� and vt .

Standard theoretical approaches typically use the Debye
form of the parabolic density of states gD(ν) = 3ν2/ν3

D in
Eq. (4), where νD is the Debye frequency [6,41],

νD =
(

9ρN

4π

)1/3( 1

v3
�

+ 2

v3
t

)−1/3

. (6)

The Debye temperature 
D = hνD/kB. In Table I, νD and 
D

values are listed for four different polymers. Note that these
values are calculated using the experimental data of v� and
vt taken from Ref. [11], while ρN are from our simulations.
It can be seen that 
D (or νD) are about 20%–40% lower
than T = 300 K (or νroom = 6.2 THz), which is expected
because of the dominant nonbonded interactions. Something
that speaks in this favor is that 
D for the weak vdW systems
(PAP and PMMA) are about 40–50 K lower than the polymers
dictated by the relatively stronger H bonds (PAA and PAM).

The choice of gD(ν) is certainly a good approximation
for the standard (nonpolymeric) solids where typically 
D �
T = 300 K. However, gD(ν) in polymers [having rather com-
plex g(ν), as in Figs. 2(b) and 3] often tend to overestimate
the contributions from the low-frequency vibrational modes.
Something that supports this claim is that MTCM using
gD(ν) predicts values comparable to κexpt in nonpolymeric
amorphous solids [33]. However, for the polymers under the
high-temperature conditions, MTCM systematically estimates
higher values than κexpt [11].

This study revisits MTCM using the exact g(ν) from Fig. 3
in Eq. (4). Computed κ for four different systems are listed
in Table I. It can be appreciated that κ matches within 1%–
25% of κexpt. An illustrative plot comparing κ values between
different approaches are compiled in Fig. 4.

It should also be noted that the stiffness of a polymeric
material is dictated by the nonbonded interactions that are
classical in nature. Therefore, carefully conducted classical
polymer simulations can give reasonable estimates of the
elastic moduli comparable to the corresponding experimental
values. On the contrary, however, quantum effects are im-
portant in the crystalline solids, i.e., for T 	 
D [42,43].
It might also be important to highlight that the τ (ν) ∝ 1/ν

behavior is valid for the amorphous systems under the high-
temperature conditions, while one may expect τ (ν) ∝ 1/ν2

for the crystalline solids strictly when the harmonic approxi-
mation holds [44].

C. Approach II: Scaling κ using quantum estimate
of heat capacity

The results in Sec. III B are presented at one thermody-
namic state point, i.e., at T = 300 K. This is specifically
because, to the best of our knowledge, the data for v�

and vt are not available over a range of T for the
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TABLE I. Longitudinal v� and transverse vt sound velocities, the Debye frequency νD, the Debye temperature 
D, and the experimental
thermal transport coefficient κexpt. The thermal transport coefficient κ calculated using Eq. (4) is listed together with its variation with respect
to κexpt. The experimental values of v�, vt , and κexpt are taken from Ref. [11], while the total atom number density ρN and vibrational density
of states g(ν ) are computed from simulations. The data is shown for a temperature T = 300 K and for four different polymers, namely,
poly(methyl methacrylate) (PMMA), poly(acrylic acid) (PAA), polyacrylamide (PAM), and poly(N-acryloyl piperidine) (PAP).

Polymer v
expt
� (nm/ps) v

expt
t (nm/ps) νD (THz) 
D (K) κexpt (W m−1 K−1) κ (W m−1 K−1) |κexpt−κ|

κexpt (%)

PMMA 2.85 1.30 3.75 180.27 0.20 0.21 5.0
PAA 3.74 1.72 4.60 220.93 0.37 0.41 10.8
PAM 4.34 1.82 4.88 234.17 0.38 0.32 15.8
PAP 2.64 1.30 3.80 182.58 0.16 0.20 25.0

polymers listed in Table I. Therefore, in this section, a slightly
different (yet related) framework is used to compute T-
dependent κ (T ). For this purpose, the classical estimate of the
thermal transport coefficient κcl is first calculated using the
approach-to-equilibrium (ATE) method [45].

In ATE, a simulation box with a length Lx along the x di-
rection is divided into three regions, i.e., the middle region of
width Lx/2 is sandwiched between two side regions of equal
width Lx/4. The middle slab is kept at an elevated temperature
Thot = T + 50 K, while the two side slabs are maintained at
a lower temperature Tcold = T − 50 K. Here, Thot and Tcold

are the kinetic temperatures of the hot and the cold regions,
respectively. T refers to a reference temperature at which
κcl(T ) is calculated. In the first step, these regions are ther-
malized under the canonical simulations for 5 ns with �t = 1
fs. After this stage, �T (t ) = Thot − Tcold is allowed to relax
during a set of microcanonical runs for 50 ps with �t = 0.1
fs. From an exponential relaxation of �T (t ) ∝ exp(−t/τx ),
the time constant τx for the energy flow along the x direction is

FIG. 4. A comparative plot of the thermal transport coefficient
κ at a temperature T = 300 K. The data is shown for four different
polymers, namely, poly(methyl methacrylate) (PMMA), poly(acrylic
acid) (PAA), polyacrylamide (PAM), and poly(N-acryloyl piperi-
dine) (PAP). The experimental data for these polymers are taken from
Ref. [11], while the simulation data is calculated using the exact
density of states g(ν ) from Fig. 3 in Eq. (4). For comparison, the
high T estimates from the minimum thermal conductivity [11] with
corrections of the stiff modes are also included.

calculated. Finally, κcl(T ) can be estimated using [45]

κcl(T ) = 1

4π2

ccl(T )Lx

Aτx
. (7)

A is the cross-section area of a sample. The classical
estimate of specific heat is calculated using ccl(T ) =
H (T + �T ) − H (T − �T )/2�T and the enthalpy is
H (T ) = U (T ) + pV (T ). U (T ) is the internal energy
including the mean kinetic energy, p = 1 atm is the external
pressure, and V (T ) is the system volume. The computed
κcl(T ) for the PLA and PMMA samples are shown in Fig. 5
(see the • data sets). It is clearly visible that κcl(T ) is about a
factor of 2 to 3 times larger than the corresponding κexpt (T ).

Note that for T > 
D (as in the commodity polymers
listed in Table I), τx is dominated by the nonbonded (clas-
sical) interactions [19]. On the contrary, the intramolecular
stiff interactions along a chain contour do not contribute to
τx, yet they are by default incorporated in ccl(T ) and thus
κcl(T ) > κexpt (T ). This is consistent with the data that the
difference between ccl(T ) and cexpt (T ) is also about a factor of
2 to 3 (see the • data sets and the lines in the Appendix, Fig. 6).

Within the above discussion, if one can use the accurate
estimate of c(T ) in Eq. (7) by properly accounting for the
contributions from the vibrational mode at a given T [23,46],
one may just simply get the quantum corrected estimate of
κ (T ). For this purpose, c(T ) is calculated using a recently
proposed method [23]. In a nutshell, this method uses the
Binder approach [41] to estimate the contributions of the stiff
harmonic modes and thus their total contribution is given by

ch(T )

kB
= h2

k2
BT 2

∫ ∞

0

ν2ehν/kBT

(ehν/kBT − 1)2 g(ν)dν, (8)

which is then used to get the difference �c(T ) between the
classical and the quantum descriptions,

�c(T )

kB
=

∫ ∞

0

{
1 −

(
hν

kBT

)2 ehν/kBT

(ehν/kBT − 1)2

}
g(ν)dν, (9)

and finally gives the quantum corrected estimate [23],

c(T ) = ccl(T ) − �c(T ). (10)

The main advantage of this approach is that the contributions
of the stiff harmonic modes are corrected, while the contri-
butions from the soft (anharmonic) modes remain unaltered
and thus do not alter the macroscopic polymer properties.
In the Appendix, Fig. 6, quantum corrected c(T ) for PLA
and PMMA samples are shown. As expected, the quantum
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(a) (b)

FIG. 5. Thermal transport coefficient κ as a function of temprature T for poly(lactic acid) (PLA) (a) and poly(methyl methacrylate)
(PMMA) (b). For comparison experimental data are also included. The experimental data of PLA is taken from Ref. [25]. The PMMA
experimental data sets 1–3 are taken from Refs. [19,26,34], respectively.

correction discussed above gives reasonable estimates of c(T )
in comparison to cexpt (T ). The calculated c(T ) is then used to
obtain quantum corrected κ (T ) using

κ (T ) = 1

4π2

c(T )Lx

Aτx
. (11)

The resultant data is shown in Fig. 5 (see the ◦ data sets). It
can be appreciated that this simple approach in Eq. (11) gives
reasonable estimates of κ (T ).

IV. CONCLUSIONS AND DISCUSSIONS

This work used a conventional classical molecular dynam-
ics setup to estimate the quantum corrected thermal transport
coefficient κ in polymeric solids. For this purpose, the exact
vibrational density of states g(ν) is used as a key observable
within two different (yet related) semianalytical approaches.
In one approach, κ is computed within the framework of
the minimum thermal conductivity model [33], while another
approach simply uses the quantum estimate of specific heat
c(T ) as a correction to κ (T ). The data for a set of five dif-
ferent commodity polymers show reasonable agreement with
the experiments, at one thermodynamic state point and also
with changing T . Therefore, this work attempts to highlight
a couple of simple approaches to obtain quantum κ from
classical simulations. The approaches presented herein can
also be used in studying κ under the high-pressure conditions.
One key application is in the field of hydrocarbon-based oils
[23,24] under high pressures.

It is also important to highlight that the approaches dis-
cussed here are valid for the nonconducting amorphous
polymers, where localized vibrations carry the heat current
[19]. These vibrations are dictated by the nonbonded inter-
actions between the neighboring monomers and are classical
in nature. Therefore, by simply eliminating the contributions
of the intramolecular stiff modes, reasonable estimates of
κ (T ) can be calculated. However, when dealing with the
chain-oriented systems [47], such as in the polymer fibers
[47] or in the molecular forests [48], the situation is some-

what different. This is particularly because κ is an extended
configuration that is dominated by the stiff intramolecular
interactions, i.e., almost a representative of the crystalline

(a)

(b)

FIG. 6. Per particle specific heat c(T ) as a function of tempera-
ture T for poly(lactic acid) (PLA) (a) and poly(methyl methacrylate)
(PMMA) (b). The data is shown for the classical estimate of specific
heat ccl (T ), correction factor �c(T ) using Eq. (9), and quantum spe-
cific heat c(T ) using Eq. (10). For comparison experimental data are
also included. The PLA and PMMA data is taken from Refs. [26,57],
respectively.
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structures along the chain backbone [49–51]. For example, a
standard amorphous polymer usually has κ � 0.1–0.4 W/Km
[3,10,11,52], while the expanded chain configurations usually
have κ � 100 W/Km [47,48]. Another set of systems where
intramolecular interactions dictate κ is the highly cross-linked
networks, where a delicate balance between the bond den-
sity, network microstructure, and bond property controls κ

[27,28,53].
A simplistic scaling correction in Eq. (11) may not be

appropriate for the crystalline solids with long-range order,
where propagating phonons carry the heat current [6]. Here, it
was readily observed that the representative hump in κexpt (T )
for the crystals happen at a T that is far lower than the
typical plateau in c(T ), i.e., the anharmonic effects already
become relevant at T 	 
D. For example, in crystalline sil-
icon, a hump in κ happens between 10–20 K [54], while

D > 600 K. In such systems, therefore, quantum effects
must be properly incorporated via τ (ν, T ), vi(T ), and also
c(T ) in Eq. (4). In this context, there are detailed theoretical
approaches that deal with the accurate calculation of κ in
crystalline materials [55,56].
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APPENDIX: QUANTUM HEAT CAPACITY OF POLYMERS

Figure 6 shows the comparative data sets for heat capacity.
While the classical estimate ccl(T ) is overestimated, a simple
quantum correction using Eq. (10) eliminates the unwanted
contributions from the high ν stiff modes and thus gives a
better comparison between c(T ) and cexpt (T ).
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