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Research on the physical properties of materials at the nanoscale is crucial for the development of break-
through nanotechnologies. One of the key properties to consider is the ability to conduct heat, i.e., its thermal
conductivity. Graphene is a remarkable nanostructure with exceptional physical properties, including one of the
highest thermal conductivities (TCs) ever measured. Graphene nanoribbons (GNRs) share most fundamental
properties with graphene, with the added benefit of having a controllable electronic bandgap. One method to
achieve such control is by twisting the GNR, which can tailor its electronic properties, as well as change their
TCs. Here, we revisit the dependence of the TC of twisted GNRs (TGNRs) on the number of applied turns to the
GNR by calculating more precise and mathematically well defined geometric parameters related to the TGNR
shape, namely, its twist and writhe. We show that the dependence of the TC on twist is not a simple function
of the number of turns initially applied to a straight GNR. In fact, we show that the TC of TGNRs requires at
least two parameters to be properly described. Our conclusions are supported by atomistic molecular dynamics
simulations to obtain the TC of suspended TGNRs prepared under different values of initially applied turns and
different sizes of their suspended part. Among possible choices of parameter pairs, we show that TC can be
appropriately described by the initial number of turns and the initial twist density of the TGNRs.
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I. INTRODUCTION

Twist in one-dimensional materials can be either a hin-
drance or an advantage. It could be a problem when dealing,
for example, with the installation of long cables [1], disentan-
gling twisted headphone wires, or simply washing the garden
or the car with a hose [2]. However, it could be useful when
extracting elastic parameters of a nanowire [3], setting up
helical artificial muscles [4,5], or developing torsional-based
elastocaloric refrigerators [6]. Knowing the relation between
twist and physical properties of filaments in general is im-
portant for solving problems in several areas ranging from
engineering [1] to biomedicine [7] and molecular biology
[8–10].

In the particular case of graphene nanoribbons (GNRs),
the effects of twisting on their properties have been predicted
to be useful in applications such as sensors and switches
[11–13]. As the term “twisted graphene” became usual to de-
scribe the relative rotation of one graphene layer with respect
to the other in bilayer graphene structures, it is important to
make clear that in this work, the words “twist” or “torsion,”
as well as the term “twisted GNRs” (hereafter referred to as
TGNRs for short) mean the application of twist or torsion
along the longitudinal axis of a single GNR.

*Contact author: afonseca@ifi.unicamp.br

Gunlycke et al. [14] showed that edge termination can
induce twisting in GNRs (at least in the case of small width
GNRs) and that TGNRs present different bandgap behavior
when compared to flat and straight GNRs. Sadrzadeh et al.
[11] showed that hydrogen terminated armchair-edge GNRs
present a twist dependent bandgap. Koskinen [15] demon-
strated a certain equivalence between the effects of tensile
and twisting strains on the electronic structure of GNRs.
Tang et al. [16], Li et al. [12], and Xu et al. [17] investi-
gated metallic-to-semiconductor transitions in armchair- and
zigzag-edge TGNRs, while several other studies also con-
firmed the dependence of electronic and magnetic properties
of GNRs on longitudinal twist, and even suggested applica-
tions [18–22].

Mechanical properties of TGNRs have also been studied.
Li [23] investigated the stretchability of TGNRs. Cranford and
Buehler [24] presented a comprehensive mechanical study of
TGNRs including their conversion to helical GNRs. Dontsova
and Dumitrică [25] investigated the mechanics of twisted
single and few-layer GNRs. Diniz [26] and Xia et al. [27]
studied the structural stability of TGNRs while Savin et al.
[28] showed that TGNRs have larger bending stiffness than
flat ones. Further studies demonstrated that the application
of large amounts of twist can lead to the formation of GNR
scrolls and supercoils [29,30], the formation of helical ribbons
[31], changes in the strength of TGNRs with grain boundaries
[32], and the localization of twisting as topological solitons
on substrates [33].
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The lattice thermal conductivity (or simply “TC” from now
on) of graphene has been extensively studied so far (see,
e.g., Refs. [34–37]). Nonetheless, very few studies have ad-
dressed the dependence of the TC of GNRs on the amount
of twist [38–43]. Most of these studies show that increasing
the amount of twist decreases the TC, although one of them
[42] found an inverse behavior arguing that twist increases the
local tension strain, and thus the contribution of the acoustic
out-of plane phonon modes to the TC of the TGNR.

There are even fewer experiments with TGNRs. Cham-
berlain et al. [44] used carbon nanotubes as nanoreactors
to assemble and produce sulfur terminated GNRs, including
TGNRs. Cao et al. [45] obtained TGNRs or curled GNRs
by thermal annealing poly(methyl methacrylate) terminated
GNRs, and Jarrahi et al. [46] studied their photoresponse.
An important observation is that transmission and scanning
electronic micrographs of TGNRs in those references reveal
that TGNR structures are not regularly twisted GNRs as those
considered in most of the previously cited modeling and
simulation works. In these studies, only one parameter was
considered to characterize the TGNR geometry: the initial
number of turns applied to its axis. However, the TGNR
properties might be dependent also on the GNR length and
the curls and folds that form due to its low flexural rigidity and
thermal fluctuations, as seen in the experimental micrographs.
A study of the TCs of TGNRs that takes into account these
features is missing and can reveal a higher level of complex-
ity, which would be required for the further development of
precise applications.

Two important questions arise from the above discus-
sion: (i) how to precisely define and determine the geometric
features of a TGNR at finite temperature and (ii) how to
describe the dependence of the TC of a TGNR on these
geometric features, including twist and length, at finite tem-
peratures. In the present study, we are going to answer both
questions.

Recently, one of us [47] developed a method to precisely
calculate the geometric features of a TGNR suspended by two
substrates. It was demonstrated that the degree of twist (in
a more precise mathematical sense) of a given TGNR is not
solely dependent on the number of turns initially applied to
it, but also on the size of its suspended portion. One reason
for this is that the TGNR’s extremities lay on the substrates,
becoming flat and not contributing to its total twist. As a
result, the initial turns applied to the TGNR axis become
more densely distributed along the suspended part. This in-
creases the twist density of the TGNR favoring the so-called
twist-to-writhe conversion (TWC) [48,49] phenomenon (see
the detailed description ahead in Sec. II A) which allows part
of the torsional stress in a ribbon to be released by flexural
deformations of the TGNR axis.

Furthermore, Fonseca [47] used these features to propose
that the total twist of a TGNR can be tuned by simply chang-
ing the distance between the substrates holding its ends. He
showed that the total (real) twist of a TGNR can be changed
without adding or removing torsion/rotation at the ends of the
TGNR. One advantage of this method is to provide a more
precise way to determine the total twist of a TGNR and then
correlate it to other physical properties. Since the literature
is mostly limited to the prediction of physical properties of

regularly twisted GNRs, here we explore the above geometric
features of suspended TGNRs, and their dependence on the
size of their suspended part, to investigate the dependence of
the TGNR’s TC on the total amount of twist, the size of the
suspended part, and other TGNRs’ geometric parameters. We
show that the TC of TGNRs cannot be fully determined by a
unique geometric parameter, and that it requires, at least, two
parameters.

In the next sections, we present the theoretical background
for calculating the total geometric twist of a piece of TGNR,
and the computational methods employed for the calculation
of the TC. Then, we present our results and discussions, fol-
lowed by our conclusions.

II. THEORY AND METHODOLOGY

A. Geometric parameters of a TGNR

The TWC phenomenon, mentioned in the Introduction,
is well known in twisted filamentary structures [48,49]. It
consists of releasing a rod’s torsional stress by spontaneous
bending and folding, after the twist density reaches a critical
value. This TWC has been shown to satisfy the Călugăreanu-
White-Fuller linking number (Lk) theorem [49–51]:

Lk = Tw + Wr, (1)

where Tw and Wr are the total (real) amount of twist and a
quantity called writhe of a curve which measures its nonpla-
narity, respectively. The linking number, Lk, is a geometric
parameter of a pair of closed curves and although it is well
defined in terms of a double integral along them, it has been
shown to be an integer equal to half the number of times one
curve crosses the other [52].

The total twist, Tw, of a pair of curves and the writhe, Wr,
of one space curve, are given by the following integrals along
the corresponding curves [52]:

Tw = 1

2π

∫
x

tx ·
(

u × du
ds

)
ds, (2)

Wr = 1

4π

∫
x

∫
x

(tx(s) × tx(s′ ) ) · [x(s) − x(s′)]
|x(s) − x(s′)| ds ds′, (3)

where s is the arc length of the curve x, t is its unitary
tangent vector, and u is a unitary vector orthogonal to t and
pointing from the curve x to its parallel curve. All these vector
quantities are functions of s. The total length of the curve x is
simply given by L = ∫ L

0 ds.
Suppose we initially prepare two space closed curves such

as to present a certain amount of Lk. The Călugăreanu-White-
Fuller theorem guarantees that Lk is always conserved no
matter how the curves change along the time, provided they
remain closed. Changes to the curves mean changes to their
values of Tw and Wr through Eqs. (2) and (3), respectively.
According to the theorem, these changes are such that Tw +
Wr remains constant as along as the curves remain closed.
An interesting feature is that the theorem has also been shown
to hold for a pair of nonclosed curves if their extremities are
flat and belong to the same plane [52]. There exists a pair of
parallel open curves with Tw = Wr = 0 that connect the first
two at infinity [52]. A similar argument can be made for a pair
of open curves having a semi-integer value of Lk. As long as
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FIG. 1. Two ribbons having the same value of linking number
Lk = 1 with extremities fixed on two substrates. One is a straight but
twisted ribbon by one full turn (top) and the other is a one turn helical
nontwisted ribbon (bottom). This figure is inspired by Fig. 7 of the
work by van der Heidjen and Thompson [53].

the ends of the curves lay on parallel planes, there exists a
pair of twisted parallel curves with Wr = 0 and Tw = 0.5 that
connect the first pair at infinity.

The two space curves required to calculate the twist and
writhe of our TGRNs can be defined prior to applying the
initial turns to the straight GNR. The first curve can be the
GNR axis, and the second curve can be a line parallel to
the first. Numerically, both curves can be defined by sets of
colinear carbon atom positions along the main length of the
straight untwisted GNR. Once the curves are defined, if one
fixes one end of a GNR and applies n turns to the other end
while keeping the GNR straight, the twist will be Tw = n and
the writhe Wr = 0. Thus, the initial linking number applied
to the now twisted GNR is Lk = n. If the ends of this TGNR
are placed such that they belong to the same plane and are not
allowed to rotate back to release the initially applied torsional
stress, the value of Lk will remain constant.

As shown by Fonseca [47], if the extremities of a TGNR
are laid down on two different planar substrates, and their
planes coincide, the Lk theorem can be applied to the TGNR
and Eqs. (2) and (3) can be used to infer the values of Tw
and Wr of the suspended part. Additionally, it is possible to
investigate how Tw and Wr vary with several other parameters
and physical conditions, such as the distance between the
substrates, temperature, etc. The interesting thing is that as
long as the extremities of the TGNR are kept on the substrates
(and van der Waals forces guarantee that), no matter how Tw
and Wr change with other physical conditions, Lk will remain
the same. For instance, Fonseca [47] showed that it holds
true for changing the distance between substrates and the
temperature of the system. In order to visualize the differences
between pure twisted and pure writhed ribbons, Fig. 1 illus-
trates one of each kind, both having the same linking number
value Lk = 1.

Here, we will investigate how the TC of TGNRs depends
on Lk, its length, d , as well as its Tw and Wr taking into
account that these last two quantities change with both Lk
and d . We will analyze the twist and writhe of nonclosed

TGNRs to which an integer or semi-integer number of turns
was initially applied.

B. Computational methods

The TC calculation for the TGNRs will be performed by
nonequilibrium molecular dynamics (NEMD) simulations us-
ing the adaptive intermolecular reactive empirical bond order
(AIREBO) potential [54,55] as implemented in LAMMPS [56].
AIREBO is an extension of the REBO potential originally
developed by Brenner et al. [54], which includes Lennar-
Jones and torsional potential terms [55]. After more than two
decades, the AIREBO potential is still being successfully used
to simulate structural [57–60] and thermal properties [61–67]
of carbon nanostructures, including heat transport simulations
[34–37,68,69]. One fundamental aspect of our choice is the
computational time involved.

Nonetheless, we must keep in mind that AIREBO does
not quantitatively reproduce absolute TC values for carbon
nanostructures. In order to overcome this limitation, we will
focus on how the TC of TGNRs depends on their geometric
features, and not on its absolute value. Zhang and collabora-
tors, for example, have performed a similar study using the
original REBO/AIREBO to investigate TC trends in graphene
with the number of isotopes [70], and in graphene oxide with
the percentage of oxygen coverage [71].

The TC simulation protocol can be described as fol-
lows. TGNRs having Lk = 0 (nontwisted and straight),
0.5, 1.0, 1.5, and 2.0 are generated by fixing one of their
ends and applying a rotation of 2π Lk rad with respect to the
ribbon axis to the opposite end. With the extremities fixed,
the TGNRs are optimized with the conjugate gradient energy
minimization algorithm as implemented in LAMMPS (with
energy and force tolerances of 10−8 eV and 10−8 eV/Å, re-
spectively). Then, the TGNR extremities are placed at ∼3.4 Å
of distance to two different substrates modeled as large area
square shape graphene single layers of ∼287 Å of side, dis-
tanced by d . The amount of area of the TGNR extremities
laid on each substrate is such that its suspended part has one
of the following sizes: d = 100, 200, 300, 400, and 500 Å.
Each TGNR is further equilibrated at 300 K for about 1 ns
using a Langevin thermostat, with 0.5 fs as time step and
1 ps as thermostat damping factor. Long-time simulations
are required in order to guarantee that the suspended part of
the TGNR reaches equilibrium. During these simulations, the
substrates are kept fixed and the objective of this part of the
protocol is to get the equilibrium shape of the TGNR at the
chosen 300 K temperature. From the equilibrium shapes of
TGNRs, Tw and Wr can be calculated using the algorithm
described in Ref. [47].

Armchair GNRs of about 600 Å length and 33 Å width are
considered in the present study. They are fully hydrogen pas-
sivated. As classical molecular dynamics (MD) simulations
show no special dependence of TC with the direction of ther-
mal conduction in pristine graphene, we have not repeated the
simulations with zigzag GNRs [34].

The TC was calculated as follows. In a real situation, the
substrates play the role of thermal baths. However, the simu-
lations to determine the TC of TGNRs will be performed in
the nanoribbons alone, without the substrates, to save time
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FIG. 2. Examples of atomistic structures of TGNRs with Lk = 2
and d = 100 Å (top), Lk = 1 and d = 200 Å (middle), and Lk = 0.5
and d = 300 Å (bottom). Red (blue) carbon atoms represent those
to which thermostats at THOT = 350 K (TCOLD = 250 K) were at-
tached in the simulations to determine the TGNRs’ TC. Black, white,
and cyan atoms correspond to fixed hydrogen, free hydrogen, and
free carbon atoms, respectively, during those simulations. Red and
pink lines of atoms define the two space curves representing the
geometry of the suspended part of the TGNR.

in the thermal equilibration of the substrates and to avoid
the unknown heat transmission and thermal resistance at the
interface between the substrate and the TGNR. Thermostats at
THOT = 350 K and TCOLD = 250 K are then applied to the car-
bon atoms that, in the simulations with substrates, laid on each
of them. In the absence of the substrates, a free TGNR would
rotate and release its torsional stress. In order to avoid that, the
hydrogen atoms that also laid on the substrates are kept fixed
during the simulations to determine the TC. The carbon and
hydrogen atoms that are suspended in the simulations with the
substrates, are allowed to freely evolve, i.e., no thermostat or
constraints are applied to them. The simulations to determine
the TC of each TGNR were performed for, at least, 40 ns.

Figure 2 depicts three TGNRs with different values of Lk
and d . There, red and blue atoms are thermostated at THOT

and TCOLD temperatures, respectively, while black atoms are
kept fixed. Cyan, white, red, and pink atoms at the suspended
part of the TGNR are allowed to evolve freely. Red and pink
atoms in the suspended part of the TGNR are those whose
coordinates will be used to obtain the space curves needed to
calculate Tw and Wr using Eqs. (2) and (3), respectively. For
every TGNR, the TC, Tw, and Wr of the suspended part were
calculated.

C. Theoretical method to determine the TC

The TC, κ , of a system along a direction x, can be obtained
from Fourier law:

Jx = −κ∇xT, (4)

where Jx is the heat flux along x direction and ∇x ≡ ∂/∂x.
The heat flux is calculated as the energy per time per cross-
sectional area that the thermostats provide to the system.
The temperature gradient is calculated by dividing the TGNR
in several slabs of length about 10 Å, and determining the
local temperature of each slab through the average kinetic
energy of the moving atoms over 10 000 time steps every
10 000 time steps. Figure 3 shows a typical temperature profile
along the TGNR after the system reaches the steady state.

FIG. 3. A typical example of the steady-state temperature profile
along the TGNR of the middle panel of Fig. 2, after 40 ns of a NEMD
simulation to determine its TC. Each point corresponds to a slab
along the TGNR. The line connecting the points at the central region
is a fitting straight curve needed to obtain the temperature gradient.
The meaning of the colors of the atoms is the same as given in the
caption of Fig. 2.

III. RESULTS

Figure 4(a) presents the results for the TC as a function of
Lk for the structures at 300 K. Each curve shows the TC for a
given value of suspended length, d , of the TGNR. The curves
have in common the decrease of the TC with Lk up to 1.5,
after which the TC remains approximately constant within the
error bars, which represent a 5% uncertainty in all calculated
conductivities. The curves also show that although the TC
increases with increasing d , it seems to converge, since the
curves for d � 300 Å become closer to each other than those
for d � 300 Å. As the linking number, Lk, is determined by
the number of turns initially applied to the straight GNR, one
might think that Fig. 4(a) represents the dependence of the
TC of a TGNR on twist. However, the ability to change the
suspended length, d , of the GNR, without changing the Lk,
poses an extra degree of complexity to the issue of dependence
of TC on twist.

Another form of visualizing the complex dependence of
TC on twist comes from the plot of TC as a function of the sus-
pended length, d , as shown in Fig. 4(b). The curves show that
even for the same value of Lk, the TC of a TGNR can change
significantly. This observation confirms that, alone, Lk cannot
characterize the dependence of TC on twist. Figure 4(b) also
allows us to infer that the average rate of change of TC with d
roughly increases with Lk, at least for d � 400 Å.

The above results indicate that the TC of a TGNR is not
a simple function of only one variable, the number of turns
initially applied to the GNR or Lk. The TGNR TC seems to re-
quire, at least, a second parameter to appropriately describe its
dependence on the geometric features of the TGNR. In order
to find out which set of quantities best suits this requirement,
here we propose three possible alternatives: (1) considering
the TGNR suspended length, d , as a second parameter; (2)
considering the pair (Tw, Wr) parameters (or equivalently, Lk
and one of them); and (3) considering the initial twist density,
Lk/d, as the second parameter.
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FIG. 4. (a) Thermal conductivity (TC) as a function of linking number, Lk, in each ribbon with increasing suspended length. (b) TC as a
function of suspended length for ribbons with increasing Lk. Dashed lines are just a guide to the eyes.

A. TC dependence on Lk and d

Figure 5 illustrates the three-dimensional distribution of
values of the TC of the TGNRs as functions of d and Lk.
The gray surface is the result of an arbitrarily chosen fitting
function TC = TC(d, Lk), given by

TC(d, Lk) = 70.7806 − 28.7985d + 0.0439798d ln d

− 0.000383411d2 − 0.098039d Lk

− 8.59172 Lk2 − 0.000051652d2Lk2

+ 1.08634 Lk5, (5)

where the parameters were determined by a nonlinear fitting.
The functional form of the fitting function by itself is not

so important at the moment. Different dnLkm terms could
have been added to the fitting equation with no significant
difference in the final result. The point is that it is possible to
obtain an empirical analytical function for TC = TC(d, Lk)
from computational and/or experimental data and then use it
for future predictive purposes. Here, Fig. 5 serves to reinforce
the conclusion that the TC of TGNRs cannot be described in

FIG. 5. Thermal conductivity (TC) as a function of both sus-
pended length, d , and the linking number, Lk. Black, red, blue,
magenta, and green dots correspond to the TC values of simulated
TGNRs having Lk = 0, 0.5, 1.0, 1.5, and 2.0, respectively. The gray
surface is a fitting function of the TC points given by Eq. (5). See the
text for details.

a simplistic manner, solely in terms of the number of initially
applied turns or Lk.

B. TC dependence on Tw and Wr

The TC of the TGNRs can be correlated to their geometric
features twist, Tw, and writhe, Wr, instead of d and Lk,
because the present simulations were conducted in such a way
that the linking number (or the initial number of turns applied
to the straight GNR) remained fixed. Then, the Călugăreanu-
White-Fuller theorem, Eq. (1), can be used to distinguish
groups of TC surfaces in a Tw × Wr space, each one corre-
sponding to a value of Lk.

Figure 6 displays four nonzero constant-Lk TC surfaces as
a function of both Tw and Wr corresponding to the values
of d and Lk considered in the present study. The area of
the surfaces increases with Lk, which reflects the ability of
the TGNRs to convert twist to writhe to release at least part
of the torsional stress. As the surfaces do not intersect one
another, each pair of geometric coordinates, (Tw, Wr), univo-
cally characterizes the TC of a TGNR.

Separated plots of TC versus Tw and versus Wr, for differ-
ent values of suspended length, d , are shown in Fig. 7. They

FIG. 6. Thermal conductivity as a function of both the twist,
Tw, and the writhe, Wr. Red, blue, magenta, and green correspond to
TGNRs having Lk = 0.5, 1.0, 1.5, and 2.0, respectively.
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FIG. 7. (a) Thermal conductivity (TC) as a function of the twist, Tw. (b) TC as a function of the writhe, Wr. Dashed lines are just a guide
to the eyes.

allow for a better observation of the complexity of the TC
dependence on the TGNRs’ geometric parameters than Fig. 6.

Figure 7(a) shows that TGNRs with smaller suspended
lengths, d , present larger variations of the TC with the real
twist, Tw. In other words, as the value of d increases, the TC
becomes less dependent on Tw. This shows that the TGNR
TC could not be described uniquely even by the real twist,
Tw. In fact, the above result is not unexpected. As can be seen
in the examples of TGNRs shown in Fig. 2, the suspended part
of the structure becomes less curved as d increases. This is a
consequence of the decrease of the linear twist density with
increasing d of the TGNR having the same Lk. Literature
has shown that rods and ribbons become unstable when the
applied twist is such that the twist density becomes larger
than a critical value [1–3]. Because of this, we decided to also
investigate the dependence of TC on the twist density, as we
will discuss in Sec. III C.

The curves in Fig. 7(b) look different from those of panel
(a) but they are consistent and reflect the fact that Tw and Wr
are, in fact, connected by Eq. (1). In fact, Fig. 7(b) shows
that for TGNRs with larger suspended length, d , there is a
larger number of TC points corresponding to Wr < 0.1. This
particular observation is coherent with the fact that increasing
d decreases the twist density of the TGNRs. If the twist
density is smaller than a critical value, the twisted but straight
ribbon is a stable spatial conformation [3]. In other words,
the structure becomes less curved when the twist density is
low. The points corresponding to values of Wr > 0.2 are those
obtained for the largest values of Lk considered in the present
study, or Lk � 1.5. The concept of twist density can also
explain a different trend that can be observed in the curves of
Figs. 4(a) and 7(a) corresponding to d = 500 Å. These curves
show a small increase, then keep constant and, after that, there
is a decrease in the values of TC, while for d < 500 Å, the
curves go downward and then reach a plateau within the un-
certainties in the values of TC. The reason why the d = 500 Å
curves present a different trend might come from the fact that
the TGNR twist density, for this value of suspended length,
might be smaller than the critical value. If that is the case,
the ribbon structure remains straight and the torsional strain
becomes well distributed along it. As a consequence, Wr ∼ 0.
That is exactly what we observe in Fig. 7(b). Most TC points

corresponding to the d = 500 Å curve have Wr = 0. For all
other values of suspended lengths there are at least two points
corresponding to Wr �= 0. Finally, Fig. 7(b) also shows that
the TGNR TC cannot be described by only its writhe, Wr.

Figures 7(a) and 7(b) can be rearranged if we group data
points by their Lk values rather than d . Indeed, Fig. 8 shows
TC as a function of Tw (top panel) and Wr (bottom panel),
for each value of Lk. Now, the curves display additional
results about the complex dependence of the TC of TGNRs
on their geometric features. It can be seen that the rate of
change of TC with either Tw or Wr, depends on Lk. However,
as Lk = Tw + Wr is constant, dTw = −dWr for the curves
corresponding to the same values of Lk. Thus, for a given

FIG. 8. The dependence of the thermal conductivity on the twist,
Tw (top panel), and writhe, Wr (bottom panel) for each value of Lk.
Dashed lines are just a guide to the eyes.
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TABLE I. Average rate of change of TC with Tw, �TC/�Tw,
for the curves shown in Fig. 8 and Lk �= 0.

Lk �TC/�Tw [W/m K]

0.5 11.15 × 106

1.0 360.4
1.5 92.2
2.0 104.6

value of Lk, the rate of change of TC with Tw is equal in
modulus to the rate of change of TC with Wr. For Lk = 0,
TC does not depend on Tw or Wr, since there is no twist
and the different values of TC correspond only to different
values of d . It is equivalent to say that �TC/�Tw → ∞ if
Lk, Tw, Wr → 0.

However, for Lk �= 0, we observe that TC varies with either
Tw or Wr. The difference amongst the curves is the rate of
change of TC with Tw or Wr, �TC/�Tw, whose average val-
ues are given in Table I. Although we have only a few values
of �TC/�Tw, and their values might have large uncertainties,
we can infer that they roughly decrease from a large amount
and converge with increasing Lk.

The above analysis confirms that the TC of TGNRs in
realistic conditions (large size GNRs, suspended and at dif-
ferent temperatures) is much more complex than the simple
consideration of its dependence on the number of initially
applied turns can deal with. The literature has only presented
predictions for the dependence of TC on twist, for 0 K, non-
writhed, small width TGNRs.

The study of the dependence of TC on both Tw and Wr
is not practical from the experimental point of view. It is
easier to record the number of times the straight GNR was
initially rotated and measure the suspended length of the
produced TGNR than defining two space curves along the
GNR and develop computational tools to extract its points to
compute the corresponding Tw and Wr. Therefore, although
the above results show the TC can be well characterized by
the pair (Tw, Wr), they are not unique as shown in Secs. III A
and III C.

C. TC dependence on Lk and the twist density

The analyses in the previous sections suggest one more
attempt to characterize the TC of TGNRs on just one quantity:
the twist density. In fact, there are two possible twist densities
to consider: Lk/d and Tw/d . We will stick to the first one
since, as mentioned in Sec. III B, it is easier to conceive an
experiment to measure Lk than to measure Tw in a TGNR.

Figure 9 shows the TC of TGNRs as a function of Lk/d
for different values of Lk. It can be seen that each set of
data points corresponding to one value of Lk seems to follow
one particular decaying curve. We then fitted each one to the
following equation:

f (x) = Ce[−α(x−x0 )], (6)

where C and α are constants that depend on Lk, and x0 =
Lk/d0 is the smallest twist density of the set of data points
corresponding to the same Lk, with d0 being the largest
suspended size of the TGNRs that, in our case, is 500 Å.

FIG. 9. Thermal conductivity as a function of the twist density,
Lk/d . Points are results from MD simulations, and the curve is
a fitting function given by Eq. (6). Inset: fitting exponent α as a
function of Lk.

The TC of TGNRs is then described by the following
equation:

TC(Lk, Lk/d ) = C(Lk)e{−α(Lk)[(Lk/d )−(Lk/d0 )]}. (7)

Table II shows the values of C and α obtained from the
fitting of the data points in the main panel of Fig. 9, for each
value of Lk. While C is shown to be weakly dependent on Lk,
α seems to be a significant function of Lk. In fact, the inset
of Fig. 9 shows that α(Lk) displays an approximately linear
decreasing behavior with Lk. The meaning of this result is
quite interesting. As C(Lk) ∼ const, one can conclude that
larger values of Lk lead to a weaker dependence of the TC
on the twist density Lk/d . It is a remarkable, and apparently
contradictory, result because larger values of Lk imply larger
values of the twist density and, therefore, a stronger depen-
dence of TC on twist density. Thus, one would expect that
α(Lk) should increase and not decrease with Lk. But the rich-
ness of the twist-to-writhe phenomenon can help understand
this feature. As shown by Fonseca [47], a TGNR on top of two
separated substrates can present a twist-to-writhe transition,
where part of its twist is converted to writhe through curving
and curling in the space. As this phenomenon decreases the
torsional stress on the nanoribbon, it decreases the torsional
stress/strain contribution to its TC.

While the dependence of the TC of TGNRs on (Lk, d )
is relatively simple, equations similar to (5) are difficult to
interpret in physical terms. However, although the dependence

TABLE II. Values of C and α obtained from the fitting of the data
points sets shown in Fig. 9.

Lk C α

0.5 115.4 118.5
1.0 111.2 86.74
1.5 102.0 70.92
2.0 103.9 47.75
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on (Lk, Lk/d ) is a bit more complicated than that on (Lk, d ),
Eq. (7) carries a simple and physically meaningful form of
describing the TC of TGNRs.

We have not discussed the electronic contribution of
graphene to its TC so far. Kim et al. [72] have shown that the
electronic contribution for the graphene TC is, at most, 10%
of its total TC at room temperature. Considering impurities
and electron-impurity scattering effects, this contribution can
be even reduced. As mentioned in the Introduction, torsional
strains have been shown to change the electronic properties
of graphene nanoribbons. In particular, it was shown to open
their band gaps [11,12,14–17]. Torsional strains are, then, ex-
pected to decrease graphene electronic conductivity and, then,
decrease the electronic contribution to its thermal conductiv-
ity. Therefore, for the system sizes and temperature conditions
studied here, the dependence of the TC of TGNRs on their
electronic properties are expected to be negligible.

IV. CONCLUSION

We have carried out fully atomistic molecular dynamics
simulations of TGNRs at 300 K, and obtained their thermal
conductivity dependence on geometrical parameters such as
twist, Tw; writhe, Wr; linking number, Lk; size of the TGNRs
suspended parts, d; and the twist density, Lk/d . The results
showed that alone, the number of initially applied turns to a
straight GNR, Lk, cannot be considered the only parameter
that determines the TC of TGNRs. We showed that the TC
of TGNRs can be a function of, at least, two parameters, and
analyzed three sets of parameter pairs: (Lk, d ), (Tw,Wr) and
(Lk, Lk/d ). Even though each set of parameters can describe
the TC of a TGNR, we also showed that a simple and phys-

ically meaningful description can be achieved with Eq. (7),
which describes the dependence of TC on a twist density
(Lk, Lk/d ). In the present work, we were mostly concerned
with showing that the dependence of the TC on twist is not
as simple as previous works have suggested, which is prob-
ably related to the lack of experimental studies on TGNRs.
We hope that the present analysis and findings will stimulate
further experimental investigations of TGNRs, including their
thermal transport properties.
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