
PHYSICAL REVIEW MATERIALS 8, 084004 (2024)

Excitonic trion population in two-dimensional halide perovskites

Efstratios Manousakis
Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA
and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

and Department of Physics, National and Kapodistrian University of Athens, 157 84 Athens, Greece

(Received 7 April 2024; revised 7 July 2024; accepted 2 August 2024; published 19 August 2024)

There are many reports of a surprisingly high charge-carrier density with sizable mobility in photoexcited two-
dimensional (2D) halide perovskites despite their unusually high exciton binding energy. In this work we study
the thermodynamic quasiequilibrium of the relative population of photoexcited free quasielectron/quasihole
pairs, neutral excitons, and excitonic trions, in 2D materials that support such excitonic complexes with
large binding energy. We derive and solve the general Saha equations which describe the detailed balance of
such a system of photoexcited electronic degrees of freedom forming a multicomponent fluid of excitations
in thermodynamic quasiequilibrium. The solution to these equations, for the special case of 2D perovskites
where the reported exciton and excitonic trion binding energies are of the order of 0.3–0.4 eV for the former
and 30–40 meV for the latter, reveals that while the charge-neutral excitonic population dominates all other
excitations, at room temperature and below, the excitonic trion component can be the dominant population
among charge carriers. We also argue that trionic hopping can take place via a tunneling mechanism which
is speculated to play a role in a novel charge-transport mechanism.
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I. INTRODUCTION

Understanding the character and behavior of the charge and
energy flow in semiconductor quantum wells can lead to effi-
cient optoelectronic materials. In particular, the nearly ideal
two-dimensional (2D) Ruddlesden-Popper perovskites are
quantum wells which are self-assembled using wet-chemistry
synthesis [1,2]. Their band gap is tunable, by varying the
perovskite-layer thickness, and, thus, it can be used to mod-
ulate the effective electron-hole confinement. One of their
unique features is the large exciton binding energy [3] which,
depending on the type of superlattice structure, can reach
values of several hundreds of meV. Analyzing the origin and
the consequences of this feature should play a significant role
towards an understanding of the nature of charge carriers and
transport.

The reduced screening in such 2D materials enhances
the Coulomb interaction and leads to tightly bound ex-
citon and other excitonic complexes. For example, it has
been experimentally shown [4] that in ultrathin layers of
phenylethylammonium-lead-iodide [(PEA)2PbI4], the exci-
tonic binding energy is approximately 0.35 eV. It is widely
expected that light absorption creates excitons as long-lived
excited states. As a result their optical absorption spectrum is
dominated by an intense exciton peak below the band edge,
with estimated binding energies of hundreds of meV. There-
fore, in order to describe the equilibrium and nonequilibrium
optical properties of 2D halide perovskites, first, we need to
understand the role of strongly bound excitons.

However, while such a large exciton binding energy should
hinder charge separation, there is significant evidence that
there is an abundance of free carriers when the material is pho-
toexcited. There are several attempts to explain such apparent

contradiction. One proposed explanation claims that the
intragap edge states formed at the crystalline grain boundaries
[5–8] play a key role in exciton dissociation. This proposed
mechanism is related to the fact that solution-processed thin
films are typically polycrystalline with grain boundaries fea-
turing a high density of dangling bonds and defect edge states.
The formation of polaronic excitons as well as polarons,
where the carriers are strongly coupled to lattice deformations,
are phenomena which seem to be established through various
experimental probes [9–18] and they can play a significant
role in resolving the appearance of charge carriers.

In the present paper we calculate the populations of the var-
ious components of the photoexcited quasiparticle/quasihole
excitations, and, in addition, the neutral-excitonic and
excitonic-trion population of the electronic system. We would
like to point out that exciton relaxation dynamics has been
recently studied by Ziegler et al. [4] in (PEA)2PbI4 where
they demonstrate the emergence of both negatively and pos-
itively charged excitonic trions, with binding energies up to
46 meV, among the highest measured in 2D systems. They
also demonstrate that trions dominate light emission and prop-
agate with mobilities reaching 200 cm2 V−1 s−1 at elevated
temperatures. The goal of our present paper is to study the
statistical mechanics of the quasiequilibrium of a multicom-
ponent composite fluid of the above-mentioned long-lived
photoexcitations in dynamic equilibrium with each other and
with the gas of incident photons at a common temperature. We
involve two energy scales in the problem: the large binding en-
ergy of an exciton which corresponds to several thousands of
kelvin and a second energy scale which is the trion binding en-
ergy, which is an order of magnitude smaller and corresponds
to hundreds of kelvin. We derive and solve the Saha equa-
tions for the composite fluid of these electronic excitations.
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We show that, under a broad range of conditions, the trionic
population at room temperature and below dominates the pop-
ulation of free quasielectron and quasihole carriers.

We also argue that these trionic charged excitations can
move through the lattice under the influence of an external
electric field via a novel quantum-mechanical tunneling mech-
anism of trions mediated by adjacent neutral excitons. This
mechanism relies on the probability for a trion to be found
next to a neutral exciton; however, this probability can become
sizable at room temperature and below where the population
of neutral excitons is maximum because of their large binding
energy.

The paper is organized as follows. In the following sec-
tion (Sec. II) we discuss the nature of the photogenerated
excitations, i.e., quasiparticle/quasihole excitations and com-
posite quasiparticles expected to be photocreated in 2D
halide perovskites on general quantum many-body theoret-
ical grounds. In Sec. III we present and solve the Saha
equations for the more familiar case of neutral excitons in
equilibrium with photoexcited electron/hole pairs (which may
be influenced by strong polaronic effects). In Sec. IV we
derive and solve the Saha equations for the more general case
of a composite fluid of neutral excitons and positively and
negatively charged excitonic trions in equilibrium with pho-
toexcited quasielectron/hole pairs. In Sec. V we discuss our
speculation of a trion-transport mechanism mediated by neu-
tral excitons. Lastly, in Sec. VI we present our conclusions.

II. NATURE OF QUASIPARTICLES

There have been various attempts to demonstrate po-
laron formation in the 2D halide perovskites [9–17,19,20].
For example, using high-resolution resonant impulsive stim-
ulated Raman spectroscopy [20], a vibrational wavepacket
dynamics was identified that evolves along different config-
urational coordinates for distinct excitons and photocarriers.
This observation [20] was interpreted as a signature of the
polaronic character of excitons in two-dimensional lead halide
perovskites, as different excitons induce specific lattice reor-
ganizations. Furthermore, in Ref. [9] it has been convincingly
argued that excitons, are in fact, exciton polarons, i.e., pola-
ronic effects play a significant role in the formation of bound
states of electrons and holes dressed with their cloud of lattice
distortions. These effects are discussed in this section.

In addition, exciton relaxation dynamics has been recently
studied [4] in (PEA)2PbI4 where the emergence of both neg-
atively and positively charged excitonic trions, with binding
energies up to 46 meV were discovered. Furthermore, it was
found that excitonic trions dominate light emission and their
mobilities reach 200 cm2 V−1 s−1.

In this section, we first wish to clarify various concepts
regarding the nature of elementary excitations in these 2D
insulators in a manner consistent with quantum many-body
theory. When we think about bands in materials, which are
characteristic of the elementary excitations of the many-
body system, we begin from the noninteracting electron
represented by the bare propagator in Fig. 1. This de-
scribes a single electron moving in some form of periodic
pseudopotential due to the presence of the ions and some
additional average (exchange-correlation) effective potential

FIG. 1. The interacting Green’s function of the quasiparticles
(and quasiholes) which take into account the interaction with the
other electrons of the Fermi sea and with the lattice. Its poles re-
define the notion of the quasiparticle and quasihole to those which
carry with them a cloud of virtual particle/hole excitations and a
quantum gas of lattice virtual excitations (represented by the green
wiggly lines, i.e., polaronic effects).

due to the spatially dependent density field generated by the
collective presence of all the electrons. Such a picture can be
best conceptualized within the Hohenberg-Kohn-Sham (HKS)
density-functional-theory framework. Even though this is
conceptualized as a free propagator, it includes the effects of
the interactions with other electrons in a way that gives mean-
ing to the single-particle picture. The HKS scheme is a purely
ground-state theory. In order to study excitations above such
a ground state we need to include the effects of correlations.
These effects can be included perturbatively using the residual
screened Coulomb electron-electron interaction. This inter-
action takes into account the effects of virtual particle/hole
excitations due to the Coulomb interaction. In addition, allow-
ing the ions to oscillate around their equilibrium positions, i.e.,
by including the lattice vibrations, leads to the quantization
of their normal modes (phonons). The effects of the coupling
of the electrons to these lattice excitations can be taken into
account either perturbatively, as shown in the second line of
Fig. 1 or nonperturbatively in the strong coupling limit, using
some deformation potential approach. The series illustrated in
Fig. 1 is written by means of the Dyson’s equation for each
band n as follows:

Gn(�k, ω) = 1

ω − en(�k) − �n(�k, ω)
, (1)

where en(�k) is the energy of the nth noninteracting band
and � is the so-called self-energy. The poles of this Green’s
function, assuming that the imaginary part of � becomes
small as we approach the Fermi surface, are the quasiparticles,
which define the renormalized bands. In the simplest picture,
the ground state corresponds to filling these quasiparticle
states with electrons up to the renormalized Fermi energy.
Beginning from this new ground state one can carry out a
perturbative scheme with these new quasiparticles defined on
top of this Fermi sea and this scheme is repeated until self-
consistency is achieved [21–24]. If this approach is met with
no singularities and anomalies, we can say that the Fermi-
liquid picture is valid and the band picture has a meaning.

Polarons are a fancy way of characterizing the renormal-
ization of the quasielectrons and quasiholes which are also
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dressed by the virtually excited phonons as shown by the
green wiggly line of Fig. 1. Similarly, the electrons are dressed
by the particle-hole excitations shown by those diagrams
which contain the magenta wiggly interaction line of Fig. 1.

After taking into account such renormalization effects, it
leads to lowering of the energy of single-particle states near
the Fermi level. Namely, these effects define the nature of
the free-quasiparticle states out of which the bands and the
ground state are built.

These are the single quasiparticle and single quasihole
states of this renormalized system of quasiparticles. Namely,
elementary excitations which are created when a single
electron or hole is added to the system. However, the pho-
toexcitations created by the incident light are based on the
simultaneous creation of quasielectron and quasihole exci-
tations. Initially, the incident light perturbs the system and
transfers energy to it. After a relatively short time of the
order of 1–100 fs, the excited state of the electronic system
can be described in terms of the following population of
excitations. These excitations can be conceived as either free
quasielectron/quasihole pairs (i.e., electrons or holes dressed
with their ground-state polarization clouds and the cloud of
lattice distortions or lattice vibrations as in Fig. 1) or bound
states of these renormalized quasielectron/quasihole states.

Once a quasielectron (or polaron) is promoted from an oc-
cupied renormalized band to an unoccupied one, the Coulomb
interaction acts between the created quasielectron and the
created quasihole. This interaction is also renormalized by
including the effects of screening, namely, terms involving
the bubblelike diagram (Fig. 2) where quasiparticle/quasihole
pairs are virtually created. These effects renormalize the bare
Coulomb interaction by means of the dielectric matrix within
the random-phase approximation (RPA) and some possible
vertex corrections which go beyond RPA. In the case of the
2D halide perovskites, this interaction is also significantly
affected by polaronic effects, which lead to a contribution to
the residual interaction between quasiparticles (i.e., polarons)
which can be also attractive due to the effect of lattice defor-
mation. The leading perturbative term is shown in the top part
of Fig. 2 as a phonon-exchange interaction between quasipar-
ticles (green wiggly line). Once this interaction is constructed,
we need to solve the Bethe-Salpeter equation (BSE), i.e., the
problem of a quasielectron/hole pair on top of the interacting
ground state (in the particle-hole channel) as illustrated in
the bottom part of Fig. 2. We wish to emphasize that the
quasiparticles entering the BSE can be strongly renormalized
polarons. The solution to the BSE can lead to bound states
between a polaronic quasielectron and a polaronic quasihole,
which are excitons.

Next, we consider the effects of the coupling to phonons
in an attempt to give a qualitative explanation of the results
reported in Ref. [20], which were obtained by means of
high-resolution resonant impulsive stimulated Raman spec-
troscopy. Let us just consider the effects of the diagram
involving the green wiggly line in Fig. 2 to the effective
electron-hole interaction, i.e.,

g2
λ(�k, �q)

ω2
λ(�q)

ω2 − [ωλ(�q) − iη]2 , (2)

FIG. 2. (a) Renormalized quasiparticle interaction which takes
the particle-hole polarization effects of the Fermi sea within the
RPA (terms containing the particle/hole bubblelike diagram) and
the phonon-mediated interaction (green wiggly line). (b) The Bethe-
Salpeter equation for bound states between quasielectrons and
quasiholes using the effective interaction defined in the top part of
this figure. The cyan box is the full two-body vertex in the particle-
hole channel.

where gλ(�k, �q) is the electron-phonon coupling between a
phonon mode λ of frequency ωλ(�q). By examining this ex-
pression, we expect to have a stronger resonant response in
the excitonic spectrum at those phonon modes with the largest
electron-phonon coupling and for energy transfer given by the
phonon frequencies (we use units where h̄ = 1). While these
experiments show that the electron is dressed by the lattice
vibrations, they do not prove that a bound state between an
electron and lattice deformation occurs. Moreover, the effect
of the electron-phonon coupling may be taken into account
perturbatively; namely, this effect just leads to a renormaliza-
tion of the standard notion of the quasielectron carrying with it
the distortion of the background ionic lattice. In fact, because
we are dealing with fast dynamics and the lattice degrees of
freedom respond with energy scales of the order of a few
meV [20] (as expected on general grounds), we should see the
dressing effects on the exciton after a timescale of a few pi-
coseconds following the photoexcitation. Therefore, nothing
really unexpected was revealed by these experimental find-
ings suggesting that a dramatic nonperturbative effect between
electrons and lattice distortions happens in these materials.

Is it possible that the single-polaron state, carrying with
it a cloud of lattice deformations, as shown in Fig. 1, is a
mobile boundstate to lattice distortions? Is it also possible that
its bound-state energy is lower than the energy of the exci-
tonic state? The answer is, in principle, yes to both questions.
However, this would be an extraordinary effect and, while
there is strong evidence for strong renormalization effects
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on the electronic spectrum due to the virtual excitation of
phonon modes [20], there is no smoking gun indicating such
a nonperturbative effect.

These excitonic bound states can have structure as shown
in Ref. [9], where the spectrum of these exciton-polaron states
is discussed. As shown in Ref. [9], the center of the excitonic
energy is a few hundreds of meV below the continuum of
the free-carrier conduction band. In addition, there is a fine
structure of various peaks separated by a much finer energy
difference of the order of 30–40 meV. The center of these
excitations, i.e., a scale of a few hundreds of meV, corresponds
to the exciton binding energy while the fine structure corre-
sponds to different types of excitons [9].

Now, once such excitonic bound states exist in the particle-
hole channel, which are neutral excitations, we should ask if
there are additional bound states, namely, charged excitations,
which are bound states between an exciton and a quasiparti-
cle. The reason for the possible existence of such excitations
of bound states is the fact that an electric charge (that of
the quasielectron or quasihole) and an electricdipole (that
of the exciton) interact. In the formation of these composite
quasiparticles, we expect the lattice to play a significant role,
which means that polaronic effects are important to obtain
an accurate quantitative description. Namely, they can be
excitonic-polaronic trions dressed with strong lattice deforma-
tions. We discuss the nature of these bound states, denoted x±,
in the following section (Sec. IV). In addition, we may have
biexciton bound states which are also strongly influenced by
polaronic effects.

III. PHOTONS IN EQUILIBRIUM WITH EXCITONS,
ELECTRONS, AND HOLES

When the incident photons are of energy greater than the
2D halide perovskite gap (of the order of 2 eV), they ex-
cite electrons from the valence band to the conduction band
(which is filled with quasielectrons, i.e., electrons dressed
with a cloud of lattice vibrations and, to a degree of lesser im-
portance, a polarization cloud of virtual electrons and holes).
After a timescale of the order of 20–100 fs, they form a
population of free quasielectron (e−) and quasihole (h+) pairs
(i.e., quasiparticles of strong polaronic character) in addition
to excitons (x) and excitonic trions (x±) of strong polaronic
character. For simplicity, in the rest of this paper, we will
refer to these quasiparticles of electron or hole character as
simply electrons (using the symbol e−), and holes (using the
symbol h+).

As a first step, we will ignore the presence of polaronic tri-
ons and we will deal with the familiar case of excitons and
electron/hole distributions. Namely, we assume that every
incident photon creates an electron/hole pair some of which
bind (within a short timescale of the order of 10–100 fs) to
form neutral excitons. After a thermalization timescale much
shorter than the recombination timescale [25] we have pho-
toexcited excitons (x) in quasiequilibrium with photoexcited
electrons (e−) and holes (h+), i.e.,

x ←→ e− + h+, (3)

with relative area densities of excitons (nx) and electron/hole
pairs (ne = nh) satisfying the following constraint:

np = nx + ne, (4)

where np is the incident photon density. In two dimensions
we can describe this process by means of the so-called Saha
equations [26,27]. Detailed balance leads to the following:

rerh

rx
= mekBT

π h̄2 e−E0
b /kBT , (5)

re = ne

m∗
e

, rh = nh

m∗
h

, rx = nx

m∗
x

, (6)

where nx, ne, and nh are the average density (number of par-
ticles per unit area) of excitons, electrons, and holes present in
equilibrium (ne = nh). Here m∗

e , m∗
h , and m∗

x are the effective
electron, hole, and exciton masses, respectively, in units of
the bare electron mass me. The binding energy of the neutral
exciton (x) is denoted above as E0

b .
We can rewrite these equations in units of the constant

κ0 ≡ E0
b me

π h̄2 , (7)

which has dimensions of particle density, as

ρeρh

ρx
= θe−1/θ , (8)

ρp = ρxm∗
x + ρem∗

e , (9)

θ ≡ kBT

E0
b

, ρe = re

κ0
, ρh = rh

κ0
, ρx = rx

κ0
. (10)

This set of equations leads to the following solution for the
temperature dependence of the exciton and free-carrier frac-
tions:

ρe = −σ0(θ )m∗
e

2m∗
x

+
√(

σ0(θ )m∗
e

2m∗
x

)2

+ σ0(θ )
ρp

m∗
x

, (11)

ρx = ρ2
e

σ0(θ )
, σ0(θ ) ≡ θe−1/θ . (12)

We note that σ0 has dimensions of particle density. These
solutions are illustrated in Fig. 3, where we can see that the
relative number of photoexcited excitons saturates to 1 slowly
as a function of the temperature θ . The relative carrier number
decreases with decreasing temperature as shown in Fig. 3(c).

Notice that the curve labeled PT representing the product
ρeρx, which is proportional to the probability to form a trion,
is as sizable as the fraction of the charge carriers below θ ∼ 1.
In the following section we include explicitly the population
of trions by finding the Saha equations that correspond to
such case.

IV. PHOTONS IN EQUILIBRIUM WITH EXCITONS,
TRIONS, ELECTRONS, AND HOLES

Figure 4 illustrates the presence of a residual attractive
charge-dipole interaction between an exciton, i.e., a bound
electron-hole pair, and a photoexcited quasiparticle (with
strong polaronic character) in the conduction band. Under
favorable conditions this interaction can lead to a bound state,
which for simplicity we call a negatively charged excitonic
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FIG. 3. Fractions of excitons, and electrons as a function of θ for
(a) m∗

e = m∗
x = 1 and ρp = 1, (b) m∗

e = m∗
x = 10 and ρp = 1, and (c)

m∗
e = m∗

x = 10 and ρp = 10.

trion. There is computational [28] and experimental [4,29]
evidence that layered halide perovskites host such states and
their binding energy is typically an order of magnitude smaller
than that of excitons, i.e., in the tens of meV range [28]. When
this state dissociates it dissociates to a polaron and a neutral
exciton. It is expected to be quasistable for some time longer

FIG. 4. A photoexcited exciton (x) (illustrated schematically as a
bubble formed by a quasielectron and a quasihole propagator) with
large binding energy in a semiconductor can attract a photoexcited
quasielectron (of polaronlike character as illustrated in Fig. 1) via
the charge-dipole interaction (illustrated as a magenta wiggly line) to
form a trion (x−). The trion binding energy is expected to be weaker
by an order of magnitude compared to the exciton binding energy.

than the time required to reach quasiequilibrium with the rest
of the carriers and excitons.

We will also assume that the recombination time is much
longer [25,30,31] than the time required for the gas of these
excitations, i.e., quasielectrons (e−) and quasiholes (h+), ex-
citons (x) and excitonic trions (which we generically denote
as x− and x+) to form a transient quasiequilibrium. When
this quasiequilibrium is reached, let the area densities of these
excitations be ne, nh, nx, nx− and nx+ , respectively.

We will also assume that initially every incident photon
creates one electron/hole pair, a fraction of which rather
quickly combine to form excitons (x) and charged excitonic
trions (x±). When quasiequilibrium is reached via the follow-
ing processes,

x ←→ e− + h+, (13)

x− ←→ x + e−, (14)

x+ ←→ x + h+, (15)

the equilibrium densities are related to the photon density np

as follows:

np = nx + 3
2 (nx− + nx+ ) + 1

2 (ne + nh), (16)

nx− + ne = nx+ + nh, (17)

where the last equation is the statement of charge neutrality.
Equation (16) is obtained by assuming that every incident
photon initially creates one electron/hole pair and at equi-
librium nx− of the electrons combine with an equal number
of neutral excitons to form nx− negatively charged excitonic
trions while nx+ of these initially photogenerated holes com-
bine with an equal number of neutral excitons to form nx+ of
positively charged excitonic trions. Equation (16) is derived in
the Appendix.

The object on the left-hand side (LHS) of each one of the
above balance equations [Eqs. (13)–(15)] is a bound state of
the two objects on the right-hand side (RHS) of the same
equation, therefore, it has a lower energy. The excitation from
the object on the LHS to that on the RHS and vice versa should
satisfy a detailed balance. Equating the corresponding product
of the equilibrium canonical distribution with the transition
probability and that of the inverse process, at a common
temperature T , leads to the following set of coupled Saha-type
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equations:

rerh

rx
= σ0,

rxre

rx−
= σ−,

rxrh

rx+
= σ+, (18)

rλ = nλ

m∗
λ

, λ = x, x−, x+, e, h, (19)

στ ≡ mekBT

π h̄2 e−|E τ
b |/kBT , τ = 0,±, (20)

where m∗
x± is the effective mass (in units of the bare electron

mass me) of the trions, and m∗
x , m∗

e , and m∗
h are the effective

masses of the excitons, electrons, and holes. The area den-
sities np, nx, nx− , nx+ , ne, nh have been defined earlier [after
Eqs. (16) and (17)]. Here, E±

b are the trion binding energies
relative to the exciton binding energy.

Using the parameters θ and κ0 introduced earlier, we can
rewrite these equations as follows:

ρeρh

ρx
= σ0(θ ),

ρxρe

ρx−
= σ−(θ ),

ρxρh

ρx+
= σ+(θ ), (21)

ρλ = rλ

κ0
, σ±(θ ) ≡ θe−α±/θ , α± = E±

b

E0
b

, (22)

which should satisfy Eqs. (16) and (17), i.e.,

ρp =
[

m∗
x + 3

2
(ξ− + ξ+)

]
ρeρh

σ0
+ m∗

eρe + m∗
hρh

2
, (23)

(ξ− − ξ+)ρeρh = σ0(m∗
hρh − m∗

eρe), (24)

where

ξ− = m∗
x−ρe

σ−
, ξ+ = m∗

x+ρh

σ+
. (25)

Equations (23) and (24) can be solved in terms of ρe and
ρh, where the reduced photon density ρp and the effective
masses are taken as input parameters. After obtaining these
two densities, the excitonic and trionic densities are found
using Eqs. (21).

In order to see the qualitative behavior of the solution to
the above equations, we take the case where E+

b = E−
b and

m∗
x+ = m∗

x+ = me = m∗
h = m∗

e , which imply that nx− = nx+ . In
Fig. 5 (top) we plot the fractions of the various carriers as a
function of T in units of E0

b (i.e., as a function of θ ) for the
case where α± = 0.1, using photon density ρp = 1 (in units
of κ0). Notice that the trionic density remains constant as the
temperature is lowered and below some temperature scale of
the order of E±

b (which is an order of magnitude smaller than
the excitonic binding energy E0

b ) the trionic density begins to
drop. In Fig. 5 (middle) we plot the fractions of the various
carriers as a function of θ for α± = 0.1, using m∗

x+ = m∗
x+ =

m∗
x = 10, me = m∗

h = m∗
e = 1, and photon density ρp = 1.

Note the significant reduction to both the excitonic and the tri-
onic densities. However, if we increase the photon density to
ρp = 10, the density of excitons and trions (Fig. 5, bottom)
increases to their initial values (i.e., Fig. 5, top).

To understand these values in physical units, ρp is in units
of κ0 � 7×105 µm−2 and when the incident light is green
and is under solar illumination fluences, which are orders
of magnitude lower excitation fluences than in most spec-
troscopic measurements, the photon density per unit time is
2.5×109 photons/(µm2 s). The photocarrier decay times in
well-passivated perovskites have been reported to be as long

FIG. 5. Temperature dependence of the fractions of the various
components for the case of m∗

e = m∗
h = m∗

x = m∗
x− = m∗

x+ and ρp = 1
(a); m∗

e = m∗
h = 1, m∗

x = m∗
x− = m∗

x+ = 10, and ρp = 1 (b); and m∗
e =

m∗
h = 1, m∗

x = m∗
x− = m∗

x+ = 10m∗
e , and ρp = 10 (c).

as 10 µs, as measured by both photoluminescence and mi-
crowave conductivity [30,31]. This implies that in units of κ0,
the average total carrier density is ρp ∼ 0.03. Therefore, the
values of ρp = 1, 10 used in Fig. 5 should be in the range of
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FIG. 6. Top: A third electron (schematically shown by the wave-
function envelope with an up-spin electron occupying it in site A)
bound to an exciton (schematically illustrated in real space by the
red arrow indicating that the up electron was promoted to an excited
Wannier orbital) forming a trion. For ordinary trion tunneling to
occur to a nearest-neighboring site, simultaneous energy transfer
through the Coulomb interaction (magenta wiggly line) and electron
transfer to a nearest-neighboring atomic site is required. Bottom:
When these requirements are simultaneously met, the electron (and,
thus, the trion) transfers to that nearest-neighbor site.

typical excitation fluences used in the reported spectroscopic
measurements.

V. TRION TUNNELING

Figure 6 illustrates that an electrically charged excitonic
state (a trion) in the presence of an external electric field
could tunnel from one atomic site to a nearest-neighboring
atomic site. This quantum-mechanical tunneling process is
enabled by the energy offset between neighboring sites, which
is caused by the presence of the electric field, �E , that lowers
the energy of neighbor sites by an amount −e �E · δ �R (where
δ �R is the difference between the Bravais lattice vectors of
two neighboring sites). This particular trion-tunneling mech-
anism requires a combined process to occur. First, the energy
of the excited exciton, i.e., the bound electron/hole pair at
the original site (to which the additional charge is bound),
is transferred to the nearest-neighbor site by means of the
electron-electron interaction (magenta wiggly line in Fig. 6),
thereby creating a neutral exciton there. Simultaneously, the
additional third electron bound to the trion x− follows under
the influence of the external electric field. Because this is a
coherent combination of two processes, it is proportional to
the product of the amplitude for the energy transfer and the
tunneling amplitude for the electron to follow.

Notice that simultaneous energy and charge transfer is
necessary to obtain hopping of a trion from one site to its

FIG. 7. Top: Since the neutral-exciton density can be very high at
room temperature and below (Fig. 5), there is a significant probability
that the third electron (schematically shown by the wavefunction
envelope with the up-spin electron occupying it in site A) bound to
an exciton (schematically illustrated in real space by the red arrow
indicating that the up electron was promoted to an excited Wannier
orbital) forming a trion to find a neutral exciton next to it in site B.
Bottom: This will allow trion tunneling to such neighboring site by
only charge (electron) hopping to site B producing the state shown in
the bottom figure.

nearest neighbor (Fig. 6). However, there is the possibility
that the neighboring site to a trion is occupied by an exci-
ton (Fig. 7). As we have shown, the neutral exciton density
(depending on the illumination fluences and recombination
rate) can be high at or below room temperature (for room
temperature kBT 	 E0

b , because the exciton binding energy
E0

b is 0.35 eV), therefore, this becomes probable. In this case,
the tunneling process in the presence of an exciton next to
a trion, as illustrated in Fig. 7, requires only charge transfer
without energy transfer, which can become more likely than
the case of Fig. 6. A very similar process can take place
which leads to the tunneling of x+ trions. By means of such
processes, trions of positive charge x+, i.e., bound states of
an exciton with a photoexcited hole, under the influence of an
external electric field will tunnel in the opposite direction and
be collected by the opposite polarity lead.

Therefore, there is a quantum-mechanical mechanism for
trion transfer, which does not fall into the semiclassical mech-
anism of electrical transport and could play a role in the
photoconductivity mechanism in these materials.

VI. DISCUSSION AND CONCLUSIONS

In Sec. II we have discussed the nature of the elemen-
tary quasiparticles as well as that of composite quasiparticles
which are expected to be photogenerated in 2D halide
perovskites.
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The relative populations of excitonic complexes which
contain neutral excitons (x) as well as negatively (x−) and
positively (x+) charged excitonic trions in quasiequilibrium
with the photoexcited electron-hole pairs as a function of
temperature T were studied in the limit where the binding
energy for x excitons is a significant fraction of 1 eV and
that for x± is of the order of tens of meV. The Saha equa-
tions are derived for this multicomponent system of assumed
long-lived photoexcitations in equilibrium with an incident
photon gas of fixed area density np. This is a well-defined
problem of statistical physics of very little, if any, ambiguity.
In addition to the above-mentioned energy scales, the only
other parameters entering the problem are the effective masses
of the components of the system and np.

The solution to this problem reveals that as a function of
temperature at room temperature and below for a wide range
of values of the above-mentioned effective masses, for suf-
ficiently high values of np, the trionic population is the
dominant charge excitation of this system.

These findings, in conjunction with recent experimental
evidence for their presence, the behavior and mobility of such
excitonic trions in 2D hybrid perovskites [4,29], can explain
the observed seemingly contradictory behavior of these mate-
rials, namely, that despite their large excitonic binding energy,
there are plenty of charge carriers.

In this paper, it is also speculated in Sec. V that, when
there is an applied external electric field, there are two dif-
ferent mechanisms of trion hopping to a nearest-neighboring
site. One is a spontaneous process involving both energy and
charge transfer and a second is a hopping process stimulated
by a high neutral-exciton population, which is expected to be
the case at or below room temperature (when the incident-
light fluences are high enough), in which case trion tunneling
is mediated by a nearest-neighboring neutral exciton. This
speculation can help explain the observed sizable trion mo-
bility [4,29], despite their complex structure, and leads to a
novel transport mechanism in these materials. Excitonic trions
were recently invoked to explain quantum beating phenomena
in bulk perovskites [32] and in applications of time-resolved
spectroscopic techniques to quantum dots [33] and colloidal
nanocrystals [34] of cesium–lead halide as well as in attempts
to analyze the excitation fluences dependence of transient
absorption signals in CsPbBr3 [35].

At a timescale where recombination occurs, it is reasonable
to expect that these excitonic complexes, both the neutral and
the charged excitons, will decay into photons and give rise to
photoluminescence.

The role of biexcitons [36–38] can also be taken into
consideration by extending the present approach. However,
we tried to minimize the number of parameters involved in
the present study for clarity. We do expect biexcitons to con-
tribute with a somewhat sizable population at and below room
temperature by depleting the exciton population by a very
small fraction. However, we have no reason to expect that
their inclusion would alter the qualitative results of our study
regarding the relative populations of the charged excitations,
i.e., trions and electron/hole pairs.

Finally, the scenario and an extension of the model of
the role of trions discussed here, and in particular the Saha
equations, which describe the quasiequilibrium of a fluid of

photoexcitations (i.e., unbound quasielectron/quasihole pairs,
excitons, and trions) may be applicable to other materials. In
particular, we expect this work to find application in transition
metal dichalcogenides, where observations that these mate-
rials host exciton and trions with large binding energy have
already been reported [39–42].
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APPENDIX: DERIVATION OF RELATIONSHIP
BETWEEN EXCITATION DENSITIES

In order to balance the number of absorbed photons per unit
volume, np, we will break down the thought process as a three-
level counting process. First, let us say that every absorbed
photon creates an unbound electron/hole (e/h) pair, i.e.,

np = n0
e/h. (A1)

However the number of unbound e/h pairs, i.e., n0
e/h, is the

same as the number of unbound electrons or the number
of unbound holes, i.e., n0

e/h = n0
e = n0

h = (n0
e + n0

h )/2, and in
order to have a particle-hole symmetric equation, we can write

np = n0
e + n0

h

2
. (A2)

Next, we allow equilibrium between unbound e/h pairs and
neutral excitons x, i.e., the process

x ←→ e− + h+, (A3)

to take place. At the end of this process, a number δn0
e of

electrons and an equal number of holes δn0
h (δn0

e = δn0
h) will

bind to form an equal number nx = δn0
e = δn0

h of neutral
excitons. The right-hand side of the above Eq. (A2) will be
transformed as

np = n(1)
x + n(1)

e + n(1)
h

2
. (A4)

Namely, straightforward substitution of n(1)
e = n0

e − δn(0)
e ,

n(1)
h = n0

h − δn(0)
h , and n(1)

x = δn(0)
e = n(1)

e = n0
e − δn(0)

h in the
above equation yields the originally assumed Eq. (A2).

In the third stage, we continue to keep the number of
photons unchanged and by allowing the right-hand side of
Eq. (A4) to change by using x’s , e’s, and h+’s to create
x−’s and x+’s, namely, the following equilibrium processes:

x− ←→ x + e−, (A5)

x+ ←→ x + h+. (A6)

Let us say δn(1)
x of the x’s are transformed to x−’s to produce

a number nx− of the latter, so that

δn(1)
x = nx−. (A7)

However, they need to combine with δn(1)
e electrons from the

n(1)
e electrons to do it. Therefore, they will reduce the number
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of unbound electrons by

δn(1)
e = δn(1)

x , (A8)

and so the remaining electron density ne will be given by

ne = n(1)
e − δn(1)

e = n(1)
e − δn(1)

x . (A9)

Similarly, let us say another part δn(2)
x of the x’s is transformed

to x+’s to produce a number of nx+ of the latter, so that

δn(2)
x = nx+. (A10)

These neutral excitons will need to combine with δn(1)
h holes

from the n(1)
h holes to do it. Therefore, they will reduce the

number of unbound holes by an amount of

δn(1)
h = δn(2)

x . (A11)

Hence, the remaining hole density nh will be given by

nh = n(1)
h − δn(1)

h = n(1)
h − δn(2)

x . (A12)

The right-hand side of Eq. (A4) is now written as

np = nx + δn(1)
x + δn(2)

x + ne + nh

2
+ δn(1)

e + δn(1)
h

2
. (A13)

Namely, we substituted in Eq. (A4) that n(1)
x = nx + δn(1)

x +
δn(2)

x , n(1)
e = ne + δn(1)

e , and n(1)
h = nh + δn(1)

h .
Next, we substitute for δn(1)

e from Eq. (A8), and for δn(1)
h

from Eq. (A11) to obtain

np = nx + δn(1)
x + δn(2)

x + ne + nh

2
+ δn(1)

x + δn(2)
x

2
, (A14)

which leads to

np = nx + ne + nh

2
+ 3

(
δn(1)

x + δn(2)
x

)
2

. (A15)

We now use the fact that δn(1)
x = nx− [Eq. (A7)] and δn(2)

x =
nx+ [Eq. (A10)] to write

np = nx + ne + nh

2
+ 3(nx− + nx+ )

2
, (A16)

which is Eq. (16) used in the main part of the paper.
Note that this final equation does not depend on the order of

the various transformation processes. It simply expresses the
pseudoparticle number conservation in these transformations.
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