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Effect of biquadratic magnetic exchange interaction in the 2D antiferromagnets MPS3
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The two-dimensional van der Waals (vdW) materials MPS3 (M = Mn, Fe, Co, Ni) display antiferromagnetic
ordering of the magnetic moments at the transition metal ions. The possibility to exfoliate thin layers that
preserve the magnetic order makes these materials interesting for numerous applications in devices that require
integration of flexible patches of magnetic materials, e.g., in antiferromagnetic spintronics. Hence, an improved
understanding of their magnetic properties is desirable. Here, we parametrize spin Hamiltonians for a monolayer
of all four materials of this class using density functional theory plus Hubbard U calculations. We provide a
step-by-step guide for calculating the magnetic exchange interactions and magnetic anisotropy energy using
the (non)collinear DFT + U (+SOC) approach with a suitably chosen U for each material. It is found that the
biquadratic interactions gain in importance while moving through the 3d series. Retaining the leading terms of a
Holstein-Primakoff-transformed spin Hamiltonian, the magnon spectra are calculated. While MnPS3 is found to
be an almost isotropic antiferromagnet with a tiny gap, the biquadratic interaction opens an increasingly wider
gap for FePS3, CoPS3, and NiPS3. In line with this observation, Monte Carlo simulations demonstrate that the
biquadratic interactions contribute to a systematic rise in the Néel temperature from FePS3 to NiPS3.
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I. INTRODUCTION

Transition metal phosphorus trisulfides, denoted as MPS3

where M can be Mn, Ni, Fe, or Co, represent a class of
materials that have gained significant attention [1–3] for their
remarkable electronic, magnetic, and optical characteristics.
These materials are particularly noted for their impressive
optoelectronic properties [4], including strong absorption in
the visible to near-infrared spectrum and efficient charge sep-
aration and transport [5]. They feature a layered structure
similar to graphene, which not only piques interest for fun-
damental research but also facilitates their exfoliation into
two-dimensional layers. These thin layers often exhibit prop-
erties distinct from their bulk counterparts, offering a rich
avenue for investigating new physical phenomena and poten-
tial technological applications.

Magnetism is a subtopic in the field of 2D materials that
has drawn significant interest recently [6]. The magnetic na-
ture of MPS3 is a key aspect that this article aims to explore
in depth. By calculating the spin Hamiltonian and analyzing
the magnon spectrum, we seek to unravel the magnetic prop-
erties of these materials. The study of the magnon spectrum
in MPS3 is not just a topic of fundamental interest; it also
has significant implications for the fields of spintronics [7]
and magnonics [8], where electron spins and magnons are
utilized for advanced information processing and storage.
The magnon spectrum plays a vital role in determining the
magnetic behavior of a material, such as its magnetic or-
dering temperature and characteristics crucial for spintronic
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applications. The spin Hamiltonian, which includes both
isotropic and anisotropic exchange interactions, provides in-
sights into the interactions between magnetic moments and
their tendencies to align in specific directions. The unique
layered structure and magnetic properties of MPS3 materials
offer a template for designing new materials with tailored
properties. By understanding the interplay between struc-
ture, magnetism, and electronic properties in these materials,
researchers can engineer new compounds with desired func-
tionalities for specific applications.

In the realm of 2D monolayer systems governed by
a Heisenberg Hamiltonian, which inherently encompasses
short-range magnetic interactions and preserves spin rota-
tional symmetry, a theorem proposed by Mermin and Wagner
[9] precludes the establishment of long-range ferromagnetic
(FM) or antiferromagnetic (AFM) ordering at any finite
temperature. This theorem’s foundation rests on the inher-
ent characteristics of the isotropic Heisenberg Hamiltonian,
notably its continuous symmetry, which facilitates the ex-
istence of long-wavelength spin waves without an energy
gap. These spin waves, owing to their gapless nature, are
thermally excitable at any finite temperature, posing a sig-
nificant challenge to the sustenance of long-range magnetic
order in low-dimensional structures. In contrast, scenarios that
involve a breach in the spin rotational invariance, exemplified
by anisotropic magnetic interactions within the framework
of a two-dimensional Ising model, alter this paradigm. In
such cases, the introduction of anisotropy leads to the for-
mation of an energy gap in the spin wave spectrum. This
gapped spin wave spectrum plays a crucial role in stabilizing
long-range magnetic order by diminishing the influence of
thermal fluctuations. Such stabilization becomes prominent
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below a specific transition temperature, marking a stark diver-
gence from the behavior predicted by the isotropic Heisenberg
model in two-dimensional systems. A principal objective of
the research outlined in this paper is to examine the presence
and implications of anisotropic exchange interactions within
MPS3 materials, with specific focus on phenomena such as
single-ion anisotropy (SIA) and Dzyaloshinskii-Moriya inter-
actions (DMI) [10]. This investigation is crucial in resolving
the key question of whether 2D MPS3 materials can re-
tain their magnetic order during the transition from bulk
to monolayer structures. Additionally, in this study, we are
examining the impact of biquadratic interactions in MPS3

materials. Since these materials have a collinear magnetic
order, we expect that the biquadratic interaction parameter
may have a negative value. This prediction aligns with the
theoretical framework outlined in Eq. (1) of the paper. Under-
standing these biquadratic interactions is crucial for gaining
a deeper understanding of the complex magnetic properties
of these materials, particularly as they are reduced to lower-
dimensional states.

The compound MPS3 crystallizes in a monoclinic structure
with the C2/m space group symmetry. The MAGNDATA
webpage [11] provides experimental CIF files of MPS3 ma-
terials. These files represent the magnetic unit cell, which
includes 20 ions (four M ions, four phosphorus ions, and
twelve sulfur ions). The material’s bulk structure is made
up of layers stacked together and held in place by van der
Waals forces. Within each layer, a transition metal ion M is
surrounded by six sulfur atoms, forming a distorted octahedral
structure that contributes to the formation of a hexagonal
lattice interconnected by S ions. Central to these hexago-
nal arrangements are two phosphorus ions, each bonded to
three sulfur ions. The basal plane of the monoclinic cell
is spanned by two orthogonal lattice vectors a and b (cf.
Fig. 1). Since we are interested in 2D layers, the length and
angle of the third lattice vector c does not matter for our
calculations. For the electronic structure calculations, we first
define a primitive cell, which includes only two M ions,
two phosphorus ions, and six sulfur ions. It is spanned by
two lattice vectors a and b′ forming an angle of 60◦, with
|b′| ≈ |b|/√3. This configuration maintains all point symme-
try operations of the C2/m space group. In the monoclinic
system, the presence of a twofold rotation axis and a mirror
plane are essential symmetry elements. Our primitive cell
ensures that these symmetries are preserved, reflecting the
structural characteristics of the C2/m space group. In a later
step, supercells are built out of this primitive cell as required
to model certain spin arrangements. The magnetic moments
in MPS3, originating from the unpaired d electrons of the
M ions, interact with each other, leading to the emergence
of magnetic order. This aspect of magnetic interaction and
order is a cornerstone of the intriguing properties exhibited
by MPS3 materials, underlining their potential for a wide
array of applications in the field of materials science.The
paper is structured as follows: In Sec. II we provide details
of the electronic structure calculations and Monte Carlo (MC)
simulations. In Sec. III we first report on the structural opti-
mization and magnetic order. We then describe the electronic
structure before detailing the magnetic interactions. Finally, in
Sec. IV we discuss the implications of our results for MPS3

FIG. 1. The experimental CIF file of MPS3 monolayer designates
the solid rectangle spanned by a and b as the simplest unit cell for
the C2/m space group. The dashed lines outline the rhombus-shaped
primitive cell, spanned by a and b′, which comprises 10 ions. To
maintain uniformity across calculations, other supercells are gener-
ated based on this primitive cell.

single layers and in the broader context of magnetic vdW
layered materials.

II. METHODS

The present study employs density functional theory (DFT)
to investigate the magnetic and structural properties of mate-
rials. DFT is a well-established computational approach for
the evaluation of electronic properties of materials. However,
it may not accurately capture the electronic structure of ma-
terials with strongly correlated electrons, such as transition
metal oxides or rare earth magnets, using standard DFT. To
address this issue, the DFT + U method is commonly uti-
lized, which incorporates an on-site Coulomb interaction term
(U ) to better account for the electronic interactions within
the material. To apply the DFT + U method to investigate
magnetic properties, the appropriate value of the U parameter
must first be determined. This value can be derived experi-
mentally or from previous theoretical studies. It is crucial to
choose the correct U value, as it directly affects the computed
magnetic properties of the material. In this paper, the DFT
calculations are performed using the Quantum Espresso [12]
(QE) and the all-electron FLEUR [13,14] code. In the QE
calculations, wave functions and charge density are expanded
using cutoffs of 50 Ry and 550 Ry, respectively. The present
study utilizes the FLEUR-based calculations to investigate the
noncollinear(+SOC) magnetic properties of MPS3. The wave
function expansion cutoff in the interstitial region is set to
kmax = 3.8 a.u.−1

Semicore states, specifically the 3s and 3p orbitals of the
transition metal, are included in the calculations. In the se-
lection of Muffin-tin radii for magnetic ions across various
systems, considerations are made regarding the influence of
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TABLE I. Lattice constants of optimized geometry in GGA + U
for the crystallographically primitive cell spanned by a and b′. Note
that the conventional monoclinic lattice vector |b| = √

4b′2 − a2.
The optimum U values have been chosen through comparing the
calculated bandgap with its experimental values.

Material Ueff (eV) a (Å) b′ (Å) Eg (eV)

MnPS3 3.0 6.193 6.193 2.0
MnPS3 exp. 6.076 6.076 2.94 [1,15]
FePS3 2.22 6.017 6.052 1.23
FePS3 exp. 5.940 5.972 1.23 [16], 1.44 [17]
CoPS3 3.0 5.954 5.954 1.35
CoPS3 exp. 5.901 5.901 1.5 [18]
NiPS3 5.7 5.828 5.829 1.89
NiPS3 exp. 5.812 5.813 1.6 [1]

semicore electrons and lattice constants. As delineated in
Table I, the lattice constants exhibit a decremental trend from
Mn to Ni. In alignment with this observation, the Muffin-tin
radii for Mn, Fe, Co, and Ni have been determined as 2.9, 2.8,
2.7, and 2.6 a.u., respectively. To enhance the precision in the
comparative analysis of calculations, the Muffin-tin radii for
P and S have been consistently set at 1.90 a.u. and 1.49 a.u.,
respectively, across all studied materials. The spin magnetic
moments from DFT + U calculations following Dudarev’s
approach [19] by choosing these values are found to be in
reasonable agreement with the values predicted by Hund’s
rule. The exchange-correlation energy is approximated using
the generalized gradient approximation (GGA) in the Perdew-
Burke-Ernzerhof parametrization PBE [20].

To determine the type of magnetic order of the ground
state, we define a model spin Hamiltonian

Hspin = HHeis + 1

2
B

∑

n.n

( �Si · �S j )
2

+ 1

2
D

∑

n.n

D̂i j · ( �Si × �S j ) + �
∑

i

( �Si · �di )
2, (1)

where �Si represents the direction of magnetic spins, HHeis

is the usual Heisenberg Hamiltonian, B, D, and � are the
strengths of biquadratic, DMI, and SIA, respectively. More-
over, unit vectors D̂ij and �di show the direction of the DMI
and the easy axis of magnetization at each site i, respectively.
It should be noted that the direction of DMI is determined
by Moriya rules [10]. Because of the centrosymmetric 2/m
point group symmetry, the MPS3 monolayer has a mirror
plane perpendicular to the b axis. According to the Moriya
rules, when a mirror plane includes two ions, the D vector
should be perpendicular to the mirror plane. Magnetic inter-
actions were obtained by fitting a model Hamiltonian to total
energy calculations for various magnetic configurations, as
described within the Supplemental Material [21]. The Heisen-
berg Hamiltonian is given by

HHeis = −1

2

∑

i �= j

Ji j ( �Si · �S j ). (2)

Motivated by our previous study [22] on orbital ordering in
FePS3, we distinguish between “close” first neighbors with

(a)

(b)

FIG. 2. (a) Schematics of exchange interactions for different
neighbors. (b) 2 × 2 supercell of a MPS3 monolayer. The purple,
blue, and yellow spheres are transition metals, P, and S ions, respec-
tively. The dashed line shows the primitive cell containing two M
ions.

exchange parameter J1a and “long-bond” first neighbors with
J1b if the distances between the M atoms differ by more than
0.05 Å, see Fig. 2. In addition, we include interactions up
to the fourth-nearest neighbors to ascertain the convergence
of the expansion. Consequently, the calculations for determin-
ing the J parameters require a 2 × 2 cell (with 40 atoms), and
we use a 10 × 10 × 1 Monkhorst-Pack k-point mesh [23]. The
other exchange parameters B, D, and � were obtained from
a primitive cell (with 10 atoms), and we use a 20 × 20 × 1
optimized Monkhorst-Pack k mesh.

We conduct Monte Carlo simulations with the Esfahan
Spin Simulation package (ESpinS) [24] , treating the spin as
a classical vector of unit length, using the replica exchange
method on a 30 × 30 simulation cell containing 3600 spins.
Each spin is subjected to 2 × 10 steps at each temperature. To
minimize the correlation between successive data, we collect
statistics every 10 MC steps. The crystal structure figures are
generated using VESTA software [25].

Magnon spectra are calculated analytically by rewriting
the spin operators by bosonic operators using the Holstein-
Primakoff transformation [26]. More details are given in the
Supplemental Material [21] and in Refs. [27–29].

III. RESULTS AND DISCUSSION

In this section, we present the results of our study and
provide a comprehensive discussion of their implications for
the field.

A. Electronic structure

In our study, we observe the progressive filling of the
d shell across MnPS3, FePS3, CoPS3, and NiPS3. In the
context of our study, the spin and orbital magnetic moments
(Table II) are pivotal in understanding their magnetic prop-
erties. For MnPS3, the Mn2+ ion with a 3d5 configuration
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TABLE II. Spin and orbital moments of MPS3 2D magnets.

Material Spin moment (μB) Orbital moment (μB)

MnPS3(3d5) 4.68 0.02
FePS3(3d6) 3.61 0.77
CoPS3(3d7) 2.51 0.22
NiPS3(3d8) 1.52 0.11

exhibits a high-spin state, in line with Hund’s rule, leading
to a spin moment of 5 µB and a negligible orbital moment.
Moving to FePS3, the Fe2+ ions with a 3d6 configuration show
a spin moment of 4 µB, consistent with Hund’s rule, and the
largest orbital moment. In CoPS3, Co2+ ions feature a 3d7

configuration, resulting in a 3 µB spin moment. Finally, NiPS3,
with Ni2+ ions having a 3d8 configuration, shows a reduced
spin moment of 2 µB. These theoretical predictions, based
on the oxidation state and electron configurations, provide a
framework for understanding the magnetic behavior of these
compounds, although experimental validation is crucial for a
comprehensive understanding.

In this paper, we observe distinct structural and magnetic
properties across MnPS3, FePS3, CoPS3, and NiPS3. These
materials adhere to an ideal honeycomb lattice structure,
whereas FePS3 exhibits a notable deviation with its distorted
honeycomb lattice. This unique distortion [30] in FePS3 at
low temperatures leads to a significant difference between
the long-bond and short-bond in its zigzag ground state [22].
Remarkably, MnPS3 exhibits a Néel AFM ground state, con-
trasting with NiPS3 and CoPS3, which both display a zigzag
AFM ground state. For FePS3, the magnetic order at low tem-
peratures is characterized as a long-bond zigzag, highlighting
the impact of lattice distortion on its magnetic properties.
These findings elucidate the complex relationship between
lattice structure and magnetic behavior in transition metal
phosphosulfides. The different magnetic orders are shown in
Fig. 3.

Therefore, high-accuracy geometry optimization is crucial,
requiring careful selection of the U parameter and accurate
representation of the magnetic order. For MnPS3, a primitive
cell spanned by a and b′ with two Mn ions is utilized, aligning
with its Néel ground state. In contrast, for FePS3, CoPS3, and
NiPS3, we employ both 2 × 1 and 1 × 2 supercells compris-
ing four magnetic ions to adequately represent short-bond and
long-bond zigzag states, respectively. The optimized lattice
constants, presented in Table I, show excellent correlation

with experimental values. The U parameter is meticulously
chosen to enhance electron-electron correlation within the
d shells. Determining the optimal U value proves challenging,
as the value derived using the density functional perturba-
tion theory [31] fails to reproduce the experimental bandgap.
Consequently, we adjusted the U parameter to align with
the experimental bandgap. This adjustment also considers the
variability in reported experimental bandgaps for bulk materi-
als, adding to the complexity of accurately determining the U
value. The final U parameters, which effectively describe the
bandgap, structural properties, and magnetic moments of the
ions, are detailed in Table I.

Figure 4 in our study elucidates the contributions of p and
d orbitals from P, S, and M (Mn, Fe, Co, Ni) ions in MPS3

materials. For FePS3, in the energy range extending from
the Fermi level to −2 eV, the d orbitals of Fe are predomi-
nantly influential, especially for the shallow states. In contrast,
deeper energy bands demonstrate a pronounced hybridization
between Fe’s d electrons and the p electrons of sulfur. For
MnPS3, CoPS3, and NiPS3, the p orbitals of sulfur exhibit a
more pronounced effect below the Fermi energy. This distinct
behavior in FePS3 can be attributed to the crystal-field effects
arising from its distorted honeycomb lattice, leading to orbital
ordering where the in-plane dx2−y2 orbital plays a pivotal role.
This analysis underscores the significant impact of crystal
field and lattice structure on the electronic states of these
materials.

Figure 5 depicts the orbital-resolved electronic density of
states for MnPS3, FePS3, CoPS3, and NiPS3 monolayers,
provides key insights into how the crystal-field affects d-
shell splitting. For MnPS3, CoPS3, and NiPS3, the dzy and
dzx orbitals are particularly influential near the Fermi energy,
a characteristic tied to t2g orbitals. In contrast, for FePS3

with its distorted lattice, the dx2−y2 (eg) orbital becomes more
significant. This difference underscores the impact of lat-
tice geometry on electronic properties, particularly in how
it influences the behavior of d sublevels in these materials.
Since the magnetic properties in MPS3 are governed by the
superexchange mechanism, the p orbital of S ions as interme-
diate between magnetic ions plays a crucial role. According
to Anderson’s rule [32], when t term as kinetic energy in
Hubbard Hamiltonian increases, the J value will get stronger.
In addition, the t term is controlled by the level of hybridiza-
tion. For MnPS3, the hybridization is stronger as compared to
other materials, that is why J1 is larger than other materials
(Table III).

(a) (b) (c)

FIG. 3. Different AFM ground states. (a) Néel ground state of MnPS3. (b) Long-bond zigzag found in FePS3 (the vertical Fe–Fe spacing
in the figure is the “long” one). (c) Short-bond zigzag found in CoPS3 and NiPS3. It should be noted that according to our GGA + U + SOC
calculations, the a−b plane is the easy plane for Mn (total energy when the spins align in b axis is lower, but compared to a axis, the total
energy difference is very small. Hence, one can say a−b plane is an easy plane). For Fe, the spins prefer to align along the c axis, which is
perpendicular to the a−b plane. For Co and Ni, b axis and a axis are easy axes, respectively.
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(a) (b)

(c) (d)

FIG. 4. Electronic density of states (DOS) calculated with GGA + U at optimized lattice coordinates for various magnetic orderings.
(a) Néel-AFM. (b) Long-bond zigzag. (c) Short-bond zigzag. For these calculations, we consider one atom of each species and plot the DOS
for spin-up (up arrow) and spin-down (down arrow). The spin-up direction is defined by the majority spin of the magnetic ion selected for
the plot. According to Wyckoff’s positions, two types of S atoms have different distances from magnetic ions. For Mn, the distances Mn-S1

and Mn-S2 are 2.690 and 2.687 Å, respectively. That is why the DOS for S-3p coincide with each other. For Fe, Fe-S1 and Fe-S2 are 2.616
and 2.609 Å, respectively. For Co, Co-S1 and Co-S2 are 2.523 and 2.520 Å, respectively. For Ni, Ni-S1 and Ni-S2 are 3.323 and 3.229 Å,
respectively.

(b)

(d)(c)

(a)

FIG. 5. Orbital-resolved electronic density of states for (a) MnPS3, (b) FePS3, (c) CoPS3, and (d) NiPS3 monolayers. We consider the
ground-state spin pattern for each material. For these calculations, we consider one atom of each species and plot the DOS for spin-up (up
arrow) and spin-down (down arrow). The spin-up direction is defined by the majority spin of the magnetic ion selected for the plot.
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TABLE III. Calculated Heisenberg couplings Ji (meV) up to the forth neighbors, biquadratic exchange interaction B (meV),
Dzyaloshinskii-Moriya exchange interaction D (meV) and single-ion anisotropy � (meV) for different Ueff(eV) parameters. Negative and
positive value denotes antiferromagnetic and FM exchange interaction, respectively. Note that |S| = 1 has been used in the definition of the
spin Hamiltonian. By using the obtained couplings, we perform MC simulations to find the Néel (TN) temperature (K). The temperature value
in parenthesis would result if the biquadratic couplings were neglected.

Material Ueff J1a J1b J2 J3 J4 � D B TN

MnPS3 3.00 −7.89 −7.89 −0.21 −3.47 0.02 −0.025 0.00 −0.95 76.2 (73.0)
FePS3 2.22 −3.26 4.01 −1.24 −5.71 1.50 −0.89 −0.34 −2.10 70.0 (66.9)
CoPS3 3.00 3.47 3.47 0.64 −10.85 0.06 −0.14 0.00 −5.53 86.5 (67.7)
NiPS3 5.70 2.46 2.46 0.14 −11.58 0.06 −0.22 0.00 −6.91 94.0 (70.6)

Here, we study the effective spin Hamiltonian for MPS3

monolayers. In our investigation, we calculate the effective
spin Hamiltonian, aiming to identify the ground state in
large simulation cells and to analyze the finite-temperature
properties of M (= Mn, Fe, Co, Ni)PS3 monolayers.
Figure 2 illustrates the various exchange interactions accord-
ing to distances between magnetic ions and Table III reports
their values (in meV, for |S| = 1), as well as the optimum
value of Ueff parameter in eV used for each compound. No-
tably, the geometry optimization performed at the start of our
calculations shows that the distances between neighboring
M atoms are sufficiently distinct only in the case of FePS3.
This is why distinct first-neighbor interactions (J1a and J1b)
are determined only for Fe, whereas Mn, Co, and Ni can
be described with one unique first-nearest-neighbor-exchange
interaction. Since J4 is found to be considerably smaller than
the other interactions, we can assume that the Heisenberg
Hamiltonian is converged with respect to the interaction range
considered. Interestingly, the parameter J3 that connects par-
allel chains of the honeycomb lattice is always negative, i.e.,
AFM exchange is preferred. The absolute value of J3 increases
when going from Mn over Fe and Co to Ni, as already noticed
earlier [33]. Thus, the tendency to AFM chain interactions is
found to increase with d-band filling. The same trend is ob-
served for the biquadratic coupling; it increases toward the end
of the transition metal series. However, the values reported in
Table III refer to effective spins normalized to |S| = 1, while
the size of the magnetic moment decreases along the tran-
sition metal series from Mn to Ni. Therefore, the single-ion
anisotropy is found to be the largest for Fe. As we pointed out
earlier, we attribute this finding to the unusually large orbital
magnetic moment in Fe [22].

MnPS3 is identified as an almost ideal AFM monolayer.
This is concluded from J1 and J3 being both negative,
a characteristic of the Néel-type antiferromagnetism. In
absolute terms, J1 is significantly larger for MnPS3 than the
more long-ranged interactions. Thus, the behavior of MnPS3

is in line with the general expectations for magnetic insulators
and makes this material distinct from the others. The small
next-nearest-neighbor interaction J2 would prefer antiparallel
coupling, but is frustrated in the Néel-type ground state. In the
remaining three materials, FePS3, CoPS3, and NiPS3, the
dominant role of J3 results in a magnetic ground state formed
by zigzag chains that are coupled antiferromagnetically
to each other. The spins along the chains are aligned
ferromagnetically, which is favorable becaue of the positive
values of J1 for Co and Ni. While in CoPS3 and NiPS3 the

spin chains may run in any of the three directions compatible
with the honeycomb lattice, two specific directions of the spin
chain relative to the crystal lattice are selected by the distinct
values of J1a and J1b: the “long bond” between two neighbor
Fe atoms is part of the FM chain, as J1b favors FM interaction.
The spin orientation alternates from one chain to the next
(as in CoPS3 and NiPS3) to satisfy the antiparallel interchain
coupling dictated by J3 in all transition metal phosphosulfides
considered here.

It is widely recognized that the mere consideration of
bilinear Heisenberg exchange interactions falls short in accu-
rately describing the magnetic behavior of complex materials
[34]. In scenarios devoid of spin-orbit coupling, the most
consequential higher-order term emerges as the biquadratic
term, delineated as the fourth-order perturbation within the
framework of the Hubbard model [35]. Notably, a positive
B term predominantly facilitates the emergence of non-
collinear spin configurations; conversely, a negative B value
is instrumental in engendering collinear ground states. For
the family of MPS3 materials, empirical evidence substan-
tiates the collinear nature of the magnetic ground states,
corroborated by the observation of negative B terms. These
findings are systematically documented in Table III. Specific
attention is bestowed upon FePS3, owing to the proximal
spatial arrangement of its first-nearest neighbors, necessitat-
ing the calculation of both (B1a = −2.10 meV) and (B1b =
−1.22 meV). To elucidate the influence of the B term on the
critical temperature and order parameter of MPS3 materials,
MC simulations were meticulously conducted with B set to
zero. The resultant critical temperatures, adjusted in light of
the removal of B, are presented in parentheses in Table III. The
omission of the B term precipitates a diminution in the critical
temperature, attributable to the attenuation of exchange cou-
pling’s capacity to counterbalance thermal fluctuations.

The presentation of the results concerning the order
parameters of Néel and short-bond zigzag orders, as derived
from the spin Hamiltonian Eq. (1), is illustrated in Fig. 6. It is
noted that the definition of the order parameter for long-bond
zigzag order in FePS3 is not feasible through classical MC
simulations without incorporating spin-phonon coupling [22].
For the elements Mn, Co, and Ni, the observed transitions
exhibit characteristics akin to those of the Kosterlitz-Thouless
transition, attributed to the relatively weak single-ion
anisotropy. Conversely, FePS3 demonstrates a strong out-of-
plane easy-axis anisotropy, aligning its behavior more closely
with that predicted by the Ising model. The Monte Carlo sim-
ulations underscore the insufficiency of the B-term alone to
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(a)

(b)

(c)

FIG. 6. Order parameter vs temperature (a), (b) with, and
(c) without biquadratic exchange interaction. Without the B term,
the critical temperature is by 73, 67.7, and 70.6 K for Mn, Co, and
Ni, respectively. Panel (b) shows the effect of increasing � on the
order parameter of MnPS3. The order parameter m is defined as
m ≡ 1

N

∑
i Si · d̂ , where Si represents the direction of the magnetic

moment at site i, and d̂ represents the easy-axis direction.

significantly alter the order parameter (or the magnetic
ground-state spin pattern). However, they do indicate a
significant increase of the critical temperature if the B term is
included.

Regarding the calculated values for single-ion anisotropy,
these are detailed in Table III. The necessity of employ-
ing GGA + U + SOC for these calculations is highlighted,
emphasizing the pivotal role of the orbital moment. As sum-
marized in Table II, which categorizes each system’s spin
and orbital moments as per GGA + U + SOC calculations, Fe
exhibits the largest orbital moment, thus signifying consider-
able �. This is plausible given Fe’s electronic configuration
ending at 3d6. Conversely, Mn, with a closed-shell config-

uration (3d5), exhibits an almost negligible orbital moment.
The smallness of the energy scale associated with � is also
evidenced by the possibility of a spin-flop transition [36,37]
in this material. To elucidate the orientation of the easy axis
for each material, we analyze the lattice vectors as depicted
in Fig. 2, calculating the total energies utilizing the GGA +
U + SOC method. Our calculations confirm that for Fe-based
systems, the easy axis aligns with the c direction, perpendic-
ular to the a−b plane. In contrast, for Co and Ni, the easy
axes are oriented along the b and a directions, respectively.
In the case of Mn, there is a slight preference of orienting
the spins in b direction, i.e., along Mn–Mn bonds, but the
energy differences are so small that one may likewise speak
of the a−b plane as an easy plane. Another consequence of
SOC is the Dzyaloshinskii-Moriya interaction. As indicated in
Table III, the D term is nonzero exclusively for Fe. This is
attributed to the nonideal honeycomb lattice structure of Fe-
based systems, which lack inversion symmetry. Conversely,
the other materials, characterized by an ideal honeycomb lat-
tice, exhibit inversion symmetry, resulting in a zero D term.

Table III also includes the calculated critical temperatures
(in K) obtained from Monte Carlo simulations. At low temper-
atures, these simulations converge to the AFM ground state of
the respective material, i.e., Néel in MnPS3 and chain-like in
the other three compounds. From FePS3 over CoPS3 to NiPS3,
we find a trend towards increasing ordering temperature TN .
Figure 6 illustrates the order parameter of the magnetic ground
state for MPS3. Following the Mermin-Wagner theorem [9],
the absence of anisotropic exchange interactions precludes
the possibility of a thermodynamically stable phase transition
and enduring magnetic order in two-dimensional systems.
However, in this instance, the order parameter asymptoti-
cally approaches unity at low temperatures, yet exhibits an
abrupt decline to zero, indicating a lack of well-defined sta-
bility. To address this, the strength of single-ion anisotropy of
MnPS3 was incrementally increased from 0.025 to 0.25 meV
[Fig. 6(b)], analogous to the application of a magnetic field
along the easy-axis direction. Consequently, it can be inferred
that MnPS3, in its two-dimensional form, maintains a stable
Néel ground state at low temperatures. To enhance this sta-
bility at elevated temperatures, the application of a magnetic
field or an increase in the influence of single-ion anisotropy is
necessitated.

B. Magnon spectra

Starting from the spin Hamiltonian, Eq. (1), we calculate
magnon spectra using the Holstein-Primakoff transformation
and linearizing around the magnetic ground state of each
compound. In this procedure, the biquadratic term in the
Hamiltonian is considered approximately via a renormaliza-
tion of the nearest-neighbor Heisenberg couplings and the
on-site anisotropy constant. For discussing the magnon spec-
tra of FePS3, CoPS23, and NiPS3, we use the rectangular
magnetic unit cell spanned by a and b that also forms the
basal plane of the monoclinic cell used in the literature. In
the Brillouin zone, the reciprocal-lattice directions a∗ ‖ �X
and b∗ ‖ �Y are perpendicular to b and a, respectively. More
details of the calculations can be found within the Supplemetal
Material [21].
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FIG. 7. Magnon spectrum for MnPS3 in the Néel state. In the
inset, the path in the Brillouin zone is shown.

Results for MnPS3 are shown in Fig. 7. For the Néel
ground state, the crystallographic and the magnetic unit cell
are identical (both hexagonal honeycomb lattice), and magnon
dispersions are shown along the �K and �M path. Since
both the single-ion anisotropy and the biquadratic term are
small for this material, the zero-energy gap in the magnon
spectrum is tiny (barely visible in the plot). Our result for the
magnon spectrum of MnPS3 can be compared with the spectra
calculated by Olsen [29] and by Bezazzadeh et al. [28]. In
their calculations, the magnon spectra reach their maxima at
about 8 meV if U = 5 eV is used [28,29], and about 13 meV
[29], similar to ours, using U = 3 eV. This confirms the com-
monly observed trend that large U leads to weaker magnetic
interaction, and hence softer magnon spectra.

For FePS3, CoPS3, and NiPS3 that possess zigzag chains
as their magnetic ground state the magnetic unit cell is twice
as large as the crystallographic unit cell, i.e., it contains four
transition metal atoms. Consequently, the magnon spectra of
these materials, shown in Fig. 8, develop two branches. The
lower branch does not reach zero at the small wave vector, as
one would expect for “acoustic” FM magnons; the sizable gap
in the magnon spectra at � even increases in size when going
from Fe to Co to Ni. From our calculated exchange interac-
tions, we conclude that the increasing biquadratic coupling
term is mostly responsible for opening this gap. We note that
such a gap is known to give rise to a logarithmic correction to
the magnetic ordering temperature, see e.g., Ref. [34]. The
upper and the lower magnon branches show large splitting
along �Y , which increases from Fe to Ni. This dispersion
reflects the AFM coupling between the chains of parallel spin;
its size is mostly governed by the exchange constant J3 that
increases along the transition metal sequence, as evidenced by
the data in Table III. The direction �X in the spectra reflects
the dispersion along the chains of parallel spin. The spectra
for FePS3, the material with the “long-bond” zigzag ground
state, shows marked difference to CoPS3 and NiPS3 that have
isotropic nearest-neighbor exchange J1a = J1b. In FePS3, one
observes an avoided crossing of the two magnon branches
along �X . This occurs because the interactions J1a and J1b

that couple the parallel spins in the zigzag chain have opposite
sign. As a consequence, the energy of the upper branch at �

goes below the lower branch when reaching X , and vice versa
for the lower branch starting at � that rises in energy.

(a)

(b)

(c)

FIG. 8. Magnon spectra for (a) FePS3 in the long-zigzag chain
AFM state, (b) CoPS3 in the short-zigzag chain AFM state, (c) NiPS3

in the short-zigzag chain AFM state. In the inset, the path in the
Brillouin zone is shown. For all materials, zigzag chains of parallel
spins run along �X .

Recently Yan et al. [38] calculated magnon spectra in bulk
samples for all four compounds studied here on the basis of
a bilinear Hamiltonian with exchange interactions up to the
third-neighbor shell. This means the fourth-neighbor interac-
tions were not taken into consideration; moreover, they found
a relatively large single-ion anisotropy but ignored biquadratic
interactions. The range of dispersion of the magnons predicted
by them is in reasonable agreement with our magnon spectra,
although details are different. This could be caused by the
difference in the magnetic ground state used as the starting
point (Yan et al. did not distinguish between “long-bond”
and “short-bond” zigzag chains), or caused by the differences
between the bulk and the monolayer.

Finally, we compare our calculated magnon spectra of
monolayers to experimentally observed spectra from inelas-
tic neutron scattering at bulk materials. For MnPS3, we find
overall good agreement with the experimental spin wave
dispersion published in Ref. [39]. In this inelastic neutron
scattering study, the spin waves reach their maximum energy
at 11.5 meV, very close to our result of 12 meV. The observed
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magnon gap at the � point is small, less than 0.5 meV, thus
confirming the very small value of the magnetic anisotropy
found in our calculations. Moreover, a recent neutron spec-
troscopy study [40] showed that the DMI in this material is
negligibly small, which matches with our calculations.

For FePS3, the inelastic neutron scattering data [30] shows
a magnon branch starting at 17 meV dispersing downward to
about 15 meV and then bending up again. Because of the
incipient downward dispersion, we believe that this is the
upper branch in our calculated spectrum, whereas the lower
branch was not observed. In a later analysis of the experi-
mental data by the same group [41], an improved fit of the
data has been obtained by invoking a biquadratic coupling,
albeit with a smaller exchange constant K than calculated
by us. The experimental fit resulted in a very large single-
ion anisotropy of about 2.5 meV to explain the magnon
gap, whereas our theoretical description works with a much
smaller � = −0.89 meV and explains the magnon gap by a
relatively large value of K , which effectively renormalizes
the anisotropy. Moreover, we speculate that the branches at
higher energy (up to 40 meV) detected in the neutron scat-
tering experiment are mixed phonon-magnon branches with a
small magnon admixture, since according to our calculations
FePS3 does not support such hard pure magnon modes. A
hybridization of magnon and phonon excitations in FePS3 has
been proposed recently [42–44] on theoretical grounds.

For CoPS3, inelastic neutron scattering [45,46] detected
magnonic losses at 15 meV and 33 meV. The lower value is
in the range where our calculation predicts a magnon branch.
The experimentally observed upper branch might again result
from a hybridization with phonons.

For NiPS3, inelastic neutron scattering [47] detected losses
both below 10 meV and in the 40 to 50 meV range. Magnon
models fitted to experimental inelastic neutron scattering data
[47,48] placed the magnon bands in the range of 8 meV, dis-
persing up to 50 meV. This is rather different from the magnon
spectra presented here, which start at higher energy (18 meV)
but then show less dispersion, reaching up to 28 meV. The
reason for the disagreement is presently not understood. How-
ever, both magnon branches of NiPS3, similar to those of
CoPS3, show strong disperions along the �Y direction. This
indicates the strong AFM interaction between chains encoded
in the large (and negative) parameter J3, which is in qualitative
agreement with the experimental findings.

IV. CONCLUSIONS

In conclusion, this study offers a detailed examination
of the magnetic properties of MPS3 2D materials, utilizing
the DFT + U + SOC approach and Monte Carlo simula-
tions. It highlights significant findings in the understanding
of Heisenberg couplings, biquadratic and Dzyaloshinskii-
Moriya interactions, and single-ion anisotropy across various
MPS3 compounds. Since these materials are 3D magnetic

semiconductors, applying the Hubbard parameter is essential
to enhance the electron-electron correlations. The optimum
U parameters have been chosen as 3.0 eV for Mn, 2.22 eV
for Fe, 3.0 eV for Co, and 5.57 eV for Ni, respectively.
Although magnetic ions form a hexagonal lattice in all ma-
terials, the way electrons fill the d shells of these ions results
in different spin patterns in the ground state. The geometry
optimization reveals that only in the case of FePS3, there is
a distortion from the ideal hexagonal lattice configuration.
Specifically, the Fe-Fe distances between nearest neighbors
vary by 0.14 Å. Because of this distortion, we calculate two
different biquadratic exchange terms along the longer and
shorter bond distances.

To clarify the importance of the biquadratic exchange for
these materials, we conduct Monte Carlo simulations both
with and without the biquadratic term. Our results indicate
that the absence of the biquadratic term leads to a reduction
in the Néel temperature and alters the order parameter, which
signifies the spin-spin correlation. Specifically, the order pa-
rameter undergoes a transition from 1 (indicating long-range
order) to 0 (indicating a paramagnetic phase) at lower tem-
peratures. In MnPS3, this effect is less pronounced because
of a smaller biquadratic term. MnPS3, with its Néel ground
state, behaves like a typical magnetic semiconductor where
the exchange interaction parameters (J) decrease with increas-
ing distances. Additionally, the Néel temperature obtained
from MC simulations is 73.6 K, which closely aligns with
the experimental value of 78 K observed in the bulk sys-
tem. However, for other materials that feature AFM zigzag
chains, the third-nearest-neighbor exchange interaction (J3),
which connects these chains, is crucial for stabilizing the
zigzag ground state, especially in the case of NiPS3. Spin-
orbit coupling effects, particularly single-ion anisotropy and
Dzyaloshinskii-Moriya interactions, along with orbital mo-
ment (0.77 µB), are most pronounced in Fe as a result of the
electronic configuration of Fe2+, which ends up as 3d6. For
other materials, the Dzyaloshinskii-Moriya interaction values
are nearly zero, and the orbital moments are 0.02, 0.11, and
0.22 µB for Mn, Ni, and Co, respectively. Consequently, the
strength of the single-ion anisotropy in these materials follows
a similar trend to that of the orbital moments. While the effect
of biquadratic interactions on the gaps in the magnon spectra
is sizable, the increase in critical temperatures ranges from 5%
to ∼30% from early to late transition metal ions.
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