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Low-energy modeling of three-dimensional topological insulator nanostructures
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We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological in-
sulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly
considered four-band k · p bulk model Hamiltonian for the Bi2Se3 family of topological insulators, we derive
new parameter sets for Bi2Se3, Bi2Te3, and Sb2Te3. We consider a fitting strategy applied to ab initio band
structures around the � point that ensures a quantitatively accurate description of the low-energy bulk and
surface states while avoiding the appearance of unphysical low-energy states at higher momenta, something that
is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the
low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding
Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states
hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters
from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the
bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a
reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices.

DOI: 10.1103/PhysRevMaterials.8.084204

I. INTRODUCTION

Topological insulators (TIs) are a novel class of materi-
als that have garnered substantial interest in recent decades
due to their possible application in electronics, spintronics,
and quantum information processing [1,2]. TIs are character-
ized by the existence of topologically protected states at the
boundaries of a sample, which are protected against any local
perturbations that respect time-reversal symmetry. The Bi2Se3

family of materials, here referring to Bi2Se3, Bi2Te3, and
Sb2Te3, are three-dimensional (3D) time-reversal-invariant
TIs with a large inverted gap. They have a layered structure,
consisting of five-atom, or quintuple layers (QL) arranged
along the ẑ direction [see Fig. 1(a)]. The bulk electronic
structure is described by a nontrivial Z2 topological invariant,
which ensures the existence of protected spin-nondegenerate
surface states with massless Dirac-like dispersion.

The Bi2Se3 family of 3D TIs were first described in 2009,
when their topological properties were uncovered and a four-
band k · p Hamiltonian describing the bulk dispersion was
proposed [3]. Material parameters of this Hamiltonian were

*Contact author: eduard.zsurka@uni.lu
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obtained using perturbation theory [4,5], which yields an
accurate description of the electronic band structure at the
� point at low energies. However, the degree to which the
vicinity of � is captured by the obtained parameters varies
from case to case. When used for nanoelectronic device
simulations, the model has to accurately capture the entire
region in momentum space over which the Dirac cone of the
topological surface states stretches out, while also remaining
well-behaved at larger momenta, such that unphysical elec-
tronic states do not appear at low energies. This is not always
guaranteed by applying perturbation theory at the � point,
which motivates us to derive a new set of parameters that
can give a good quantitative description of the Bi2Se3 family
of materials. In this work, we obtain the parameters of the
four-band k · p Hamiltonian for Bi2Se3, Bi2Te3, and Sb2Te3

by an alternative method. We fit the model to ab initio band
structures such that the vicinity of the � point is accurately
considered up to sufficiently large momenta and all the rel-
evant features of the band structure (e.g., the topology) are
taken into account.

With the newly obtained material parameters, we analyze
the low-energy spectrum of experimentally relevant nanos-
tructures. We consider the effects of band structure anisotropy
and electron-hole asymmetry, which modify the dispersion
of the surface states on surfaces with different orientations.
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FIG. 1. (a) Crystal structure of the Bi2Se3 family of materials. (b) Band structure for Bi2Te3. (c) Brillouin zone with space group R3̄m. The
blue hexagon is the 2D Brillouin zone of the projected (1,1,1) surface, and the high-symmetry points �, K, and M are labeled. The dispersion
along (d) kx and (e) kz of the bulk model (orange) that is fitted to the conduction and valence band of Bi2Se3 around the � point, obtained
from ab initio calculations (black dots), compared to the dispersion evaluated with the material parameters taken from Ref. [4] (green) and
Ref. [5] (cyan). The upper limits of the fit in momentum space kmax

‖,z (see Appendix B), are shown with gray dashed lines. Dispersion in kx of
the surface state of Bi2Te3, with the surface in the (f) x-y and (g) x-z plane, evaluated analytically (dashed lines) and numerically (solid lines),
with the hatched areas indicating the projection of the bulk bands. The surface-state bands appear in the band gap and intersect at the Dirac
point, forming a Dirac cone (shaded region, marking the analytical expression).

While usually ignored for resolving the transport proper-
ties related to Dirac surface states in nanostructure systems
[6–10], we find that the low-energy spectrum can be signifi-
cantly affected by this anisotropy and asymmetry for some of
the materials under consideration here.

When the thickness of a nanoribbon approaches a few
QLs, the surface states localized on top and bottom surfaces
can hybridize, leading to a gap opening in the surface-state
dispersion at the � point [11–14]. In this case, we refer to
the system as being in the thin-film limit. If the hybridization
of the surface states is accompanied by an inversion of the
surface-state spectrum, the system enters a quantum spin Hall
insulator (QSHI) regime. Such thin-film geometries have at-
tracted significant interest, being suitable for studying QSHI
edge channels [15,16], the quantum anomalous Hall effect
[17–27], and topological superconductivity [28–32].

According to early theoretical work on 3D TI thin films, the
gap at the � point, which here we refer to as the hybridization
gap �Ehyb, shows an oscillatory behavior between a QSHI
and a normal insulator (NI) state when the thickness of the
thin film is varied [11,12,14]. However, more recent results
suggest that many-body effects arising in the thin-film limit
modify the oscillations and the size of the hybridization gap,
giving a better agreement with experimental results [33–36].
To describe this limit, we employ an effective thin-film model
that captures only the surface-state dispersion. We extract the

material parameters of the thin-film model by fitting to the
surface-state spectra obtained from GW calculations of thin
films, which take into account the relevant many-body effects
for thicknesses ranging from 2 to 6 QL.

This paper is structured as follows. In Sec. II, we give
an overview of the models used to describe 3D TIs in the
bulk, at the surface, and in the thin-film limit, and also
discuss the material parameters. In Sec. III, we present the
dispersion of quasi-one-dimensional nanostructures and an-
alyze the effect of anisotropy and electron-hole asymmetry.
In Sec. IV, we treat the thin-film limit using the bulk model
and compare the results to experimental findings. We also pro-
vide thickness-dependent material parameters for the effective
thin-film model. Finally, in Sec. V, we interpret our findings
and discuss other aspects that may be relevant for accurate
nanoelectronic device modeling with 3D TIs.

II. MODELS

A. Bulk model

The low-energy bulk electronic structure of the Bi2Se3

family of materials around the � point (k = 0) can be de-
scribed using a four-band model, where only the valence
and conduction bands responsible for the band inversion are
considered. The bulk model Hamiltonian can be written in the
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TABLE I. Parameters for the k · p bulk model Hamiltonian (1) for the three studied materials: Bi2Se3, Bi2Te3, and Sb2Te3. The parameters
taken from Refs. [4,5] are obtained through perturbation theory applied at the � point. We introduce a new set of parameters obtained by fitting
to ab initio band structure data around the � point. Additionally, the bulk gap, the penetration depth λz along z of the surfaces states in the x-y
plane, the relative position ζDP of the Dirac point of a slab parallel to the x-y plane with respect to the bulk gap at the � point [see Eq. (5)],
and the energy difference �EDP between the Dirac points of surfaces states parallel to the x-y and x-z planes, are also included (see Sec. II for
details).

Bi2Se3 [3] Bi2Se3 [4] Bi2Se3 [5] Bi2Se3 fit Bi2Te3 [4] Bi2Te3 [5] Bi2Te3 fit Sb2Te3 [4] Sb2Te3 [5] Sb2Te3 fit

A0 [eVÅ] 4.1 3.33 2.51 4.33 2.87 4 4.40 3.4 3.7 3.89
B0 [eVÅ] 2.2 2.26 1.83 1.94 0.3 0.9 0.55 0.84 1.17 1.69
C0 [eV] −0.0068 −0.0083 0.048 −0.28 −0.18 −0.12 −0.014 0.001 0.02 0.10
C1 [eVÅ2] 1.3 5.74 1.41 1.46 6.55 2.67 1.65 −12.39 −14.2 −6.48
C2 [eVÅ2] 19.6 30.4 13.9 22.81 49.68 154.35 29.47 −10.78 −6.97 −4.26
M0 [eV] −0.28 −0.28 −0.17 −0.30 −0.3 −0.3 −0.26 −0.22 −0.18 −0.21
M1 [eVÅ2] 10 6.86 3.35 6.00 2.79 9.25 4.62 19.64 22.12 19.32
M2 [eVÅ2] 56.6 44.5 29.35 70.38 57.38 177.23 72.80 48.51 51.28 63.91

Bulk gap [meV] 560 344 280 472 − 155 303 135 155 303
λz [Å] 9.01 12.83 9.87 6.0 − 19.68 15.8 36.28 28.99 21.48
ζDP 0.57 0.92 0.71 0.62 1.67 0.64 0.67 0.18 0.18 0.31
�EDP [meV] 61 43 9 24 445 175 12 90 91 56

following form [3,4]:

Hbulk(k) = ε(k) + M(k)τz

+ A0(kyσx − kxσy)τx + B0kzτy,

ε(k) = C0 + C1k2
z + C2

(
k2

x + k2
y

)
,

M(k) = M0 + M1k2
z + M2

(
k2

x + k2
y

)
, (1)

with σi, τi (i = x, y, z) the Pauli matrices for the spin
and orbital degree of freedom and model parameters
A0, B0,C0,C1,C2, M0, M1, M2 ∈ R that can be obtained from
ab initio calculations or perturbation theory. This bulk model
describes an insulator only when |C1| < |M1| and |C2| < |M2|,
avoiding the closing of the band gap at large values of |k|
[37], which is necessary to avoid the appearance of unphys-
ical states at low energies upon applying the finite-difference
method. The band inversion and consequently the topological
properties are determined by M0, M1, and M2; only when
M0M1 < 0 and M0M2 < 0 are satisfied does Eq. (1) describe a
topologically nontrivial system [4]. C0,C1, and C2 are respon-
sible for the electron-hole asymmetry, while A0 and B0 can
be interpreted as the group velocities (up to a factor of h̄) of
the surface states on surfaces orthogonal to any in-plane (x-y)
direction, and to the ẑ direction, respectively. The anisotropy
of the band structure is captured by different values for the
corresponding in-plane and out-of-plane terms A0 �= B0, C1 �=
C2, or M1 �= M2. Finite values of M1 and M2 prevent the
fermion doubling problem; hence the Hamiltonian (1) can be
safely discretized on a lattice without acquiring unphysical
Dirac points (at, e.g., kx,y,z = ±π/a, if one considers a cubic
lattice with lattice constant a [38]), making the model suitable
for modeling the low-energy spectrum of TI nanostructures
with arbitrary shapes [9].

B. Material parameters

Our aim is to obtain a model that accurately describes
the topological surface states and can be discretized on a
lattice using the finite-difference method [39], without the

appearance of unphysical states in the bulk band gap. As
the distinctive feature of 3D TIs is the Dirac cone of the
topological surface states, the region in k-space around the �

point where this Dirac cone appears is of central importance.
Thus, the material parameters used in Eq. (1) should yield a
dispersion that reliably describes the bulk bands, up to the
momenta where the Dirac cone merges with the bulk bands.
The first full set of parameters introduced for the Bi2Se3

family of materials in Ref. [4] were obtained using perturba-
tion theory, giving an accurate description of the low energy
states only very close to the � point (up to kx,z < 0.04 Å−1).
In a later work, a k · p perturbation approach applied to ab
initio calculations yielded a good qualitative description of
the conduction (CB) and valence bands (VB) of Bi2Se3 and
Sb2Te3 [5]. However, for Bi2Te3, in the region in k-space
where the Dirac cone appears, the obtained dispersion has a
significantly smaller band gap than the one observed in ab
initio band structures [see Figs. 1(d) and 1(e)]. In our fitting
procedure the eigenvalues of the bulk model Hamiltonian (1)
are fitted to ab initio band structures of bulk Bi2Se3, Bi2Te3,

and Sb2Te3. These band structures are obtained with density
functional theory and agree well with experimental data for
the bulk gap and low-energy spectrum near the � point. The
band structure of Bi2Te3 is shown in Fig. 1(b). More details on
the ab initio calculations are given in Appendix A. To obtain
the most accurate fit, we vary the region in k-space over which
the CB and VB are considered (imposing a minimal extent of
the region to accurately capture the Dirac cone in the bulk
gap), and we maximize the coefficient of determination R2 of
the fit. The conditions |C1| < |M1|, |C2| < |M2|, M0M1 < 0,

and M0M2 < 0 were enforced on the fitted parameters of the
bulk model (see Sec. II A for more details). The resulting
parameters are shown in Table I alongside the parameters of
Refs. [3–5]. For more details on the fitting procedure, see
Appendix B. We also evaluate the size of the band gap as the
difference between the minimum of the CB and the maximum
of the VB. In Figs. 1(d) and 1(e), we show the result of our fit
for Bi2Te3 to the relevant bands, together with the dispersion
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FIG. 2. (a) and (b) Schematics of the nanostructures under consideration: (a) a nanowire with W ∼ d and (b) a nanoribbon with W � d .
(c) and (d) The spectrum of (c): a nanowire with W = d = 28 nm; and (d): a nanoribbon with W = 50 nm and d = 6 nm, with the fitted
material parameters for Sb2Te3. The Dirac cone of the surface state in the x-y (x-z) plane [see Figs. 1(f) and 1(g)] is shown with blue (red)
shading. (e), (f), and (g) The wave function density |
(y, z)|2 over the nanoribbon cross section of states localized in different Dirac cones
[see corresponding symbol in (d)], indicated by the grayscale colormap (arbitrary units). Where both Dirac cones overlap (purple shading), the
states are delocalized over the whole perimeter of the nanoribbon as shown in (g).

obtained with parameters taken from Refs. [4,5]. The band
gap of the fitted dispersion is much closer to that of the ab
initio calculation than the value obtained through perturbation
theory.

C. Surface-state model

When confined to a semi-infinite geometry, with a surface
in the x-y plane at z = 0, the bulk model Hamiltonian (1)
yields a gapless surface-state spectrum, described by the fol-
lowing effective Hamiltonian [7,13,37]:

Hẑ
surf(kx, ky) = C0 − C1M0/M1

− sgn(M1)
√

1 − (C1/M1)2A0(kxσy − kyσx ).

(2)

The wave function profile perpendicular to the x-y surface of
the kx = ky = 0 surface state has the following form when the
3D TI is confined to the z > 0 region [4,37]:

χ (z) = (c1 − c1 c2 c2)T (eq+
z z − eq−

z z ), (3)

q±
z ≡ 1

2

√
B2

0

M2
1 − C2

1

±
√

1

4

B2
0

M2
1 − C2

1

+ M0

M1
, (4)

with two independent parameters c1 and c2 (up to normaliza-
tion). The wave function extends into the bulk with a charac-
teristic penetration depth λz = max{1/R(q+

z ), 1/R(q−
z )} [9],

which is listed in Table I for the different sets of material
parameters. In Fig. 1(f), the solutions of the Hamiltonian (2)
(dashed lines) are shown, along with the numerically eval-
uated spectrum of a semi-infinite slab (black lines), which
we obtain by using a version of the bulk Hamiltonian (1)
discretized on a lattice with confinement along z and trans-
lational invariance along x and y. This solution is for a surface
orthogonal to the ẑ direction, and analogous solutions can be
obtained for surfaces with other orientations. In Fig. 1(g), the

solutions for a surface over the x-z plane at y = 0 is given
(dashed lines), together with the numerical result (black lines).
For simplicity, we set C0 = 0 in all calculations, since this
term only yields an overall shift of the spectrum in energy.

Note that in general, while barely noticeable in Figs. 1(f)
and 1(g), there can be a shift in energy between the Dirac
points (DPs) of the surface states, i.e., the energy where the
surface-state bands cross each other at the � point. In the
Dirac-like dispersion given by Eq. (2), the DP can be defined
as Eẑ

DP = C0 − M0C1/M1. Surfaces orthogonal to the x̂ or ŷ
direction will host surface states with the DP positioned at
Ex̂/ŷ

DP = C0 − M0C2/M2. We define the difference between the
two DPs as �EDP = |Ex̂/ŷ

DP − Eẑ
DP|. For the studied materi-

als (Bi2Se3, Bi2Te3, and Sb2Te3), we obtain �EDP = 24, 12
and 56 meV from the fitted parameters, respectively, as also
shown in Table I. When the electron-hole asymmetry is ig-
nored (C1 = C2 = 0), or the parameters are considered to
be isotropic (C1 = C2 and M1 = M2), one naturally obtains
�EDP = 0 (Eẑ

DP = Ex̂/ŷ
DP ). However, as the material parameters

in Table I show, anisotropy and electron-hole asymmetry can
be significant.

Another important consequence of anisotropy and
electron-hole asymmetry is that the DP is not centered in
the middle of the bulk gap. This can also be seen in ab
initio calculations of slab geometries or angle-resolved
photoemission spectroscopy measurements [40–42]. In
Table I we evaluate the relative position of the DP for a
surface in the x-y plane as

ζDP = Eẑ
DP − EVB(�)

ECB(�) − EVB(�)
= 1

2

(
1 − sgn(M0)

C1

M1

)
, (5)

where EVB(CB)(�) is the energy of the VB (CB) at the � point.
A DP centered between the VB and CB at the � point yields
ζDP = 0.5, while a DP at the top (bottom) of the VB (CB) at
the � point corresponds to ζDP = 0 (1).

084204-4



LOW-ENERGY MODELING OF THREE-DIMENSIONAL … PHYSICAL REVIEW MATERIALS 8, 084204 (2024)

D. Thin-film model

In the thin-film limit, with surfaces in the x-y plane at z = 0
and z = d [see Fig. 2(b)], tunneling between the surface states
on the top and bottom surfaces can open a finite hybridization
gap in the Dirac cone of the surface states. In this limit, the
dispersion of the system can be captured using a low-energy
thin-film model Hamiltonian [13,14,37],

Htf(kx, ky) = E0 − Dk2
‖ + h̄vF(kyσx − kxσy)

+ (�/2 − Bk2
‖ )σzτz, (6)

with σi (i = x, y, z) still the Pauli matrices for spin, k2
‖ ≡ k2

x +
k2

y , and τz acting on a different subspace from the one before
in Eq. (1), with eigenvalues ± representing a hyperbola index
that distinguishes between the doubly degenerate surface-state
solutions of Eq. (6). The Hamiltonian of Eq. (6) is equivalent
(ignoring the term −Dk2

‖ ) to the four-band effective model for
a two-dimensional QSHI proposed by Bernevig, Hughes, and
Zhang [43], which has been shown to capture the behavior
of the bulk model of Eq. (1) in the thin-film limit [12]. The
hybridization gap of the surface states is �Ehyb = 2� in this
model, while the gap is trivial if �B < 0, and the system is
in the nontrivial inverted regime if �B > 0, yielding a QSHI
state [14,43]. A non-zero value of D results in electron-hole
asymmetric surface states and vF is the Fermi velocity of
the surface states. It should be noted that |D| < |B| is re-
quired; otherwise, there is no band gap at large |k| [14,37].

III. NANOSTRUCTURES

In this section, we consider the bulk model Hamilto-
nian (1) to study the dispersion of two relevant 3D TI
nanostructures: nanowires, with approximately equal width
and thickness (W ∼ d), and nanoribbons, for which W � d ,
shown schematically in Figs. 2(a) and 2(b). We use Kwant
[44] to obtain the spectra of the nanostructures, and Adaptive
[45] for efficient parameter sampling. Note that we describe
thicknesses in terms of QL and nm interchangeably, as 1 QL
≈ 1 nm for the materials under consideration.

Experimentally, 3D TI films down to a few-QL thick-
ness have been achieved in all three materials [40–42,46–49],
and nanoribbons with widths down to 50 nm were realized
[50,51]. Here we consider nanostructures with negligible hy-
bridization between surface states on opposing sides (for
the thin-film limit where hybridization becomes relevant, see
Sec. IV). In Fig. 2(c), we present the dispersion of a nanowire
with square cross section and W = d = 28 nm long edges
(black lines). In Fig. 2(d), we also present the dispersion of
a nanoribbon with the same perimeter as the nanowire, but a
much larger width-to-height ratio, W = 50 nm and d = 6 nm.
Here we have chosen Sb2Te3 because it has the largest value
of �EDP for the fitted parameters. The obtained spectra quali-
tatively resemble a conventional Dirac cone with confinement
quantization [6,52]. However, there is a clear difference be-
tween the dispersions of the nanowire and the nanoribbon. The
differences can be attributed to the effect of the surfaces of the
nanostructures that are oriented in different directions, which
we explain below.

To understand the effect of the different sides, in Figs. 2(c)
and 2(d), we overlay the Dirac cones of the top/bottom

(left/right side) surfaces, centered around their respective DPs,
with a blue (red) shading. The states appearing in the spectrum
of the nanostructures can be divided into three groups: states
with energies in the blue regions, extending over the top and
bottom surfaces [Fig. 2(e)]; states with energies in the red
regions that are localized on the side surfaces [Fig. 2(f)]; and
states that wrap around the whole perimeter of the nanowire
in the regions where both Dirac cones overlap [Fig. 2(g)]. As
the side surfaces of the nanoribbon have a much smaller area
than the top and bottom surfaces, the side surfaces do not host
as many states as in the case of the nanowire. Hence, the spec-
trum of the nanoribbon more closely resembles a quantized
Dirac cone as expected for the top and bottom surfaces.

A relevant energy scale in the nanostructure is the spacing
of subbands originating from the confinement of the surface
states to the finite perimeter P of its cross section. In the case
of a Dirac dispersion, the spacing of the subbands can be
approximated by 2πvF/P. For the nanoribbon considered in
Fig. 2(d), one obtains 2πvF/P = 17 meV (here we consider
an isotropic Fermi velocity h̄vF ≈ 3 eVÅ). The spacing of the
subbands has to be compared to the effect of the surfaces of
the nanoribbon being oriented in different directions, which
can be quantified using the energy difference of DPs �EDP,
which is 56 meV in the case of Sb2Te3. From this observation,
we can deduce that the difference in DP energy on different
sides may even affect the surface-state spectrum of the small-
est attainable nanostructures.

IV. THIN-FILM LIMIT

We first investigate the thin-film limit in Sec. IV A, using a
discretized version of the bulk model Hamiltonian (1), and we
compare the results to experimental findings, with an empha-
sis on the topology and size of the hybridization gap. Second,
in Sec. IV B, we consider a different approach to capture the
physics of the thin-film limit quantitatively. Material parame-
ters for the thin-film model Hamiltonian (6) are obtained by
fitting the model to band structure data of GW calculations
that accurately describe the thin-film limit [33,34,53].

A. Treatment with the bulk model

When described using the bulk model of Eq. (1), it was
shown that the hybridization gap in the thin-film limit os-
cillates in size as the thickness is varied. The closing and
subsequent reopening of the hybridization gap occurs at cer-
tain critical thicknesses dcn [see Fig. 3(b)]. The low-energy
physics of the system at a thickness close to dcn can be de-
scribed by the BHZ model [12,43], which implies that the
oscillation of the hybridization gap is also accompanied by
topological phase transitions, with the system alternating be-
tween a NI and a QSHI phase.

In a 3D TI thin film of thickness d, the interference of
two transverse wave functions located on the top and bot-
tom surfaces (orthogonal to ẑ), given by Eqs. (3) and (4),
will close the hybridization gap if the thickness matches the
critical value dcn = nlc, where lc 	 π/Im(q±

z ) is the period
of the oscillation [13]. When the out-of-plane Fermi velocity
B0 is set to zero, the period of the oscillation is equal to
lc(B0 = 0) = π

√|M0/M1|. As shown in Fig. 3, for Bi2Te3,
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FIG. 3. (a) The real and imaginary part of q±
z [see Eq. (4)] as

a function of the out-of-plane Fermi velocity B0. The real part is
inversely proportional to the penetration depth of the surface state,
while the imaginary part of q±

z determines the topological phase at a
given thickness d . (b) When described using the bulk model (1) the
topological phase of the 3D TI slab oscillates between a NI and QSHI
as the thickness d is varied. The period of this oscillation increases
as a function of B0 and diverges above a critical value of B0 such that
the slab is always in the NI state.

when B0 takes on a non-zero value, the value of lc increases
from lc(B0 = 0). However, if B0 � 2

√
−M0(M2

1 − C2
1 )/M1,

the imaginary part of q±
z , goes to zero, the oscilla-

tory behavior vanishes and the system is a NI for all
thicknesses.

In Fig. 4, for Bi2Se3, Bi2Te3, and Sb2Te3, the numerically
evaluated hybridization gap �Ehyb of the surface states at the
� point is given as a function of the film thickness, where
we use a discretized version of the bulk model Hamiltonian
(1). For the different parameter sets of Eq. (1), we also in-
dicate the topological phase for every value of d with blank
(filled) shading below the curve for the NI (QSHI) phase.
We compare the size of the hybridization gap of the bulk
model Hamiltonian (1) with values determined experimentally
from angle-resolved photoemission spectroscopy measure-

ments [40–42]. For the topology of the gap, we consult results
obtained with the GW method that accurately capture the
many-body effects of the surface states [33,34,53]. The size of
the hybridization gap as determined from the GW calculations
is also shown. The exact values of �Ehyb determined with
the different methods can be found for 2–6 QL thicknesses
in Table II, with a blank (grey) background indicating that the
thin film is a NI (QSHI).

According to experimental measurements and GW calcula-
tions, it is expected that Bi2Se3 is a NI in the thin-film limit
[33,35,36]. The parameter set from Ref. [3] and the fitted pa-
rameter set do not capture this behavior accurately, but rather
suggests that the thin film is in the QSHI above a thickness of
3 QL. The parameter set listed in Refs. [4,5] gives a better de-
scription of Bi2Se3 thin films, yielding a NI for all thicknesses
with hybridization gaps which are systematically smaller than
the experimentally determined values, with Ref. [4] giving the
closest values. Remarkably, the hybridization gaps for Bi2Te3

match the experimentally determined values up to 4 QL very
well when considering our parameter set obtained via fitting,
whereas the topology of the gap is also captured up to 5 QL.
In contrast, the same cannot be said of the parameter set of
Ref. [5], while the parameter set of Ref. [4] yields a gapless
dispersion. In the case of Sb2Te3, all parameter sets capture
the topology of the hybridization gap accurately, but the size
of the hybridization gap deviates significantly from experi-
mentally measured values. From the obtained hybridization
gaps, the thin film is NI for 2 and 3 QL and QSHI for 4, 5,
and 6 QL, as predicted by GW calculations. While reasonable
agreement is retrieved in certain cases, the results shown in
Fig. 4 indicate that parameter sets, obtained with both pertur-
bative and fitting approaches, cannot be used to describe the
thin-film limit reliably for the different materials. We attribute
this discrepancy to the many-body effects that arise in the
thin-film limit and that are not present in the single-electron
description obtained using the bulk Hamiltonian (1) to model
the thin-film geometry.

FIG. 4. Size of the hybridization gap �Ehyb at the � point for thicknesses 2 nm < d < 7 nm for (a) Bi2Se3, (b) Bi2Te3, and (c) Sb2Te3.
The gap is extracted from the spectra of the surface states in a slab geometry described using the bulk model (1), with parameters taken from
Refs. [3–5] and our fits. At a given thickness the system is a QSHI (NI) if the area below the curve is colored (or blank). The hybridization gap
obtained in the GW calculations [33,34] are included, with the QSHI states marked with a circle. For reference, experimentally determined
gaps at the Dirac point are also shown [40–42].
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TABLE II. The size of the hybridization gap �Ehyb of Bi2Se3,
Bi2Te3, and Sb2Te3 thin films, described using the bulk model
Hamiltonian (1) for different sets of material parameters and a vary-
ing number of quintuple layers NQL. For each case, the topological
phase is indicated by a gray (blank) shading if the thin film is a QSHI
(NI). The results of the GW calculations are also given. The gaps in
parentheses should not be taken at face value, as the accuracy of the
GW calculations does not allow a safe statement when the band gap
becomes too small [53].

NQL

2 3 4 5 6

Bi2Se3 [3] 137 40 22 − −
Bi2Se3 [4] 191 58 22 10 4
Bi2Se3 [5] 133 42 15 5 −
Bi2Se3 fit 13 16 − − −
Bi2Se3 GW [33] 238 83 34 (16) (7)

Bi2Te3 [4] − − − − −
Bi2Te3 [5] 91 138 54 35 25

�
E

hy
b

[m
eV

]

Bi2Te3 fit 161 50 6 18 11
Bi2Te3 GW [34,53] 152 26 (14) (3) (0)

Sb2Te3 [4] 536 15 99 68 9
Sb2Te3 [5] 747 156 27 57 41
Sb2Te3 fit 587 78 65 73 30
Sb2Te3 GW [34,53] 254 60 (4) (16) (12)

B. Treatment with the thin-film model

As highlighted in the previous section, it is evident that
the surface-state dispersion obtained when confining the bulk
model (1) to a slab geometry does not reliably capture the
electronic and topological properties of thin films observed in
experiments. However, recent theoretical works have shown
that employing the GW method in determining the properties
of thin films yields band structure data that is in excellent
agreement with angle-resolved photoemission spectroscopy
measurements [33,34]. By fitting the low-energy effective
model (6) to this band structure data, we can obtain material
parameters for the Bi2Se3 family of materials in the thin-film
limit. Note that, by considering the model Hamiltonian (6),
the physics of the side surfaces, as discussed in the previous
section (e.g., the difference in DP energy) is no longer cap-
tured.

The material parameters were obtained for thicknesses
varying between 2 and 6 QL. We imposed the constraint
|D| < |B| such that the obtained parameters yield a gapped
dispersion. It has been shown that one can obtain param-
eters corresponding to a QSHI or a NI from fitting to the
same surface-state spectrum without any discernible differ-
ence [33]. Thus, we take the liberty of imposing the constraint
�B > 0 when the GW results suggest that the system is a
QSHI, and conversely impose �B < 0 when the system is a
NI [34]. The obtained parameters are shown in Figs. 5(a)–5(d)
and listed in Table III. In Fig. 5(e), the GW band structure of 5
QL thick Sb2Te3 thin-film is presented, together with the fitted
dispersion, and in Fig. 5(f), the dispersion of a nanoribbon
with the same thickness and width W = 100 nm is shown. At
this thickness, the Sb2Te3 thin-film is a QSHI; thus edge states

FIG. 5. (a), (b), (c), and (d) The parameters of the effective thin-
film model (6) for film thicknesses from 2 to 6 QLs determined
by fitting to spectra obtained with the GW method [33,34]. The
parameters are obtained by imposing |D| < |B|, and � · B < (>) 0
when the thin film is a NI (QSHI). (e) Band structure of a 5 QL thick
Sb2Te3 thin-film obtained with the GW method (continuous black
line), and the fitted dispersion (red dashed line). The shaded region
corresponds to the hybridization gap �Ehyb. (f) The spectrum of a
Sb2Te3 nanoribbon with W = 100 nm and d = 5 QL. The parameters
were taken from Table III.

TABLE III. Parameters of the thin-film Hamiltonian (6) for
Bi2Se3, Bi2Te3, and Sb2Te3, for thicknesses ranging from 2–6 QL.

NQL E0 [eV] D [eVÅ2] � [eV] B [eVÅ2] vF [eVÅ]

2 0.121 −16.14 0.239 −17.56 −0.048
3 0.043 −13.94 0.082 −15.82 1.697

Bi2Se3 4 0.018 −13.31 0.034 −16.35 1.920
5 0.008 −13.23 0.014 −16.51 2.010
6 −0.002 −13.06 0.006 −16.75 2.046

2 0.077 −28.41 −0.153 −29.14 2.463
3 0.013 −27.52 0.027 −28.10 0.876

Bi2Te3 4 0.001 −29.55 0.003 −30.06 1.301
5 0.002 −28.50 −0.006 −28.97 1.340
6 0.000 −28.36 −0.000 −28.81 1.232

2 0.127 −21.70 0.254 −26.29 0.482
3 0.030 −15.45 0.064 −16.04 2.921

Sb2Te3 4 0.002 −13.39 −0.007 −13.89 2.952
5 0.008 −12.65 −0.018 −13.10 2.870
6 0.006 −13.38 −0.012 −13.83 2.887
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appear in the dispersion of the nanoribbon with energies in the
hybridization gap.

V. DISCUSSION

Comparing the values in Tables I and II, it is clear that there
is substantial variation between all the parameter sets and their
properties that are highly relevant for the low-energy spectrum
(e.g., bulk gap, DP positioning, and asymmetry). Hence, it can
be of crucial importance to consider an appropriate parameter
set that is tailored to the specific TI material for accurately
modeling the nanoelectronic properties of TI nanostructure-
based devices.

In this work, we focus on the accurate low-energy de-
scription of 3D TI nanostructures, including the thin-film
limit with a hybridization gap, and the impact of anisotropy
and electron-hole asymmetry. However, there are more as-
pects that are not under consideration in this work while
being relevant for nanoelectronic device modeling. Aside
from a thickness-dependent hybridization gap, there is also
a thickness-dependent energy shift of the spectrum, captured
by thin-film model parameter E0. For this shift, the GW cal-
culations that we considered for our model fits do not line up
with experimental data, while other many-body calculations
match experimental values better [36]. However, such a shift
can be easily taken into account by adjusting the Fermi level in
the nanostructure simulations accordingly. Another important
effect can be observed in 3D TI films grown by molecular
beam epitaxy. The top surface is usually exposed to a vacuum
or interfaced with another material, while the bottom surface
lies on a substrate, breaking the inversion symmetry along
the ẑ direction [13,54]. Such effects can also be induced by
asymmetric electrostatic gating [10,55]. The presence of an
interface with a different material can be taken into account in
the bulk model by choosing appropriate boundary conditions
[56–58] or by adding a surface potential term in the vicinity
of the interface [59], for example. Interface effects can also
be directly included in an effective thin-film model by fitting
the material parameters to a band structure from ab initio
calculations with atomistic treatment of the interfaces.

In addition to offering a good starting point for nanoelec-
tronic device modeling, the models considered in this work are
also suitable for the study of hybrid devices that include super-
conductivity, since an extension to a Bogoliubov-de Gennes
framework follows naturally [60,61]. The effect of proximity-
induced superconducting pairing in 3D TIs has received
considerable interest [60,62–68], with the effective thin-film
model (6) being considered for the study of (proximitized)
magnetically doped 3D TI nanoribbons [27,29,30,69]. In such
systems, electron-hole asymmetry is typically neglected (D =
0). It has been shown, however, that electron-hole asymme-
try can play an important role in the transport properties of
magnetically doped 3D TI films [54].

Here, we focus on obtaining suitable model parameters for
Bi2Se3, Bi2Te3, and Sb2Te3 by considering four-band mod-
els and a parameter fitting strategy instead of perturbation
theory applied at the � point. Alternatively, however, it has
already been shown that an eight-band model Hamiltonian
obtained from perturbation theory can also give an accurate
low-energy description of all three materials [5]. However,

as that approach is also expected to become unreliable in
the thin-film limit and is computationally more demanding,
our approach offers some distinct advantages for efficient and
accurate nanoelectronic device modeling.

VI. CONCLUSION

We model the low-energy electronic spectrum of 3D TI
nanostructures (e.g., nanowires and nanoribbons) based on
Bi2Se3, Bi2Te3, and Sb2Te3 in detail. We use the commonly
considered four-band (bulk and thin-film) model Hamiltoni-
ans and derive new parameter sets by fitting to ab initio band
structure data. Our fitting strategy is tailored to accurately
capture the (in general, anisotropic and electron-hole asym-
metric) low-energy electronic structure of the Dirac surface
states, while avoiding any unphysical behavior that may arise
when the Hamiltonian is discretized on a lattice. We studied
the accuracy of the obtained fitted material parameters in the
thin-film limit, when the surface states hybridize through the
bulk, by using a discretized version of the bulk Hamiltonian.
We have found that our fitting method yields material parame-
ters that capture the size and topology of the hybridization gap
in Bi2Te3 remarkably well. However, both our new and exist-
ing sets of parameters cannot reliably describe the thin-film
limit for all thicknesses and materials under consideration.
Hence, we resort to a thin-film model with material param-
eters extracted from the surface-state spectra of thin-film GW
calculations. With our new parameter sets, the considered
models provide a suitable framework for simulating the low-
energy spectrum and corresponding properties (e.g., topology,
transport) of 3D TI-based nanoelectronic devices with a broad
range of applications.
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APPENDIX A: AB INITIO CALCULATIONS

In our density functional theory (DFT) calculations we use
the full-potential relativistic Korringa-Kohn-Rostoker Green
function method (KKR) [70] as implemented in the JuKKR
code [71]. Our calculations are carried out for the experimen-
tal crystal structures for Bi2Te3 [72], Sb2Te3 [73], and Bi2Se3

[74], and we parametrize the exchange correlation functional
using the local density approximation (LDA) [75] because a
comparison of LDA and generalized gradient approximation
(using the PBE functional [76]) resulted in an electronic band
structure around the � point that reproduces the experimen-
tally observed band structures seen in ARPES measurements
better [77–79]. We employ Lloyd’s formula [80] to correct
for the error arising from the finite �max = 3 cutoff in the an-
gular momentum expansion of the space-filling Voronoi cells
around the atomic centers, where the exact (i.e., full-potential)
description of the atomic shapes is taken into account [81,82].
The DFT calculations are orchestrated using the AiiDA-KKR
plugin [83] to the AiiDA infrastructure for automated FAIR
data provenance tracking [84]. Our results are uploaded to the
Materials cloud archive [85], and the JuKKR and AiiDA-KKR
codes are published as open-source software [71,86].

APPENDIX B: FITTING PROCEDURE

The material parameters for the bulk model [Eq. (1)] and
the effective thin-film model [Eq. (6)] for the three studied
materials are obtained by fitting to ab initio band structures.

In the case of the bulk model, the eigenvalues of the Hamil-
tonian were fitted to the relevant bands from � ≡ 0 up to a
certain kmax

‖ value in kx and ky, and kmax
z in kz, with a sampling

interval of 0.003 Å−1 along the three axes [for reference,
the distance to other symmetry points shown in Fig. 1(c) is
0.882 Å−1 for �-L, 0.903 Å−1 for �-F, and 0.329 Å−1 for
�-Z]. For each fit corresponding to a pair of (kmax

‖ , kmax
z )

values, the R2 of the fit was evaluated [see Figs. 6(b) and
6(d). The best fit is obtained by choosing the one for which
R2(kmax

‖ , kmax
z ) > 0.999 · max(R2) and kmax

‖ + kmax
z is maxi-

mal, while imposing certain constraints on kmax
z,‖ , as explained

below. In Figs. 6(a) and 6(c), we show the result of our fits
for Bi2Se3 and Sb2Te3 to the relevant bands, together with the
dispersion obtained with parameters taken from Refs. [4,5].
In Figs. 6(b) and 6(d), maps of the R2 values obtained for
different pairs of kmax

‖ and kmax
z are shown, with the optimal

value indicated with a black cross. For the three materials,
the maximal value of R2 was 0.9891, 0.9868, and 0.9458, for
Bi2Se3, Bi2Te3, and Sb2Te3, respectively.

We impose a lower bound of kmax
z,‖ > 0.045 Å−1, such that

we capture at least the same extent as can be accurately
captured with a perturbative approach [52]. In order to have
a fit that covers the whole region in k-space, where the surface
states can be found inside the bulk gap, we impose an addi-
tional constraint. The points in momentum space where the
Dirac cone of the surface states joins the bulk-band energies

FIG. 6. (a) and (c) The dispersion resulting from the fit (orange)
to ab initio band structures (black dots), for (a) Bi2Se3 and (c)
Sb2Te3, compared with dispersion evaluated with the material pa-
rameters taken from Ref. [4] (green) and Ref. [5] (cyan). The upper
limits of the fit in momentum space kmax

‖,z are shown with gray dashed
lines. (b) and (d) A map of the R2 of the fits for (b) Bi2Se3 and (d)
Sb2Te3, obtained for different values of kmax

‖ and kmax
z . A black cross

marks the selected pair of (kmax
‖ , kmax

z ) values.

can be approximated by

ksurf
‖ = maxi∈{0,1}{Ei + (−1)i(C0 − C1M0/M1)}

A0

√
1 − (C1/M1)2

,

for the in-plane dispersion, E0 = −maxk{EVB(k)} and E1 =
mink{ECB(k)}. For completeness, the dispersion of the surface
states with other orientations also must be considered, e.g.,
orthogonal to the ŷ direction. In this case, the Dirac cone will
join the bulk-band energies at

ksurf
‖ = maxi∈{0,1}{Ei + (−1)i(C0 − C2M0/M2)}

A0

√
1 − (C2/M2)2

,

ksurf
z = maxi∈{0,1}{Ei + (−1)i(C0 − C2M0/M2)}

B0

√
1 − (C2/M2)2

,

for the dispersion in kx and kz, respectively. Using values
found in literature, we found that ksurf

‖ , ksurf
z < 0.2 Å−1, which

is contained in the region of k-space over which we sam-
ple the ab initio band structures. Hence, we can capture the
surface states inside the bulk gap by imposing the conditions
kmax
‖ > ksurf

‖ and kmax
z > ksurf

z , where ksurf
‖,z are evaluated using

the ab initio data and the fitted parameters.
For the effective surface-state model, a similar procedure

was used, with the difference that the fit was performed for kx

and ky up to kmax
‖ , and the fit with R2 > 0.999 · max(R2) and

maximal kmax
‖ was selected.
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