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Dual diffraction bands of heliconical liquid crystal gratings
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Gratings composed of cholesteric liquid crystals as an important optical element for emerging applications
such as augmented and virtual reality and are renowned for their characteristic single reflective diffraction band.
Heliconical liquid crystal is a newly discovered state where the constituent molecules self-organize into helical
structures with a non-90° polar angle between the director and the helical axis. Here, we present a numerical
study on the reflective diffraction of gratings made of heliconical liquid crystals. Remarkably, numerical results
demonstrate that there exist two diffraction bands at the same diffraction angle, with one peak wavelength
being twice the other. We show that the short-wavelength diffraction originates from the Pancharatnam-Berry
phase acquired by the reflected light while the long-wavelength diffraction stems from the reflection of the
slanted volume grating, and that the wavelengths of these two diffraction bands can be attributed to the first
and second band gaps of the slanted volume grating as a one-dimensional photonic crystal. We further show
that the polarization of the reflected diffraction light is circular, exhibiting the same handedness as the liquid
crystal for the short-wavelength band, whereas it is perfectly linearly polarized along the grating direction for
the long-wavelength band.
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I. INTRODUCTION

Diffraction gratings play an important role in applica-
tions such as optical spectroscopy [1,2], flat panel displays
[3], solar energy harvesting [4,5], and augmented and vir-
tual reality [6,7]. Conventionally, these diffraction gratings
manipulate the propagation phase (or the dynamic phase) of
light via periodic surface profiles and can be constructed in
either reflective or transmissive configurations. A growing
interest lies in diffraction gratings and optical elements con-
structed from liquid crystal materials [8–10]. Liquid crystal
optical elements present numerous advantages, including flat-
ness, compatibility with diverse substrates, facile processing
at room temperature, polarization selectivity, and close to
100% efficiency [11–17]. Such attributes render them apt for
a variety of applications, ranging from lensing [11,18–22] to
beam shaping [23], and extending to the realms of virtual and
augmented reality [6,24,25].

Liquid crystal gratings can be broadly categorized based
on optical phases that they modulate. One category relies
on the Pancharatnam-Berry (PB) phase, which light acquires
upon transmission or reflection [26–32]. The PB phase is
typically determined by the molecular orientations in a ne-
matic liquid crystal film for transmissive grating [23,33–36],
or by the molecular orientation at the reflecting surface of a
cholesteric liquid crystal for reflective grating [30–32]. The
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polarization state undergoes alteration upon transmission or
reflection [10,37,38]. Conversely, the other category relies on
a dynamic phase, which is dictated by the effective refractive
indices. This category encompasses numerous tunable liquid
crystal gratings where the polarization state remains constant
throughout transmission or reflection [39–42]. Similarly, other
optical components, including lenses and diffractive optical
elements crafted from liquid crystals, can also be categorized
within these two distinct classifications [43–46].

The heliconical liquid crystal, also referred to as oblique
helicoidal cholesteric liquid crystal, represents a chiral ne-
matic state initially predicted by de Gennes [47] and Meyer
[48] and discovered recently in experiments by Lavrentovich
et al. [49]. As its bend elastic constant K3 is typically smaller
than its twist elastic constant K2 [48,50,51], the heliconical
liquid crystal exhibits both the bend and twist distortions.
Describing its director field necessitates two angles: the polar
angle θ between the director n and the helical axis (Z axis)
and the azimuthal angle ϕ between the director and the hor-
izontal axis (X axis). The director n can be expressed as
n = [cos ϕ sin θ, sin ϕ sin θ, cos θ ]. One remarkable feature
of the heliconical liquid crystals is that the polar angle and
heliconical pitch can be tuned in a wide range by applying an
electric field [49,52–54], yielding intriguing electrically tun-
able optical properties and potential applications [55–57].
Furthermore, the heliconical liquid crystals can be engineered
to respond to various external stimuli such as optical, mag-
netic, surface anchoring, and temperature fields [58–62] and
stabilized by doping polymers [63].
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FIG. 1. (a) Schematic director field for a heliconical grating,
where the bars represent local director n and the bar color represents
its azimuthal angle ϕ. (b) The body coordinate system coincident
with the principal optical axes is (X ′,Y ′, Z ′) and the laboratory
frame coordinate system is (X, Y, Z ). (c) Yee discretization scheme,
illustrating the lattices and components of the electric and magnetic
fields.

In this paper, we present a numerical study on gratings
made of heliconical liquid crystals by using a finite-difference
time-domain (FDTD) method and reveal that, in contrast to
only one diffraction band in cholesteric liquid crystal gratings,
there are two diffraction bands with the same diffraction an-
gle, but one band wavelength is twice that of the other. We
show that the short-wavelength diffraction originates from the
PB phase acquired by the reflected light that is proportional to
the azimuthal angle of the molecules at the surface, and that
the long-wavelength diffraction results from Bragg reflection
of slanted volume gratings. The wavelengths of these two
bands can be attributed to the first and second band gaps of the
slanted volume grating as a one-dimensional photonic crystal.
The polarization state of the diffracted light is particularly
intriguing. For the short-wavelength band, the polarization of
the diffracted light is circular, mirroring the handedness of
the liquid crystal. However, for the long-wavelength band, the
polarization of the diffracted light is linear, oriented parallel
to the grating direction. These findings provide compelling
insights into the optical characteristics of heliconical liquid
crystal gratings, opening avenues for further exploration and
potential applications.

II. NUMERICAL SIMULATION APPROACHES

Figure 1(a) depicts a heliconical liquid crystal grating,
where the polar angle is θ across the material and the

azimuthal angle ϕ is periodically altered in both the Z and
Y directions. Different colors in the figure represent different
azimuth angle ϕ. This director variation can be described by
ϕ(y, z) = 360(y/PY + z/PZ ), where PY and Pz represent the
pitches in the Y and Z directions, respectively. These pitches
denote the distances over which the liquid crystal director
orientation completes a 360° rotation. It is important to note
that in our assumption, the periodic grating in the Y direction
does not influence the heliconical structure in the Z direction.

To describe their optical properties, we start with the
Maxwell equations:

∇ × E = −μ0
∂H
∂t

, (1)

∇ × H = ε0ε
∂E
∂t

, (2)

where μ0 and ε0 are the dielectric permittivity and magnetic
permeability in vacuum, and ε is the relative dielectric per-
mittivity. For liquid crystals, ε is a tensor that is diagonalized
in the principal coordinate system (X ′,Y ′, Z ′) as shown in
Fig. 1(b):

ε′ =

⎡
⎢⎣

n2
o 0 0

0 n2
o 0

0 0 n2
e

⎤
⎥⎦, (3)

where ne and no are the extraordinary and ordinary refractive
indices for polarization along and perpendicular to the local
director n. The relative dielectric permittivity in the laboratory
frame can be obtained by two sequential rotation transfor-
mations: the first rotation transformation TZ with respect to
the Z axis by an angle ϕ and the second rotation TY with
respect to the Y ′ axis by an angle θ , or ε = T−1ε′T, where
the rotation transformation matrix T = TY TZ . The matrix T
can be expressed as

T =
⎡
⎣cos θ cos ϕ cos θ sin ϕ − sin θ

− sin ϕ cos ϕ 0
sin θ cos ϕ sin θ sin ϕ cos θ

⎤
⎦. (4)

We then obtain

ε =
⎡
⎣εXX εXY εXZ

εY X εYY εY Z

εZX εZY εZZ

⎤
⎦, (5)

where

εXX = [
n2

o − n2
ecos2θ + n2

e − n2
o

]
cos2ϕ + n2

o,

εXY = εY X = n2
e − n2

o sin ϕ cos ϕ sin2 θ,

εXZ = εZX = n2
e − n2

o cos ϕ sin θ cos θ,

εYY = (
n2

e − n2
o cos2 ϕ − n2

e + n2
o

)
cos2 θ

+ (
n2

o − n2
e

)
cos2 ϕ + n2

e,

εY Z = εZY = sin ϕ sin θ cos θn2
e − n2

o,

εZZ = n2
e − n2

o cos2 θ + n2
o.

To calculate the optical properties of such heliconical liquid
crystal gratings, we employed the FDTD method to numer-
ically solve the Maxwell equations. The FDTD method has
been established as a convenient and accurate approach for
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calculating optical properties of anisotropic media like liquid
crystals [33,64,65]. In this method, the space is discretized
into a lattice following the Yee algorithm, as depicted in
Figure 1(c). The electrical and magnetic fields are updated
alternately in time steps, derived from the spatial derivatives

of each other, utilizing Eqs. (1) and (2). For instance, at
time step n + 1/2, the magnetic field can be computed from
the spatial derivatives of the electrical fields, and can be
expressed as follows for the X component of the magnetic
field:

μ0

[
H

n+ 1
2

X

(
i + 1

2
, j, k

)
− H

n− 1
2

X

(
i + 1

2
, j, k

)]
= �t

{[
En

Y

(
i + 1

2
, j, k + 1

2

)
− En

Y

(
i + 1

2
, j, k − 1

2

)]/
�Z

−
[
En

Z

(
i + 1

2
, j + 1

2
, k

)
− En

Z

(
i + 1

2
, j − 1

2
, k

)]/
�Y

}
. (6)

At time step n + 1, the electrical fields are computed from the spatial derivatives of the magnetic fields from time step n + 1/2.
As an example, the X component of the electrical field can be expressed as

ε0
[
En+1

X

(
i + 1, j + 1

2 , k + 1
2

) − En
X

(
i + 1, j + 1

2 , k + 1
2

)] = �t
[
ε−1

XX HCX + ε−1
XY HCY + ε−1

XZ HCZ
]
, (7)

where ε−1
MN is the MN element of the inverse tensor ε−1, HCM is the M component of ∇ × H , and the subscript M and N represent

X , Y , and Z . When calculating HCM , interpolation using the values at neighboring grid locations is necessary. For example, HCY

can be approximated as

4�ZHCY = H
n+ 1

2
X

(
i + 3

2 , j + 1, k + 1
) + H

n+ 1
2

X

(
i + 3

2 , j, k + 1
) + H

n+ 1
2

X

(
i + 1

2 , j, k + 1
) + H

n+ 1
2

X

(
i + 1

2 , j + 1, k + 1
)

− H
n+ 1

2
X

(
i + 3

2 , j + 1, k
) − H

n+ 1
2

X

(
i + 3

2 , j, k
) − H

n+ 1
2

X

(
i + 1

2 , j + 1, k
) − H

n+ 1
2

X

(
i + 1

2 , j, k
)
.

We exploited a commercially available FDTD algorithm
(Lumerical) to solve the Maxwell equations, to take the ad-
vantage of their efficiency and reliability. Periodic boundary
conditions were implemented in the X and Y directions to
simulate the periodic or uniform nature of the structure. To
minimize nonphysical reflections at the boundaries in the Z
direction, we used perfectly matched layers at two boundaries.
Perfectly matched layers are known for their effectiveness
in absorbing outgoing waves, ensuring accurate simulation
results.

We chose the refractive indices of the reactive mesogen
RM257, with ne = 1.6768 and no = 1.5114, as the parame-
ters for our numerical computations. We conducted numerical
experiments with different refractive indices and observed
consistent outcomes as long as ne and no are different. To
minimize Fresnel reflection arising from the interface between
the liquid crystal and background, we set the refractive index
of the surrounding background to the mathematical average
of ne and no, or nB = 1.5941. For all calculations, we main-
tain the total film thickness at 20PZ . A plane light wave is
incident perpendicularly from a distance of 2PZ to the grating
surface. We verified that the numerical results converge when
the mesh size is close to 10 nm or below, so we adopted 10 nm
mesh size.

III. RESULTS AND DISCUSSION

Figures 2(a) and 2(b) present the calculated reflection spec-
tra for heliconical liquid crystal gratings with the helical pitch
and grating pitch fixed at PZ = 300 nm and PY = 1000 nm,

respectively. When the polar angle θ is 90°, the heliconi-
cal grating reverts to a conventional cholesteric LC grating,

displaying a single diffraction band in the reflection
spectrum [Fig. 2(a)] [6,7,66]. However, when θ is less than
90°, a second diffraction band emerges at some long wave-
lengths [Fig. 2(b)]. For ease of discussion, we henceforth
refer to the left and right bands as the first and second bands,
respectively.

The bandwidths of these two diffraction bands [67–72] ex-
hibit complex dependence on the polar angle θ . In the case of
the first band, the bandwidth exhibits a monotonical increase
with the polar angle θ [Fig. 2(b)], consistent with what was
observed in the heliconical liquid crystals with uniform align-
ment [73]. This trend can be understood by considering the
effective birefringence, where the effective refractive index

FIG. 2. Calculated reflection spectra for heliconical liquid crys-
tal gratings with different polar angles. (a) Calculated reflection
spectrum for polar angle θ = 90◦, or the cholesteric liquid crystal
grating. (b) Calculated reflection spectra for polar angle θ ranged
between 30◦ and 75◦. The incident light is left circularly polarized
and perpendicular to the grating surface. The grating pitch PY and
the helical pitch PZ are 1000 nm and 300 nm, respectively.
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FIG. 3. Calculated reflectance for two diffraction bands. (a) De-
pendence of the reflectance of the first band on the grating pitch
PY , with the helical pitch PZ = 330 nm and the polar angle θ varied
between 30◦ and 90◦. (b) Dependence of the reflectance of the second
band on the grating pitch PY , with the helical pitch PZ = 330 nm and
the polar angle θ varied between 30◦ and 75◦. In all calculations, the
incident light is left circularly polarized and normal to the grating
surface.

can be expressed as [49,52,73]

neff = none
/√

n2
o sin2 θ + n2

e cos2 θ. (8)

It is evident that the reflection bandwidth, as determined
by (neff − no)PZ , increases with the polar angle θ . However,
the width of the second diffraction band does not exhibit a
visually apparent dependence on the polar angle, indicating
a different underlying physical mechanism. Meanwhile, the
diffraction efficiency of the first band exhibits no noticeable
dependence on the polar angle unless θ � 30◦. In contrast, the
diffraction efficiency for the second diffraction band exhibits
noticeable variations with θ [Figs. 3(a) and 3(b)]: it ascends
as the polar angle θ increases from 30° to 45°, and then grad-
ually diminishes, eventually reaching zero at a polar angle of
90°.

Moreover, the diffraction efficiency displays distinct de-
pendence on the grating pitch PY . For the first diffraction
band [Fig. 3(a)], the intensity of diffracted light remains
nearly constant regardless of the grating pitch or the diffrac-
tion angle. This behavior contrasts sharply with transmissive
liquid crystal gratings based on the PB phase, where the
diffraction intensity diminishes with increasing diffraction an-
gle [33,35,74]. In contrast, for the second diffraction band,
the intensity of diffracted light increases as the grating
pitch decreases [Fig. 3(b)], which is contrary to the be-
havior observed in transmissive liquid crystal gratings. This
unique characteristic of the second diffraction band renders
it particularly useful in scenarios involving high diffraction
angles.

We calculated their central wavelengths and plot them as
functions of the grating pitch PY at the different polar angle
θ and helical pitch PZ (Fig. 4). Our analysis reveals that the
central wavelength λB1 of the first band grows monotonically
with the grating pitch PY and the polar angle θ [Fig. 4(a)],
and similarly, it grows monotonically with the helical pitch
PZ [Fig. 4(b)]. The central wavelength λB2 of the second
band exhibits a similar trend [Fig. 4(c)]. To elucidate the

FIG. 4. Calculated central wavelengths for two diffraction bands.
(a) Variations of the center wavelength λB1 of the first band on the
grating pitch PY , with the helical pitch PZ = 300 nm and the polar
angle θ varied between 30◦ and 90◦. (b) Variations of the first band
center wavelength λB1 on the grating pitch PY , with fixed polar angle
θ = 30◦ and the helical pitch PZ varied between 200 and 500 nm. (c)
Variations of the second band center wavelength λB2 on the grating
pitch PY , with the polar angle fixed at θ = 30◦ and the helical pitch
PZ varied between 200 and 500 nm. (d) Relationship between the
center wavelengths of the dual diffraction bands. The solid line is the
best fit with λB2 = 2λB1.

relationship between the central wavelengths of these two
bands, we plot λB2 as a function of λB1 for different grating
parameters. Remarkably, we find that all data collapse into a
linear master curve, which can be well fitted by the equation
λB2 = 2λB1.

We analyzed the intensity distribution of the reflected light
at these central band wavelengths as a function of the re-
flection angle and find that most energy is diffracted into a
direction not perpendicular to the surface. To quantify this
observation, we determined the diffraction angle θB for these
two bands and present a set of results for the helical pitch
fixed at PZ = 300 nm in Fig. 5(a) and results for the fixed
polar angle θ = 30◦ in Fig. 5(b). We observe that for identical
grating parameters and the polar angles, the diffraction angles
at the central wavelengths of the first and second bands are
basically identical. For the sake of convenience, we denote
them as θB1 and θB2, respectively.

To determine the diffraction conditions, we plot sin(θB1)
and sin(θB2) versus λ/PY in Figs. 5(c) and 5(d), respectively,
with the polar angle fixed at θ = 30◦. It is evident that they
both follow linear relationships. By performing a best fit
of the data, we find that sin(θB) = Aλ/PY , where the pref-
actor A = 1.26 and 0.63 for the first band and the second
band, respectively. Considering that the refractive index of the
background materials surrounding the grating is nB = 1.5941,
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FIG. 5. Calculated diffraction angles for two diffraction bands.
(a) The diffraction angles θB (θB1 and θB2) versus the grating pitch PY

for the helical pitch PZ fixed at 300 nm and different polar angles θ.

(b) The diffraction angles θB (θB1 and θB2) versus the grating pitch
PY for the polar angles θ fixed at 30◦ and different helical pitches PZ .
(c) sin(θB1) versus λ/PY for different helical pitches PZ and grating
pitches PY . The solid line is the best fitting with sin(θB1) = 1.26λ/PY .
(d) sin(θB2) versus λ/PY for different helical pitches PZ and grating
pitches PY . The solid line is the best fitting with sin(θB2) = 0.63λ/PY .

the fitted diffraction conditions for these two bands can be
rewritten as

nB sin (θB1) = 2λB1/PY , (9)

nB sin (θB2) = λB2/PY , (10)

respectively. Given that λB2 = 2λB1, these diffraction con-
ditions also lead to θB1 = θB2, in good agreement with the
numerical findings [Fig. 4(d)].

To understand the diffraction condition in Eq. (9), we re-
visit the reflection of circularly polarized light by cholesteric
liquid crystals. The dielectric tensor of a cholesteric liq-
uid crystal is composed of two parts: a nonperturbative one
with an isotropic dielectric constant, and a perturbative one
due to anisotropic modulation of the dielectric constant. The
coupled-mode theory for media with periodic perturbations
can yield that the reflection coefficient r can be expressed
as [75]

r = −iκ sinh sL/(s cosh s
√

2L + i�k/2 sinh sL), (11)

where the coupling coefficient κ = πα/nλ with n =√
(n2

e + n2
o)/2 and α = n(ne − no), the wave number inside

the cholesteric liquid crystal k = √
2π

√
n2

e + n2
o/λ, �k =

2k−4π/Pz, s2 = κ2 − (�k/2)2, and L is length of the heli-
cal pitch. It was shown that, with circularly polarized light
with the same handedness as the liquid crystal, this reflection

FIG. 6. Phase of the beam reflected by a uniformly aligned he-
liconical liquid crystal film. (a) Calculated reflection spectrum for
a heliconical liquid crystal film with Pz = 300 nm and θ = 30◦. (b)
Calculated phases acquired by the reflected beam upon reflection by
the heliconical liquid crystal film. The square and circular data points
are for wavelengths λ = 460 and 920 nm, respectively, and the solid
lines represent � = −2ϕ0 and � = 0, respectively.

coefficient is a complex number with a phase angle

� = −π

2
− 2ϕ(y, z = 0) − tan−1 2s cosh sL

�k sinh sL
, (12)

where the second term is the phase proportional to the molec-
ular orientation at the sample surface [76]. This additional
phase is present for both perpendicular and tilted illumination
and can be referred to as the PB phase. The diffraction angle
is determined by the generalized Snell law [21,23,77]:

nB sin θB − nB sin θin = λ

2π

d�

dy
. (13)

For normal incidence θin = 0, combining Eqs. (12) and
(13) gives nB sin(θB1) = 2λB1/PY , in agreement with Eq. (9).

To further verify that the first diffraction is due to the
PB phase, we did numerical calculations with heliconical
liquid crystals that have uniform orientation at the surface:
ϕ(y, z) = 360z/PZ + ϕ0. For vertically incident light that is
circularly polarized with the same handedness as the liquid
crystal, we observe only one reflection band (close to the first
diffraction band of the grating) [Fig. 6(a)]. Here we used air as
the background medium, so that sufficient reflectance can be
obtained via Fresnel reflection at the wavelength of the second
diffraction. For the wavelength within the first reflection band,
the Bragg reflected light acquires an additional phase that is
equal to −2ϕ0 [Fig. 6(b)]. This additional phase is purely of
geometric origin, and can be changed by simply rotating the
heliconical liquid crystal with respect to the incident beam,
similar to that in cholesteric liquid crystals [32]. This PB
phase is thus a fundamental property of the heliconical liquid
crystal and should be used in understanding and designing
grating and reflective optical devices for the first diffraction
band.

The physical mechanism for the second diffraction [i.e.,
Eq. (10)] is different. We observed that, for a heliconical liquid
crystal with uniform surface orientation, the reflected light
does not acquire any additional phase related to ϕ0 [Fig. 6(b)].
As seen from the director field in Fig. 1(a), the heliconical
grating forms a slanted periodic director field with an inclined
angle, α = tan−1(PZ/PY ). Considering that the incident light
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FIG. 7. (a) Calculated central wavelength of the second band
as a function of the Bragg pitch PG for different grating pitches
PY and helical pitches PZ . The solid line is the best fit with λB2 =
2n̄Pz/(1 + P2

Z /P2
Y ). (b) Calculated ellipticities for the diffracted

beams as a function of the diffraction angle θB for the polar angle
fixed at θ = 30◦ and for varied grating pitch PY .

makes an angle α with respect to the normal of the slanted
grating, the diffracted light should emerge at an angle of
θB2 = 2α.

The wavelengths of two diffraction bands are dictated by
two band gaps of the one-dimensional photonic crystal, i.e.,
the slanted volume grating. The period (denoted as PG) of
the slanted volume grating can be related to PZ and PY via
a simple geometric relationship, given by [6,78]

PG = PY PZ/
(
P2

Y + P2
Z

)1/2
. (14)

The central frequencies of the photonic band gaps for inci-
dent angle α can be expressed as 2kPG cos α = 2πm, where m
are positive integers, k = 2π n̄/λB, and λB is the wavelength in
the liquid crystal medium, with n̄ = (neff + no)/2. The second
diffraction band corresponds to m = 1, so we have the Bragg
condition: λB2 = 2n̄PG cos α. Considering Eq. (14) and α =
tan−1(PZ/PY ), this Bragg condition can give the wavelength
of the second band as

λB2 = 2n̄Pz/
(
1 + P2

Z /P2
Y

)
. (15)

By plotting the calculated central wavelength of the second
diffraction band versus Pz/(1 + P2

Z /P2
Y ) for different PZ and

PY , we observe that all data collapse into a linear master curve,
which can be fitted by this relation [Fig. 7(a)]. Therefore, the
second band wavelength is determined by the first band gap
of the one-dimensional photonic crystal of the slanted volume
grating.

The first reflection band corresponds to the second
band gap of the slanted volume grating, or 2kPG cos α = 2πm
with m = 2. This yields λB1 = n̄PG cos α, which is half of λB2.

Taking α = tan−1(PZ/PY ), we can obtain the wavelength of
the first band:

λB1 = n̄Pz/
(
1 + P2

Z /P2
Y

)
. (16)

This is half of λB2 given by Eq. (15), and thus in good agree-
ment with the numerical results.

The diffraction conditions for these two diffraction bands
are determined by the PB phase acquired by reflected light
and the Bragg reflection of the slanted volume grating,

respectively, and the band wavelengths are determined by
the first two band gaps of the slanted volume grating as a
one-dimensional photonic crystal. A recent study obtained the
solutions for light propagation in heliconical liquid crystals
with oblique illumination via a 4 × 4 matrix formalism and
demonstrated in both theory and experiments the presence of
multiple bands of reflections [54]. In this work, P/N are used
to name these bands, where P is the heliconical pitch and
N is a positive integer [54]. The first and second diffraction
bands shown here for the heliconical liquid crystal gratings
correspond to the P/2 and P bands of the slanted volume
grating (i.e., P = PG).

Upon further examination of the polarization states of these
two diffraction bands, striking differences are observed. Fig-
ure 7(b) depicts the calculated ellipticity of these bands as
a function of the diffraction angle (θB), with varying grating
periods, while the polar angle is fixed at θ = 30◦. For the first
diffraction band, the ellipticity remains approximately 1 until
the diffraction angle θB exceeds ∼ 30◦. This suggests that
the reflected light is circularly polarized for small diffraction
angles and becomes elliptically polarized at higher diffraction
angles.

In contrast, the ellipticity of the reflected light for the
second diffraction band remains zero across all diffraction an-
gles. This suggests that the reflected light is perfectly linearly
polarized for all grating periods. Furthermore, numerical cal-
culations demonstrate that for S-polarized incident light, the
reflected diffraction beam is purely P polarized, whereas for
P-polarized incident light, the polarization remains unchanged
upon reflection. In other words, the heliconical grating acts
as a polarization rotator for incident polarization along the
grating lines but exerting no influence when the polarization
is along the grating direction.

The physics behind the linear polarization seems quite
complex. It has been shown that the polarization states for nor-
mal modes at the band edges of cholesteric liquid crystals are
linear, but the physical pictures are nontrivial [63]. Therefore,
deep understanding of the physical reason behind this linear
polarization of the second diffraction band requires a rigorous
theoretical model and should be an interesting topic for future
study.

The identical diffraction angle of the dual bands offers
advantages for integration with waveguides in augmented re-
ality systems. This feature facilitates efficient light coupling
across a broad spectrum, accommodating widely separated
wavelengths [7,10]. Moreover, the polarization behavior of
the second diffraction band holds promise for applications as
reflective polarizers, offering the capability to switch between
circular and linear polarization states.

The helical pitch of heliconical liquid crystals can be exten-
sively tuned across a wide range of wavelengths by applying
an electric field [49,52,53,73]. The grating pitch can be pre-
cisely controlled by photoalignments using two interference
laser beams, in a range from micrometers to 300-nm scales.
Consequently, the wavelengths of the diffraction bands, their
corresponding angles, and the operational wavelength of the
polarizer can all be dynamically tuned to meet specific re-
quirements. This tunability enhances versatility and opens
avenues for tailoring optical properties to achieve optimal
performance in diverse applications.
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IV. CONCLUSION

In conclusion, our numerical study using the FDTD
method demonstrates new optical properties of gratings made
of heliconical liquid crystals. The heliconical liquid crystal
gratings reflect circularly polarized light with the same hand-
edness as the helical structure at two distinct wavelength
bands with one band wavelength being twice the other, and
with identical diffraction angles. Notably, the diffracted light
within the short-wavelength band is circularly polarized with
the same handedness as the liquid crystal, while the diffracted
light within the long-wavelength band is perfectly linearly
polarized, consistently aligned along the grating direction.

We show that the diffraction condition for the short-
wavelength bands is due to the PB phase acquired by reflected
light that is proportional to the azimuthal molecular orienta-
tion angle at surface. As a contrast, the diffraction condition
for the long-wavelength band is due to Bragg reflection by a

slanted volume grating. The central wavelengths of the long-
and short-wavelength diffraction bands are related respec-
tively to the first and second band gaps of the slanted volume
grating and are determined by the Bragg reflection conditions.

These distinctive dual diffraction bands and their unique
polarization properties hold significant potential for vari-
ous applications, including reflective quarter-wave plates and
grating-waveguide integrated augmented reality systems.
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