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Observation of a second Dirac point in a graphene/superconductor bilayer
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Two-dimensional (2D) materials have attracted vast research interest since the breakthrough discovery of
graphene. One major benefit of such systems is the ability to tune the Fermi level through the charge neutrality
point between electron and hole doping. Here we show that single layer graphene coupled to the low-density
superconductor indium oxide (InO) exhibits two charge neutrality points, each of them representing electronic
regions in which the carrier density can be tuned from hole to electron dominated. This is not seen in clean
graphene or in a bilayer where the carrier density is extremely low. We suggest that the second charge neutrality
point results from regions in the graphene layer just below superconducting islands in InO, where pairing is
induced via the proximity effect; gating of this hybrid system therefore allows the tuning from hole to electron
superconductivity through an ultralow carrier density regime. We propose this as a “superconducting Dirac point
(SDP)” where intravalley scattering is greatly enhanced. Our results suggest that the electronic states around
SDP behave like those in a strongly coupled superconductor.
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I. INTRODUCTION

Over the past few decades, proximity induced supercon-
ductivity in 2D materials has been of great interest because
of the potential to realize non-Abelian topological excitations
[1–4]. The rapid progress in fabrication of van der Waals
two-dimensional (2D) materials [5–7] offers a wide variety
of platforms that may be used for such studies. However,
most of these materials exhibit a finite band gap at the charge
neutrality point, and superconductivity emerges only at sub-
stantial carrier densities. In this respect, graphene is unique:
it exemplifies a true semimetal where ungapped band touch-
ings [Dirac points in single layer graphene (SLG)] at the
two valleys are protected by the lattice symmetries, and by
the tiny spin-orbit coupling [8]. While graphene does not
feature superconductivity in its natural form, coupling it to a
superconductor may lead to novel physics. One example is the
formation of chiral Andreev edge states (CAESs), a trademark
signature of chiral Majorana fermion modes, which have been
experimentally observed at the interface of graphene quantum
Hall states and superconductors [9]. Several fascinating phe-
nomena such as crossed Andreev conversion (CAC) [10] and
inter-Landau level Andreev reflection [11] have been observed
at these interfaces.

Proximity superconductors used in most cases in the past
were conventional s-wave superconducting material with car-
rier density (n), substantially larger than that of graphene.
This is typically accompanied by a heavy doping of the prox-
imitized regions of graphene, shifting their Fermi level far
above the Dirac point. In contrary, coupling graphene to a
low-density superconductor may generate a situation where
the Fermi energy of the proximitized and normal regions of
graphene are similar, thus giving rise to interesting phenom-
ena [12]. In this work, we study SLG in which a finite pairing

gap has been induced by proximity to a low-density, strongly
disordered superconductor. We find that this system exhibits
two charge neutrality points. We suggest that one is related
to normal graphene and the other related to proximitized su-
perconducting graphene. Such a situation makes it possible to
tune the proximitized regions between an electronic Cooper
pair to a hole Cooper pair based superconductor, enabling
access to regimes where conventional s-wave pairing is main-
tained at very small carrier densities where the Fermi energy
EF may be smaller than the pairing gap �. Such a setup can
therefore serve as a platform for future studies of strongly cou-
pled superconductivity in a 2D material.

II. EXPERIMENTAL DETAILS

For inducing low-density superconductivity into graphene
we use amorphous indium oxide (InO) films as proximity
superconductors. InO films, despite being morphologically
uniform, have been shown to include emergent granularity
in the form of superconducting puddles embedded in an in-
sulating matrix [13]. Experiments have revealed evidence for
superconducting vortices and a finite energy gap even in the
(globally) insulating phase of InO [14–18], demonstrating that
the loss of global phase coherence does not necessarily cause
the pairing gap � to close, as the decoupled islands still
remain superconducting. This phase, in which local electronic
pairing is present in an insulating system, has been dubbed
a “Bosonic insulator.” Hence, the presence of disorder can
separate the temperature T ∗ where pairing develops in the
grains with the development of a soft gap in the local density
of states, and the resistive Tc, where the superfluid density
becomes finite.

The samples in our experiments were 30-nm-thick films
of InO that were e-beam evaporated on a patterned chemical
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FIG. 1. (a) Schematic diagram of the three devices (bare InO,
bilayer of SLG/InO, and bare SLG) grown on a Si/SiO2 substrate
(bottom panel). A gold evaporated electrode on the bottom is used
to apply a back-gate voltage on the SLG enabling the tuning of the
Fermi energy EF. A zoom of the SLG/InO (top panel) illustrates
superconducting grains within the InO insulating layer. These induce
proximity based regions of finite pairing (light blue) in the graphene
layer. (b) In the SLG an electron impinging on the NS interface is
reflected as a quasiparticle which has electron [(e), red arrow] and
hole [(h), blue arrow] components while transferring a Cooper pair
(CP) into the superconducting region. (c) Band diagram of normal
parts of the SLG/InO (left) and the proximity induced supercon-
ducting puddles (right) characterized by a Fermi energy difference
U0 and an induced pairing gap �0, when tuned to the special point
E ′

F = EF + U0 = 0 (see text).

vapor deposition grown SLG. For reference, we simultane-
ously prepared samples of bare SLG and InO [Fig. 1(a)].
The O2 partial pressure during evaporation (in the range
2–8 × 10−5 Torr) determined the carrier density, of the dis-
ordered superconductor in the range 1019–1020 cm−3 [19], a
few orders of magnitude smaller than typical n in metals. This
work includes five SLG/InO stacks in which this partial pres-
sure was 8 × 10−5 (S1), 6.2 × 10−5 (S2), 4 × 10−5 (annealed)
(S3), 4 × 10−5 (S4), and 2 × 10−5 (S5). As n increases and
the sheet resistance Rsq decreases, the InO films undergo
a superconductor-insulator transition (SIT) tuned by carrier
concentration. In this work, all samples of the InO were in-
sulating except for S5 in which the InO was superconducting
[Fig. 2(a)].

III. RESULTS AND DISCUSSION

As noted above, insulating InO films contain emergent
superconducting islands embedded in an insulating matrix.
The small superconducting puddles have a higher electron
density than the insulating background. Coupling such a “su-
perconducting insulator” to a SLG film gives rise to a unique
situation. We propose that the underlying graphene develops
regions with a nonvanishing superconducting gap just be-
low the superconducting islands due to the proximity effect
[Fig. 1(a)]. Depending on electrostatic details the electron
density in the proximitized puddles may be locally depleted
or inflated relative to the normal graphene background. As a
consequence, the puddles can be described by two parameters,

�0 and U0, denoting the induced superconducting gap and the
potential difference between the puddles and the background,
respectively.

Transport measurements (discussed below) show that in
our case, U0 is negative; as a consequence of the low car-
rier density in the InO film, it is furthermore not much
larger than the Fermi energy in the normal graphene regions,
EF. Therefore, the effective Fermi energy in the proximi-
tized regions, E ′

F = EF + U0, is lower than EF. This provides
the experimental opportunity to tune the chemical potential
through the charge neutrality points of both the normal and the
proximitized (superconducting) regions [see Fig. 1(c)]. In the
remainder of this paper, the former is named the Dirac point
(DP) and the latter is dubbed the superconducting Dirac point
(SDP). The present situation may be contrasted with the case
of proximity effect due to metallic superconductors, for which
U0 is typically positive and much larger than EF, pushing
the SDP beyond the regime accessible in experiments. Most
of the previous theoretical works have been restricted to the
regime of large U0 as well [20,21]. The presence of two charge
neutrality points can be inferred by measuring the bilayer
resistance as a function of gate voltage Vg, which controls EF .
Figure 2(b) shows Rsq(Vg) for a SLG and a series of SLG/InO
bilayers (samples S1–S4). For the bare SLG, the DP occurs
at a gate voltage Vg ≈ 50 V [see Fig. 2(c)] indicating that
the graphene is hole doped due to adsorption of atmospheric
dopants such as H2O and O2 [22]. Covering the SLG by an
InO film induces electron doping in the graphene layer so
its DP shifts to negative gate voltages. At the same time, an
additional resistance peak (identified as the SDP) emerges to
the right of the DP, which grows with increasing n of the InO.
Hall effect measurements performed on the bilayer samples
[Fig. 2(c)] show that the DP is indeed the global point of
charge neutrality. However, the SDP also has a very distinct
signature on the Rxy(Vg) curves and one can envision that it
superimposes an additional charge neutrality feature on the
overall Dirac behavior background. In our experiments, the
DP feature is consistently wider than the SDP, possibly due to
the larger and less homogeneous normal regions compared to
the SC puddles, which leads to a spread in n and broadening
of the Dirac point. Here, we identified the global charge
neutrality point observed in Hall measurements with the DP
because the area fraction of superconducting puddles in insu-
lating InO films is small, rendering most of the SLG to be in
the normal region. The meaning of “global charge neutrality”
is different for the case of superconducting InO films, for
which the area fractions of proximitized and normal regions
are comparable. This case was studied in Ref. [12].

Such a two-DP structure has been observed previously in
graphene p-n junctions [23]. We suggest that in our case the
second resistance peak is related to superconductivity since
the granularity in disordered films such as InO are attributed to
superconducting pairing [15,16,24] leading naturally to phase
separation of regions of different n. This view is supported
by the case where the charge density of InO is higher and
Josephson tunneling dominates the physics [12]. Indeed, the
two-dip structure is a low temperature feature which gets
weaker, and eventually vanishes, with increasing temperature.
Figure 2(d) shows the sheet resistance as a function of Vg of
sample S3 at different temperatures. While the left peak (the
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FIG. 2. (a) Sheet resistance Rsq of a series of bare InO films as a function of temperature grown at different O2 pressure, 8 × 10−5,
6.2 × 10−5, 4 × 10−5, and 2 × 10−5 Torr from top to bottom respectively. (b) Rsq, normalized by the resistance at the Dirac point (DP), as a
function of the gate voltage Vg of a SLG (black solid line) and SLG/InO bilayer S1–S4 from right to left respectively (S5 is superconducting,
and hence it shunts the SLG). Measurements were performed at T = 1.7 K and B = 0 T. (c) Hall resistance Rxy as a function of Vg of SLG
at T = 1.7 K. (d) Lower panel: Hall resistance, Rxy, of sample S4 as a function of Vg at T = 1.7 K and different magnetic field B = 0−9 T
(in steps of 1 T). Note that the DP is at Vd = −80 V. Upper panel: Rsq of sample S4 as a function of Vg at T = 1.7 K and B = 0 T. (e) Rsq of
sample S3 as a function of Vg at different temperatures and B = 0 T.

DP) is unchanged, the right peak (the SDP) is only observable
at T ∼ 10 K. Interestingly, the SDP persists to temperatures
that are higher than the Tc of the superconducting phase of
InO. In this respect, we note that STM measurements on
a film of InO with (global) Tc ≈ 3 K have detected a finite
(local) � up to temperatures of ≈6.5 K [14]. In the insulator,
this � is predicted to grow further and increase as disorder
increases [24]. The real pairing critical temperature, T ∗, of
the superconducting islands of InO is yet unknown and may
be quite large.

The SDP has also a distinct signature on the weak localiza-
tion (WL) contribution to the conductivity. WL in graphene
is very different than that in conventional metals. Because of
the presence of two valleys in k space and the chiral nature
of the charge carriers, the interference of carriers is not only
sensitive to the inelastic scattering rate, but also to certain
elastic scattering processes that do not maintain the chirality
and cause decoherence. Charge carriers in graphene acquire a
Berry phase of π upon completing a closed path, leading to
weak antilocalization (WAL) and positive magnetoresistance
(MR). However, intravalley chiral-symmetry-breaking scat-
tering, as well as the anisotropy induced by triagonal warping,

destroy coherence and thus suppress WAL at an intravalley
scattering rate τ−1

∗ [25]. On the other hand, intervalley scatter-
ing (at rate τ−1

i ) can protect chirality and also nullify the effect
of the Berry phase leading to WL and negative MR. Hence,
the interplay of the intra- and intervalley scattering processes
determine the amplitude and sign of the MR [26].

At low magnetic field, the MR [δRsq(B) = Rsq(B) −
Rsq(0)] can be analyzed using the following expression from
[27], which depends on several field scales (inelastic Bφ and
elastic Bi, B∗) of the system:

δRsq(B) = −e2R2
sq(0)

πh

[
F

(
B

Bφ

)
− F

(
B

Bφ + 2Bi

)

− 2F

(
B

Bφ + B∗

)]
, (1)

where F (z) = ln(z) + ψ (0.5 + 1
z ). Here, ψ is the digamma

function. The phase breaking length Lφ and elastic interval-
ley (intravalley) scattering lengths Li (L∗) can be defined as

Lφ,i,∗ =
√

h̄
4eBφ,i,∗

.
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FIG. 3. (a) Relative sheet resistance, δRsq/R2
sq versus magnetic

field as a function of Vg − Vd of sample S4 including fits to Eq. (1).
Raw data of these curves is shown in the inset. (b) L∗ and (c) Lφ/L∗
extracted from these fits as a function of Vg − Vd for SLG (black), S2
(blue), and S4 (green). Measurements were performed at T = 1.7 K.
The error in L∗ isaround 3%, calculated by analysis of the best fits of
Eq. (1).

Figure 3(a) shows the resistance as a function of the mag-
netic field of sample S4 at different values of Vg and T =
1.7 K, exhibiting WL in the low field regime. From these
curves we extract the values of the three length scales, Lφ ,
Li, and L∗ defined above. L∗ as a function of Vg [Fig. 3(b)]
reveals a clear minimum at the SDP, implying that elastic
intravalley scattering is greatly enhanced at this point. In
contrast, Li is relatively constant irrespective of the InO details
or Vg. Lφ/L∗, which determines the magnitude of the WL [26],
peaks at the SDP [Fig. 3(c)].

IV. THEORETICAL MODEL

To further substantiate the presence of superconducting
regions in graphene, we theoretically analyze how these
proximitized islands, which present an additional source
of scattering, affect the transport properties of our bilay-
ers. Specifically we consider the role of elastic scattering
processes occurring at the interface of normal (N) and proxim-
itized (S) regions of graphene [Fig. 1(b)]. Processes involving
coherent scattering from multiple puddles are ignored here.
This is justified in our case, as the superconducting puddles
are relatively isolated, representing a small fraction of the total
area.

NS junctions have been studied previously in both normal
metals [28] and graphene [20], and may lead to either normal
or Andreev reflection if the energy (ε) of the incoming elec-
tron is less than or comparable to �0. In graphene, depending

on the ratio of ε and EF, the Andreev process may be retro
(for ε � EF), in which the reflected hole retraces the origi-
nal electron’s path, or specular (ε � EF ). Earlier studies of
graphene NS junctions [20] were mostly limited to the case of
metallic superconductors, for which the potential difference
U0 between N and S is large and positive. In light of our
experimental observations, we reanalyze this setup for the
case of U0 negative and comparable to EF. In particular, we
will focus on the regime close to the SDP (|U0| ∼ EF) which
is defined as the charge neutrality point of the S.

Andreev reflection is necessarily an intervalley scattering
process in graphene due to the time-reversal invariant pairing
potential. On the other hand, the normal reflection is expected
to be dominantly an intravalley process as the NS junction
is expected to be smooth at the scale of the lattice. Thus,
for brevity, we consider the Hamiltonian (given below) which
acts on states involving electrons from a given valley and spin
polarization, and holes from the other valley and opposite spin
polarization. For a planar NS junction (parallel to, say, the y
direction), the general Hamiltonian may be written as

H =
(

H0 − EF(x) �(x)eiφ

�(x)e−iφ EF(x) − H0

)
, (2)

where H0 = −i(σx∂x + σy∂y), h̄vF = 1, and σ represents the
sublattice degree of freedom. The x < 0 half-plane is assumed
to be in the normal region with �(x < 0) = 0 and EF(x) =
EF, while the x > 0 region is assumed to be superconducting
with �(x > 0) = �0 and EF(x > 0) = E ′

F = EF + U0. As-
suming the incoming state from N is a right-moving electron,
the general state in the N region may be written as

�N (ε, q) = ψe,R + reeψe,L + rehψh,R. (3)

Here, ree and reh are the amplitudes of an electron scatter-
ing from the S as an electron and hole respectively. The
wave functions ψe/h,R/L were presented in Ref. [20]. For ε <

�0, there are only two physical solutions (for each energy
and transverse wave vector q) which exponentially decay deep
inside the superconducting region. These may be written as

ψ+ = ei(kxx+qy)−κx

⎛
⎜⎜⎝

eiβ×sign(E ′
F )

d+eiβ×sign(E ′
F )

e−iφ

d+e−iφ

⎞
⎟⎟⎠, (4)

ψ− = ei(−kxx+qy)−κx

⎛
⎜⎜⎝

e−iβ×sign(E ′
F )

d−e−iβ×sign(E ′
F )

e−iφ

d−e−iφ

⎞
⎟⎟⎠. (5)

Here cos β = ε/�0, kx = |Re[px]|, κ = |Im[px]|, where√
p2

x + q2 = |E ′
F | ± i

√
�2

0 − ε2, and (6)

d± =
E ′

F ± i sgn(E ′
F)

√
�2

0 − ε2

±kx + iκ − iq
. (7)

Thus, the most general wave function (given ε and q) in the
two superconducting regions is

�S (ε, q) = c+ψ+ + c−ψ−. (8)

We note that the wave functions ψ± in (4) and (5) are com-
pletely general and hold for any value of E ′

F. These reduce to
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FIG. 4. Reflection probabilities (Andreev in red, normal in blue) vs angle of incidence α for different μ̄ = |EF|/�0 close to the SDP. Here
we assumed electron doping in the normal region (EF > 0). The left, center, and right panels correspond to μ̄ = 100, 50, 10 respectively.

the wave functions employed in Ref. [20] in the limit of large
doping in the SC (U0 � EF).

The reflection coefficients may be evaluated for any
value of the parameters by imposing continuity on the
wave function across the NS junction, i.e., �N (ε, q)|x=0 =
�S (ε, q)|x=0. Here we shall focus on the behavior of the
scattering amplitudes (ree and reh) at low energies close to
the SDP (U0 ∼ −EF). Specifically, we shall assume |E ′

F| �√
(�2

0 sin2 β + q2) which is valid around the SDP (|E ′
F| �

�0) for all q if the energies are sufficiently small energy,
ε � �0 (or β ∼ π/2). In this case we find (to leading order)

d± ≈ ±sgn(E ′
F) × e�, where (9)

sinh(�) = q

�0 sin β
. (10)

The leading order reflection amplitudes turn out to be

ree = e�e−i(αe+αh ) − e−�

e�ei(αe−αh ) + e−�
, (11)

reh = −2i

√
cos(αe) cos(αh)

e�ei(αe−αh ) + e−�
. (12)

These satisfy |ree|2 + |reh|2 = 1 due to conservation of proba-
bility current. Here, αe/h are the angles of incidence/reflection
for the electron and hole, defined as

αe = sin−1

[
q

|EF + ε|
]
, αh = sin−1

[
q

|EF − ε|
]
. (13)

Since we are only interested in energies much smaller than
the gap, we approximated β by π/2 in (11) and (12) in order
to simplify the expressions. Therefore, � = q

�0
≈ μ̄ sin(αe) in

(11) and (12), where μ̄ = |EF|
�0

. We note that the amplitudes are
independent of E ′

F. This is similar to what happens in the limit
of large doping |E ′

F| � �0 [20]. However, we have not made
any assumptions about EF and �0. In light of our observations,
we further assume that the SDP and DP are not too close
in energy, i.e., |E ′

F − EF| � �0 � ε (which is equivalent to
μ̄ � 1). Then αe ≈ αh ≡ α defined by |EF| sin(α) = q, and
the amplitudes simplify to

ree = e−iα[cos(α)tanh(μ̄ sin(α)) − i sin(α)], (14)

reh = −i
cos(α)

cosh(μ̄ sin(α))
. (15)

Notably, |ree| = 0 and |reh| = 1 at normal incidence (α = 0),
while |ree| ≈ 1 and |reh| ≈ 0 when α ∼ π/2. This change

occurs around � = 1, i.e., α ∼ sin−1 μ̄−1 = sin−1 ( �0
|EF| ). For

large μ̄, this switching angle becomes very small, and hence
we expect the (intravalley) normal reflections to dominate
the (intervalley) Andreev reflections for almost all angles of
incidence (close to the SDP). Figure 4 presents the variation of
the (low energy) reflection probabilities at the SDP (blue lines:
|ree|2; red lines: |reh|2), evaluated numerically without any
approximations, with the angle of incidence (α) for different
values of μ̄. Clearly, the full solution behaves as expected
from the approximate answer in (14) and (15) as long as the
SDP and DP are sufficiently far away.

We may further use the scattering amplitudes to find the
conductance of the NS junction as [20,28]

gNS = g0

∫ π/2

0
dα cos α(1 − |ree|2 + |reh|2), (16)

where g0 is the conductance of normal graphene (in absence
of any scattering). Figure 5 shows how gNS varies with EF

(which may be tuned through the back gate Vg). Clearly, the
conductance is minimal at the DP as well as the SDP, and is
qualitatively in accordance with the double peak structure of
Rsq observed in experiments (Fig. 2). DP refers to the charge
neutral point of normal graphene (EF = 0), around which the

FIG. 5. Conductance of a single NS junction with U0 =
−100�0. The conductance drops to zero at the DP due to the van-
ishing density of states, and has a pronounced minimum at the SDP
due to dominance of normal reflection over Andreev reflection. Here
W is the width of the junction in units of ξ = h̄vF/�0.
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density of states is very small. Thus gNS(EF = 0) = 0 due
to vanishing of g0 despite the normalized conductance, the
integral in (16), remaining finite (with a value ∼4/3 for this
idealized setup) [20].

At the SDP, EF = −U0, or E ′
F = 0, the superconducting

regions are at the charge neutrality point. Due to the finite pair-
ing amplitude �0 and the low carrier density, the electronic
states around the SDP (|E ′

F| < �0) effectively behave like
those in a strongly coupled superconductor. Our analysis of
the NS junction in this regime finds that the scattering is dom-
inated by (intravalley) regular reflections. Specifically, ree ≈ 1
for almost all angles α, except very close to normal incidence
for which reh ≈ 1 instead (Fig. 4). This leads to a sharp drop
in both gNS as well as the normalized conductance at the SDP.
Clearly, this suppression of conductance is only relevant for
very low temperatures so that the quasiparticle excitations in S
(above the gap) remain inactive. With increasing temperature
a new scattering channel, namely transmission into S as a
quasiparticle, opens up and gradually becomes more domi-
nant than the reflections. Simultaneously, thermal fluctuations
tend to suppress the induced superconductivity itself. Together
these two effects act to restore the conductance at the SDP to
a finite value. Thus, the behavior of gNS at the SDP is con-
sistent with our observation of a sharp low-temperature peak
in the resistance [Fig. 2(b)] which gradually decreases with
increasing temperature. We further note that the dominance
of (intravalley) normal reflections around the SDP (at low
temperatures) is also consistent with a minimum in the elastic
intravalley scattering length L∗ [Fig. 3(b)] around this peak.
Hence, our analysis of the NS junction strongly supports the
identification of this low-temperature feature with the SDP.

V. CONCLUSION

In summary, we suggest that graphene proximitized by
a low density superconductor can effectively access the ul-
tralow carrier density regime as it is tuned from hole to
electron superconductivity via a charge neutrality point. In
this regime one may potentially realize the strongly coupled
superconductor limit in which the superconducting gap is of
the order of the Fermi energy. For our SLG/InO bilayers,
in the gating range between the DP and SDP, the S regions
are hole doped while the N regions are electron doped. The
opposite polarity of the two regions leads to a regime with
a distinct phenomenology [12]. Our work motivates further
investigation of various aspects of superconductivity in this
regime. This includes its potential utility for supporting local-
ized as well as chiral Majorana modes [9], and as a platform
for performing quantum computations [29]. Moreover, the
quantum Hall regime, at high magnetic fields, may support
chiral Andreev edge states. A study of our bilayers at high
magnetic fields, potentially exhibiting such states, is currently
being performed.
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