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Effect of local chain stiffness on oligomer crystallization from a melt
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While the process by which a polymer crystal nucleates from the melt has been extensively studied via
molecular simulation, differences in polymer models and simulated crystallization conditions have led to
seemingly contradictory results. We make steps to resolve this controversy by computing low-temperature
phase diagrams of oligomer melts using Wang-Landau Monte Carlo simulations. Two qualitatively different
crystallization mechanisms are possible depending on the local bending stiffness potential. Polymers with a
discrete bending potential crystallize via a single-step mechanism, whereas polymers with a continuous bending
potential can crystallize via a two-step mechanism that includes an intermediate nematic phase. Other model
differences can be quantitatively accounted for using an effective volume fraction and a temperature scaled by
the bending stiffness. These results suggest that at least two universality classes of nucleation exist for melts and
that local chain stiffness is a key determining factor in the mechanism of nucleation.
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I. INTRODUCTION

Given the scale of production and the ubiquity of semicrys-
talline polymers, polymer crystallization remains one of the
most important, and most challenging, fundamental problems
in polymer science [1]. Despite decades of study, the mech-
anism by which a crystal first nucleates in a polymer melt
remains controversial [2]. The conventional theory, classical
nucleation theory (CNT), treats the transition between poly-
mer melt and a crystal nucleus as a single-step transition [3].
However, for the most widely studied case of polyethylene
(PE) crystallization, there are numerous experimental obser-
vations of mesoscale precursors prior to crystal formation
[4–12]. Subsequently, as shown in Fig. 1, a number of re-
searchers have proposed multistep theories of polymer crystal
nucleation [13–16]. For example, Olmsted et al. proposed
that a metastable liquid–liquid phase separation intervenes
to assist nucleation [13], and Strobl et al. [14] and Milner
[15] separately proposed that PE crystallizes via a nematically
aligned intermediate.

The multistep theories of nucleation by Olmsted, Strobl,
Milner, and others rely on the existence of specific (but differ-
ent) low-temperature thermodynamic behavior as a necessary
(but not sufficient) condition. Consequently, although kinetics
are critical to the process of polymer crystallization and the
resulting microstructure, a study of the thermodynamics of
polymer crystallization is necessary for evaluating the plau-
sibility of these theories. Additionally, a better understanding
of polymer crystallization thermodynamics will provide con-
text for understanding kinetic effects. Finally, all theories of
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polymer nucleation predict that free-energy barriers dominate
system dynamics, and we recently showed that equilibrium
methods can be used to calculate free-energy landscapes
(FELs), providing values of free-energy barriers and identi-
fying metastable states [17]. Knowledge of the phase diagram
is a necessary prerequisite for determining FELs. We argue,
therefore, that the low-T equilibrium behavior of long-chain
molecules continues to require attention, despite the impor-
tance of kinetics.

In this paper, we use Wang-Landau Monte Carlo (WLMC)
simulations [18,19] to construct low-T equilibrium phase
diagrams of a homopolymer melt for several different mod-
els of polymers. Unfortunately, even equilibrium simulations
of polymer crystallization are numerically costly, so we are
presently limited to relatively small systems composed of
short chains. We are particularly interested in the existence
and location of intermediate phases, such as a nematic phase,
that may assist the nucleation process. Here, we focus specif-
ically on how the “virtual chemistry” (i.e., the molecular
potentials) of the polymer affects the phase diagram. We find
that, at least for these relatively small systems, the bending
stiffness of the chain plays a critical role in determining the
equilibrium phase behavior.

A. The current state of molecular simulations
of polymer crystal nucleation

Molecular simulations appear ideally suited to directly ad-
dress the mechanism of primary nucleation for polymers, but
the simulation literature contains significant disagreements.
For example, several research groups modelled crystallization
of a united-atom model of PE and found evidence that sup-
ports the single-step transition described by CNT, including
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FIG. 1. Schematic of free-energy landscape separating a
metastable melt from the crystal resulting from CNT, a single-step
mechanism, and newer theories postulating two-step phase
transitions.

a cylindrical critical nucleus and a lack of nematic order-
ing before crystallization [20–25]. On the other hand, other
researchers have observed nematic ordering in simulations
of n-alkanes and PE [26,27], as well as a noncylindrically
shaped nucleus, providing evidence for a two-step transition
[3,26–31]. Simulations of flow-induced crystallization of PE
also provide evidence that chain orientation plays a role in
nucleation [32–34].

There are at least two significant issues to consider when
seeking to resolve these apparent discrepancies in the liter-
ature. First, one must consider the role that kinetics play in
the crystallization process, and more specifically, in simula-
tions. Polymer crystallization is a notoriously nonequilibrium
process, although exactly which effects are due to thermo-
dynamics and which are due to kinetics remain a subject of
vigorous debate [24,25,29,30].

Because kinetics are so important, most simulation studies
use nonequilibrium molecular dynamics (NEMD) to study
nucleation. In NEMD, a polymer melt is equilibrated above
the melting point Tm, and then instantaneously quenched to
a temperature Tc < Tm, where it crystallizes. Since homo-
geneous nucleation is a rare event in a dense melt [35], a
large degree of supercooling S = (Tm − Tc)/Tm is used [36]
to reduce the nucleation time to the order of nanoseconds
[20–22,37–46]. Consequently, nucleation rates in NEMD are
highly accelerated relative to experiments [47], and the rapid
crystallization rates in simulations are believed to significantly
impact the nucleation mechanism [23–26]. Thus, one rea-
son for the apparent contradictions could be different kinetic
protocols, leading to qualitatively different crystallization be-
havior.

A second possible reason for the discrepancy could be the
differences between the molecular potentials. A numerical
polymer model can be thought of as its virtual monomer
chemistry [48], and thus the relation between molecular poten-
tials and crystallization behavior is related to the question of
“universality” in polymer crystallization. The principle of uni-
versality in polymer physics applies when chain-level degrees
of freedom dominate the physical behavior independent of
monomer chemistry [49], and this concept is widely invoked

for more coarse-grained phenomena such as block copolymer
self-assembly and entanglement dynamics. Its usefulness for
polymer crystallization is more complicated because there are
some phenomena, such as crystal structure, that are monomer
dependent and thus clearly not universal, but others, such as
the formation of folded lamellae, appear to be common to
nearly all polymer chemistries.

The simulations of PE cited above employ various (all-
atom or united-atom) force fields including Paul-Yoon-Smith
(PYS) [50], OPLS [51,52], flexible Williams (FW) [53],
Shinoda-DeVane-Klein (SDK) [54,55], TraPPE [56], and
Siepmann-Karaboni-Smit (SKS) [57]. All of these models are
parameterized for the well-studied system of monodisperse
linear n-alkanes, and at first blush, it seems surprising that
the equilibrium crystallization behavior of these models could
be qualitatively different. Nevertheless, there are important
differences in the degree of coarse graining between some
of these models, and coarse graining can indeed produce
important effects on phase behavior [26,39,58]. Therefore,
it is possible that some of these different numerical model
“chemistries” could belong to different universality classes of
crystallization.

B. Our approach

In the present paper, we use equilibrium simulation meth-
ods to investigate the crystallization phase behavior of several
model polymers. Our objective is to catalog which monomer
“chemistries” lead to a given “universality class” of equilib-
rium crystallization behavior. Equilibrium methods eliminate
the need for a kinetic protocol that has made it difficult to
interpret and compare simulations of polymer crystal nucle-
ation in the literature. By avoiding one of the key sources of
variation between simulations in the literature, we are free to
focus on examining how differences in molecular potentials
lead to different crystallization thermodynamics.

Note an important caveat when connecting the results that
follow with the nucleation theories discussed at the outset. The
equilibrium universality class (phase behavior and FEL) is not
equivalent to the dynamic universality class for nucleation; the
latter involves dissipative processes that may, for example,
lead to the kinetically preferred formation of a metastable
state. However, we hypothesize that it is a necessary condi-
tion for two systems to reside within the same equilibrium
universality class in order to be within the same dynamic
universality class. Stated less abstractly, a phase diagram must
be compatible with a given nucleation theory (one-step or
two-step), but the existence of a compatible phase diagram
is not positive proof of a nucleation mechanism.

Unfortunately, even neglecting kinetics, simulating poly-
mer crystallization is numerically expensive, and it is difficult
and costly to calculate phase diagrams of dense melts contain-
ing long chains with accurate molecular potentials. Indeed,
these limitations widely impede progress in the field. There-
fore, we resort here to two simplifying assumptions in order
to make progress.

First, we use short oligomers. Shorter chains significantly
reduce simulation costs, which are substantial due to low
temperatures, large nucleation barriers, and extended chains.
In particular, a crystalline state consisting of fully extended
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FIG. 2. Schematic of the two families of bending stiffness: dis-
crete and continuous.

chains requires a relatively large simulation box (compared to
simulations of a melt) to avoid unphysical self-interactions.
Using short chains therefore limits the required size of the
box, helping to reduce finite-size effects. We obtain valuable
results despite the relatively short chains, and we anticipate
future progress in our abilities to reach larger system sizes as
we improve our methods.

Second, we use relatively simple molecular potentials. The
use of simple polymer models may also appear unwise, be-
cause, as discussed, the details of crystallization necessarily
depend on atomic-level structure. However, we use simple
models because they are less expensive to simulate, they fa-
cilitate comparison with prior studies [17,59–64] and possible
generalization.

The rest of the paper proceeds as follows. We detail our
methods in Sec. II, with Sec. II A explaining the polymer
models and parameters, and Sec. II B detailing the protocol for
constructing phase diagrams. The main results are contained
in Sec. III, beginning with the identification of the low-T
phases and phase transition temperatures in Sec. III A. We
then present the phase diagrams of the various models and
the effect of bending stiffness on phase behavior in Sec. III B.
After ascertaining the impact of the bending stiffness, we
explore the effects of excluded volume on phase behavior
in Sec. III C. We then offer brief concluding remarks and a
perspective for future research in Sec. IV.

II. METHODS

Our WLMC simulations consist of a melt of Nc = 125
chains that contain Nb = 10 beads per chain in a periodic box
of volume V . They generate representative melt configura-
tions and a density of states �(U ) as a function of potential
energy U . �(U ) is postprocessed to compute a heat capacity
CV (T ) and temperature profiles of various crystalline and
nematic order parameters (OPs) [17,65–67]. We performed
WLMC simulations at different volume fractions,

φ = πa3NcNb

6V
, (1)

where a is the bead size, in the range φ ∈ [0.2, 0.5] to obtain
phase diagrams as a function of both T and φ.

We focus on two different families of polymer models,
shown in Fig. 2, based on the way local chain stiffness is
calculated: (i) a “discrete stiffness” family employing a dis-
continuous bending potential that has recently been used in
several studies of oligomer crystallization [17,59,67], and (ii)
a “continuous stiffness” family of models (equivalent to a

Kratky–Porod or wormlike chain [68]) consisting of polymers
whose stiffness comes from a harmonic bending potential
between adjacent bonds. The model of a polymer chain must
also include a bonding potential Ustretch and a nonbonded
(excluded volume) pair potential Upair. We examine multiple
models for Ustretch and Upair within each of the two fami-
lies. For Ustretch, we study rigid-rod and harmonic bonding
potentials with a bond length scale l0, whereas for Upair,
we employ hard-bead and soft repulsive (Weeks-Chandler-
Anderson, WCA) nonbonded potentials characterized by the
parameter σ . There are no attractive interactions in the models
discussed here. Several authors have provided evidence that
attractive interactions are of secondary importance for the
qualitative phase behavior [37–40,59,60,69], and we leave a
deeper investigation of this issue to future work.

The following sections detail the methods we used to col-
lect, analyze, and interpret our results. Section II A describes
the coarse-grained polymer models and their potentials in
greater detail. Then, Sec. II B details the protocol for deter-
mining phase diagrams, including a description of the order
parameters that we use. Further methodological details are
found within the Supplemental Material (SM) [70] (see also
Refs. [18,19,59,64,71–90] therein).

A. Polymer models and parameterization

We use a coarse-grained model that has been estimated
to be roughly equivalent to about four CH2 monomers of
polyethylene for one coarse-grained bead [52]. While this
unfortunately sacrifices atomic-level accuracy, these models
allow one to capture important polymer physics including
connectivity, excluded volume, and chain stiffness. The latter
is especially important for our present purposes as we seek to
understand what is universal about the crystallization behav-
ior among several different polymer models.

A polymer model is defined by the total potential energy,

Utot = Ubend + Ustretch + Upair, (2)

where Ubend is the bond angle bending energy, Ustretch is the
bond length stretching energy, and Upair is the nonbonded
(pairwise) potential energy. In this paper, we study eight
different polymer potential variations: two for each of the
potentials (bending, stretching, and nonbonded) in Eq. (2).

The family of polymer models is defined by the bending
potential, which accounts for polymer chain stiffness. The
continuous stiffness (i.e., wormlike) potential is a harmonic
bending potential between adjacent bonds,

Ubend =
Nc (Nb−1)∑

i=1

ucont (θi ), (3)

ucont (θi) = εθ (1 − cos θi ), (4)

where

l i = ri+1 − ri (5)

is the bond vector between bead i and its neighbor along the
backbone of the chain, li = |l i| is the bond length,

θi = l i · l i−1

lili−1
(6)
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is the bond angle, and εθ is the bending elasticity. The discrete
stiffness (i.e., square-well) potential is given by

Ubend =
Nc (Nb−1)∑

i=1

udisc(θi ), (7)

udisc(θi ) =
{−εθ θi � θs

0 θi > θs
, (8)

where θs = cos−1(0.9) is a critical upper bound on bond
angles that are favored. Both types of potentials incentivize
chains to adopt extended conformations.

Each model family (continuous or discrete stiffness) has
four different possible combinations of stretching (“rod-like”
and “spring”) and nonbonded (“hard-sphere” and “soft-
sphere”) potentials. The rod-like stretching potential is given
by

Ustretch =
Nc (Nb−1)∑

i=1

urod(li ), (9)

urod(li ) =
{∞ li �= l0

0 li = l0
, (10)

where l0 is the equilibrium bond length. Equation (10) only
allows constant bond lengths, which we set to be the size of
the nominal bead diameter a. The spring stretching potential
is harmonic and is given by

Ustretch =
Nc (Nb−1)∑

i=1

uspring(li), (11)

uspring(li ) = εl

2
(li − l0)2, (12)

where εl = 600kBT/a2 is the bond spring constant and l0 = a.
Polymers that use Eq. (12) have bonds that fluctuate around l0
to a degree that depends on the strength of εl .

The hard-sphere nonbonded potential accounts for purely
repulsive excluded volume interactions and is given by

Upair =
NcNb∑
i=1

Nn(i)∑
j=1

uhard(ri j ), (13)

uhard(ri j ) =
{∞ ri j < σ

0 ri j � σ
, (14)

where ri j = |r j − ri| is the distance between beads i and j,
Nn(i) are the number of neighbors of bead i with a nonzero
pairwise potential, and σ is the hard-bead diameter, which
is set equal to a. The soft-sphere nonbonded potential is the
purely repulisve Weeks-Chandler-Anderson (WCA) potential
given by

Upair =
NcNb∑
i=1

Nn(i)∑
j=1

uWCA(ri j ), (15)

uWCA(ri j ) =
{

4εi j
[(

σ
ri j

)12 − (
σ
ri j

)6] + εi j ri j < 21/6σ

0 ri j � 21/6σ
,

(16)

where εi j and σ are the WCA pair potential energy and length
scale, respectively. The value of σ in the WCA potential is set
to 2−1/6a so that the effective bead diameter is commensurate

TABLE I. Summary of parameters for the various potentials used
in the study.

Bending potential
θs

Discrete (D) cos−1(0.9)
Continuous (C) N/A

Stretching potential
εl l0

Rod (R) N/A a
Spring (S) 600εθ/a2 a

Nonbonded potential
εi j σ

Hard (H) N/A a
WCA (W) εθ 2−1/6a

with the equilibrium bond length l0, ensuring that crystal-
lization is possible [64,87] (details available within the SM
[70]). Notably, neither of these nonbonded potentials include
attractive interactions. We neglect them here for simplicity,
but we note that several studies suggest that their effect is
a simple shift of the temperature dependence of the phase
diagram [37–40,59,60,69]. A summary of the parameters for
each potential are given in Table I.

Dimensional analysis reveals that there are six dimen-
sionless groups that could control the phase behavior. At
minimum, this includes the dimensionless volume fraction φ,
the bond length–bead diameter aspect ratio l∗

0 = l0/a, and the
reduced temperature Tr = kBT/εθ . In addition, if the model
uses a WCA nonbonded potential (instead of a hard-sphere
potential) then there is a dimensionless bending stiffness
scale ε∗

θ = εθ/εi j , if the model includes a harmonic stretching
potential (instead of the rigid-rod potential) then there is a di-
mensionless spring stiffness ε∗

l = εl/(εi ja2), and if the model
includes a discrete stiffness bending potential (instead of the
continuous potential) then cos θs is also a group.

Where appropriate, we set cos θs = 0.9, l∗ = 1, and ε∗
l =

600, and did not explore other values of these groups. We
chose cos θs = 0.9 to enable comparisons with Refs. [59] and
[17] and to facilitate nematic alignment. If l∗ �= 1, the bonds
are incommensurate with the bead diameter and crystalliza-
tion is inhibited [64,87]. A large value of ε∗

l gives stiff springs;
soft springs are physically unrealistic for studying crystalliza-
tion and our preliminary testing suggested that phase behavior
was relatively insensitive to this parameter.

The more interesting dimensionless groups are φ, ε∗
θ ,

and Tr , and we produce phase diagrams in φ−Tr space
with volume fractions φ ∈ [0.2 − 0.5], Tr ∈ [0, 0.5], and ε∗

θ ∈
{0.1, 1, 10}. The high-φ simulations are quite dense; for
comparison, the volume fractions of random and maximum
close-packed configurations of hard spheres are 0.64 and
π/(3

√
2) ≈ 0.7405, respectively [91].

Finally, because there are numerous combinations of po-
tentials, it is useful to define a systematic naming scheme for
the models. We define our scheme based on the choice of
potentials in the polymer model, following the order: bending
potential (discrete or continuous), stretching potential (rods
or springs), and nonbonded potential (hard or WCA). For
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TABLE II. Naming scheme for polymer models.

Systematic name Shorthand

DRH (Discrete, Rod, Hard) Model A
DRW (Discrete, Rod, WCA)
DSH (Discrete, Spring, Hard)
DSW (Discrete, Spring, WCA)
CRH (Continuous, Rod, Hard) Model B
CRW (Continuous, Rod, WCA)
CSH (Continuous, Spring, Hard)
CSW (Continuous, Spring, WCA) Model C

example, a model with a discrete bending potential Eq. (7),
rod-like bonds Eq. (9), and a hard-sphere nonbonded potential
Eq. (13) is labeled the DRH model. Because they are used
frequently in this paper, the DRH model, the CRH model,
and the CSW model are also labeled Models A, B, and C
respectively for ease of reference. The naming scheme and
shorthand names are summarized for clarity in Table II.

B. Procedure for constructing phase diagrams

The entropy obtained from a WLMC simulation can be
used to compute heat capacity and order parameter profiles
as a function of temperature, enabling the identification of
phases and phase transitions. By sweeping volume fraction
in different simulations, one can construct phase diagrams in
the φ−Tr plane. This section presents a brief overview of the
procedure for the creation of these phase diagrams, including
details of the order parameters used to identify the phases.
Note that we have also previously identified these phases in
a system nearly identical to Model A using real-space images
and two-dimensional structure factors [17,67].

Specifically, we observe three phases in this system: a
disordered melt phase (I), a nematic phase (N), and a crys-
tal phase (C). We use two order parameters, fcryst and P2,
to quantify crystalline and nematic order in these phases.
fcryst represents the fraction of crystalline beads based on
the well-known Steinhardt order parameter [17,65,66], and
P2 is the second Legendre polynomial, a measure of nematic
order [17].

We use heat capacity and order parameter curves to locate
the relevant phase transition temperatures: isotropic–nematic
(IN), isotropic–crystal (IC) and nematic–crystal (NC). The
constant-volume heat capacity is given by

〈CV (T )〉 = 〈U 2(T )〉 − 〈U (T )〉2

kBT 2
, (17)

where the moments of U are calculated using

〈U n(T )〉 =
∑

i Ui
n exp(ln �i − Ui/kBT )∑

i exp(ln �i − Ui/kBT )
, (18)

and Ui and �i = �(Ui ) are discrete states of the energy and
density of states obtained from the WLMC simulation. It is
also useful to define a dimensionless heat capacity,

C̃V = 〈CV 〉
kBNc(Nb − 2)

. (19)

At a phase transition temperature Tm, C̃V (Tm) exhibits a
large narrow peak.

Order parameter “melting curves” can be obtained using

〈M(T )〉 =
∑

i〈Mi〉 exp(ln �i − Ui/kBT )∑
i exp(ln �i − Ui/kBT )

, (20)

where M is an order parameter such as P2 or fcryst and Mi =
M(Ui ). The order parameter curves 〈M〉 exhibit discontinu-
ities at a phase transition temperature.

The parameter P2 characterizes the average local nematic
alignment of the polymer chain contours. The chain orienta-
tion is determined by computing the angle between the bond
vectors of a polymer chain with those of its neighbors. More
precisely, each of the Nc chains contains Nb − 1 bond vectors,

l i = ri − ri−1, (21)

and a local order parameter for each bond vector is given by

p2(i) = 3
2 〈cos2 θi j〉neigh − 1

2 , (22)

where θi j is the angle between bond vectors l i and l j , and
the average 〈〉neigh is over all j neighbors (regardless of which
chain) that lie within a distance of 1.3σ from ri. The global
order parameter is calculated as an average over all bond
vectors in the system using

P2 = 〈p2(i)〉. (23)

P2 varies from zero when the system is isotropic, to one when
all bond vectors are perfectly aligned along a single direction.

The parameter fcryst is the fraction of monomers in the
system that are crystalline. Following Reinhardt et al. [66],
we define a monomer to be crystalline if it resides in a cluster
with a minimum number of neighbors with solid-like order-
ing. Solid ordering is determined by the pairwise local order
parameter

dl (i, j) = ql (i) · q∗
l ( j), (24)

between beads i and j that are within a pairwise distance of
1.3σ . The vectors

ql (i) = [ql,m(i)]T , (25)

in Eq. (24) have 2l + 1 components that are the Steinhardt
order parameters of bead i [65],

ql,m(i) = 〈Yl,m(ri j )〉neigh, (26)

with m ∈ [−l, l]. In the above, q∗
l is the complex conjugate

of ql , Yl,m is the spherical harmonic function of degree l and
order m, ri j = r j − ri is the vector between bead i and its
neighbor j, and 〈〉neigh is again the average over all neighbors
within a distance of 1.3σ of ri. The symmetries of the hexago-
nal crystals formed by these molecules are well distinguished
by sixth-order (l = 6) Steinhardt parameters, and so we
use q6.

Using these definitions, we can more precisely define a
monomer to be crystalline when there are at least nc neighbors
within a distance of 1.3σ where d6(i, j) > dc. In this paper,
we set the critical solid ordering parameter to be dc = 0.6 and
the minimum number of neighbors to be nc = 6. Mathemat-
ically, the number of crystalline neighbors of bead i can be
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expressed as

ncryst (i) =
Nn(i)∑
j=1

H (d6(i, j) − dc), (27)

where H (x) is the Heaviside function

H (x) =
{

1 x > 0
0 x � 0 , (28)

and Nn(i) is the number of neighbors of bead i within a
radius of ri j < 1.3a. Finally, the total fraction of crystalline
monomers fcryst is determined via

fcryst = 〈H (ncryst (i) − nc)〉. (29)

As is the case with P2, the value of fcryst is zero when the
system has no crystalline order and approaches one when the
chains fully crystallize.

III. RESULTS AND DISCUSSION

A. Order parameter thermal profiles for Model A and Model B

Our goal is to construct phase diagrams in the φ−Tr plane
for various models to probe the universality of phase behavior.
In this section, we provide details of the calculations that are
necessary to determine phase diagrams for Models A and B.
As outlined in Sec. II B, WLMC simulations permit the direct
calculation of � as a function of energy at a fixed volume
fraction φ. One can then use � and simulation configurations
to compute the order parameter as a function of temperature.
The values and discontinuities in the order parameter thermal
profiles enable one to identify the phases and the location of
the phase transitions.

Figure 3 shows � for a representative system of Model A
at φ = 0.463. The relevant energy range

U ∈ [−Nc(Nb − 2)εθ , 0] (30)

is subdivided into 32 overlapping WLMC windows (with
eight replicates for each window). To accelerate convergence,
we used a replica-exchange scheme where configurations
are exchanged between windows and an entropy-exchange
method where global histograms and entropies are aggre-
gated from replicates. After all windows converge, shown in
Fig. 3(a), the areas of overlap between windows are used to
stitch together a global �, shown in Fig. 3(b). This latter step
is necessary because � is only known to within an arbitrary
constant. The inset of Fig. 3(b) shows the least-squares stitch-
ing procedure for the last two windows (R2 = 0.998).

In addition to �, configurations generated from the last
WLMC iteration (n = 27) can be used to compute the nematic
and crystal order parameters. Figure 3(c) shows curves of P2

and fcryst obtained from WLMC (averaged over the eight repli-
cates) as a function of U . At high U , both order parameters
are small indicating that the high-energy state is a disordered
melt. By contrast, both order parameters rise significantly
above zero at the ground state (U = −1000εθ ), indicating the
occurrence of a crystal phase.

We desire phase diagrams in the φ−Tr plane, so we use the
equations in Sec. II B to transform the data to be a function of
T rather than U . Accordingly, Fig. 4 shows thermal profiles
of the nematic order parameter P2, the fraction of crystalline

FIG. 3. Direct result of WLMC simulations for Model A at φ =
0.463. (a) Density of states � for 32 overlapping windows, averaged
over eight replicates, vs potential energy U . (b) The “stitched” global
� with inset showing the stitching protocol for the rightmost pair of
windows. �′ in the inset corresponds to the value before stitching.
(c) Average order parameters P2 and fcryst as a function of U . The
apparent level of noise is a consequence of the small bin size of U .

beads fcryst, and the dimensionless heat capacity C̃V for Model
A and Model B at both low and high values of the volume
fraction φ.

Figure 4(a) shows thermal profiles for the order parameters
and heat capacity for Model A at the relatively low-volume
fraction φ = 0.407. At high Tr the system has small values
of nematic and crystalline order, characteristic of an isotropic
melt. At low Tr , P2 rises significantly but fcryst does not,
indicating a transition to a phase with orientational (but not
crystalline) order. This isotropic (I) to nematic (N) transition
happens at Tr = TIN ≈ 0.246, where P2 sharply increases and
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FIG. 4. Thermal profiles of P2 in blue, fcryst in green, and C̃V in red. (a) WLMC simulation of Model A at a low-volume fraction (φ = 0.407)
showing a discontinuity at Tr = 0.246. (b) WLMC simulation of Model A at a high volume fraction (φ = 0.463) showing a discontinuity at
Tr = 0.302. (c) WLMC simulation of Model B at a low-volume fraction (φ = 0.407) showing two discontinuities at Tr = 0.025 and Tr =
0.117. (d) WLMC simulation of Model B at a high-volume fraction (φ = 0.463) showing two discontinuities at Tr = 0.131 and Tr = 0.164.

the heat capacity C̃V shows a distinct peak. The step dis-
continuity in the order parameter and divergence in the heat
capacity at TIN (tempered by finite-size effects) are classical
indicators of a first-order phase transition.

Figure 4(b) shows corresponding thermal profiles for P2,
fcryst, and C̃V for Model A at a larger volume fraction φ =
0.463. Once again, P2 and fcryst are small at high Tr—evidence
that the system is an isotropic melt. At low Tr , both P2 and
fcryst show a pronounced increase, indicating the simultane-
ous development of both orientational and crystalline order.
In other words, there is an isotropic (I) to crystalline (C)
transition that happens at Tr = TIC ≈ 0.302, and again, the
appearance of step discontinuities and a narrow peak in the
heat capacity at the same temperature provide evidence that
this is a first-order transition. Notably, at this higher volume
fraction, the IC transition temperature is at a larger Tr than
the IN transition, showing the impact of system density on the
transition temperature as well as the nature of the transition.

The behavior of Model B differs qualitatively from that of
Model A at both low- and high-volume fraction. Figure 4(c)
shows P2, fcryst, and C̃V for Model B at the relatively low-
volume fraction of φ = 0.407. As before, the values of P2

and fcryst are small at large Tr indicating an isotropic melt.
Unlike the previous results, in this case there are two phase
transitions. At Tr = TIN ≈ 0.117 there is a jump in the ne-
matic order parameter P2 and a peak in C̃V , indicative of an
isotropic–nematic transition. In addition, at Tr = TNC ≈ 0.025
there is a rapid rise in the crystalline order parameter fcryst,
marking a transition from a nematic to a crystalline phase.

Notably, C̃V shows no distinguishable peak at this tran-
sition. We explain the lack of a second peak to a low
“signal-to-noise” ratio, i.e., this transition has a small heat
of fusion (see the SM [70] for curves of the internal energy)

making the peak small, and there is statistical sampling error
in the heat capacity (a second-order derivative of �) that
makes the peak indistinguishable from noise. Physically, we
reason that the heat of fusion for the crystallization transition
is small, because the chains are already nematically aligned,
and positional ordering is a relatively small collective move-
ment from aligned chains. Regardless, the order parameter
profiles make it clear that crystallization in this system re-
quires a transition from an isotropic melt to a nematic phase,
and a transition from a nematic to a crystal phase.

The evidence for two transitions is further reinforced by
simulations at higher volume fraction. Figure 4(d) shows plots
of the thermal profiles of P2, fcryst, and C̃V for Model B at
φ = 0.463. Here the results are qualitatively similar to the
lower-density case, with an IN transition at TIN ≈ 0.164 and
an NC transition at TNC ≈ 0.131. Again in this case, because
of a small heat of fusion, one cannot distinguish the peak in the
heat capacity for the crystallization transition from statistical
sampling error, which give rise to spurious fluctuations in C̃V

that are on the order of kB per bead.
From the above, we conclude that there are three equilib-

rium phases in Model A and Model B: an isotropic melt (I),
a nematic phase (N), and a crystal phase (C). Additionally,
we find evidence that isochoric crystallization in Model A
proceeds via a single step, but takes place in two steps in
Model B. The data for Model A agrees with our previous
study that also included images of real-space configurations,
2D structure factors, and other order parameters [17].

B. Comparison of the phase behavior of Model A and Model B

In this section, we explore in greater detail the surpris-
ing result that Model A has a single-step melt to crystalline
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FIG. 5. Phase diagrams for (a) Model A and (b) Model B in the
φ−Tr plane containing crystalline (C), nematic (N), and isotropic
melt (I) phases. Solid curves are least-square fits to the data provided
as a guide to the eye.

transition, whereas Model B has a two-step transition with
an intermediate nematic phase. Recall that the only dif-
ference between these models is the form of the bending
potential: Model A has a discontinuous square-well potential,
and Model B has a continuous wormlike potential. We first
compile the results from numerous WLMC simulations of
Model A and Model B at different volume fractions into
phase diagrams in the φ−Tr plane in Figure 5. The order
parameter profiles for both models at all values of φ that
are used to create these phase diagrams are provided in
the SM [70].

The phase diagram for Model A is shown in Fig. 5(a), and
it contains two types of transitions along isochores. At low φ,
there is a transition T ′

IN from an isotropic melt to a nematic
phase. At high φ, there is a transition T ′

IC from an isotropic to
a crystalline phase. Separating these two transitions, there is
an isochoric critical volume fraction φ′∗

IN = 0.440.
The phase diagram for Model B is shown in Fig. 5(b), and

it displays qualitatively different behavior. For nearly all of
the volume fractions we computed, there is an isotropic to
nematic transition TIN along an isochore, and a nematic to

crystal transition that follows at TNC < TIN . At very low φ, the
NC transition occurs at or very close to Tr = 0 or it disappears
entirely. As we discuss below, we suspect that this behavior
is due to the temperature-dependent stiffness of the chains at
low Tr . At high φ, the IN and NC curves appear to converge,
and we speculate that there is a single-step IC transition TIC

beyond a critical point (T ∗
IN , φ∗

IN ) ≈ (0.164, 0.473). Unfortu-
nately, we were unable to directly observe a single-step IC
transition in Model B due to large computational costs for very
dense systems.

It is useful to compare both of these models to a system
of freely jointed chains (FJC) of hard spheres, which crystal-
lizes at a critical volume fraction of φ∗ ≈ 0.57 independent
of temperature [61,92]. We hypothesize that the presence of
temperature-dependent chain stiffness in the present models
promotes alignment that reduces the volume fraction where
crystallization can occur compared to the FJC.

The difference between the phase diagrams for the two
models is relevant for the debate in the literature on the
mechanism of polymer crystal nucleation. The crystallization
transition for Model A when φ > φ′∗

IN is a single-step tran-
sition consistent with CNT. By contrast, the crystallization
transition for Model B when φ < φ∗

IN is a two-step transition
with a nematic intermediate, consistent with the theories of
Strobl et al. [14] and Milner [15]. The change in equilibrium
behavior will also significantly impact the free-energy barri-
ers and the relative free energy of metastable intermediates,
the latter of which has been shown to be important in flow-
induced crystallization [27]. Computing such barriers requires
a complete temperature-dependent free-energy surface [17],
which we leave for future investigation.

It remains to understand why there is such a dramatic
qualitative difference in the phase behavior of the two mod-
els. Because the only difference is the bending potential, we
reason that chain stiffness must be a key factor. To better un-
derstand how chain stiffness differs between the two models,
we computed the temperature dependence of the persistence
length lp for both types of chains. The persistence length is
defined as the length scale that characterizes the decorrelation
of segments along the chain backbone and is a measure of
chain stiffness [81],

〈cos θ (s)〉 = exp(−sl0/lp) (31)

where θ (s) is the angle between two bonds along the chain
separated by s bonds. To eliminate excluded volume and
density effects, we calculated lp using “phantom chain” (i.e.,
models neglecting nonbonded interactions) NVT-ensemble
Monte Carlo (MC) simulations. Further details of these cal-
culations are given within the SM [70].

In addition, as both models are types of freely rotating
chains, it is possible to compute closed form expressions for
the persistence length of both models as a function of temper-
ature. The persistence length of a freely rotating chain is given
by [81]

lp

l0
= 1

2

[
1 + 〈cos θ〉
1 − 〈cos θ〉

]
. (32)
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FIG. 6. Dimensionless persistence length lp/l0 vs reduced tem-
perature Tr = kBT/εθ for phantom Model A (magenta) and phantom
Model B (blue). For both models, lines are theoretical predictions
(detailed in the SM [70]). The standard errors of data points are
smaller than the size of the symbols.

For phantom Model A, the ensemble-averaged bond angle is
given by

〈cos θ〉 = 19

20

exp (1/Tr ) − 1

exp (1/Tr ) + 19
. (33)

For phantom Model B, the average bond angle is given by

〈cos θ〉 = 1 − Tr − 2

1 − exp (2/Tr )
. (34)

Further details on the derivation of the relationship between
the ensemble-averaged angle 〈cos θ〉 and temperature are
available within the SM [70].

Figure 6 shows the dimensionless persistence length lp/l0
for phantom Model A and phantom model B versus the re-
duced temperature Tr alongside the theoretical expressions
defined by Eqs. (32), (33), and (34). The data for the phantom
chains agrees very well with the theoretical results. Intuitively,
both models have a smaller lp (indicating more flexible chains)
at higher temperatures when thermal fluctuations are strong
and a larger lp (indicating stiffer chains) at lower temperatures
when thermal fluctuations are weak. Additionally, both mod-
els become flexible as Tr → ∞, approaching lp/l0 = 0.5 (the
value for a freely jointed chain). Finally, we show in the SM
[70] that data for phantom simulations with additional models
(DSH, CSH) collapse to the same curves, indicating that the
reduced temperature that has been normalized by the bending
elasticity is the proper dimensionless parameter.

The differences in the persistence length curves between
the models is more interesting. For Model A, the stiffness
sharply increases around Tr ≈ 0.25, and the persistence length
converges to lp/l0 = 19.5 as Tr → 0. By contrast, the chains
in phantom Model B smoothly proceed from flexible to stiff
and the persistence length diverges as lp ∼ T −1

r as Tr → 0.
Upon reflection, both behaviors are consistent with their re-
spective bending potentials. The discontinuous stiffness in
Model A has a finite reward per bond for remaining below θs,
meaning increasingly low temperatures cannot induce further

stiffening. On the other hand, the harmonic penalty for worm-
like chains in Model B penalizes even minute deviations of
bond angles from 180◦, and this penalty increasingly domi-
nates as Tr approaches 0.

Because the persistence length of the chains in Model
B diverges and those in Model A do not, the most drastic
difference between the models is at low Tr , precisely where
crystallization occurs. We hypothesize that this difference in
persistence length at low Tr is the cause of the differences
in phase behavior, and therefore accounts for the one-step
or two-step crystallization transition. In order for entropy to
favor chain crystallization, the chain must either be (i) very
stiff locally to prefer a lattice to conformational fluctuations
(stiffness-driven crystallization) or (ii) it must be in a very
dense environment to prefer the relative freedom of a lattice
to liquid-like packing (density-driven crystallization). Chains
in Model A align nematically as temperature decreases, but
because lp reaches a plateau, they apparently cannot become
stiff enough to crystallize via mechanism (i). Thus, Model A
must be above a critical density in order to crystallize, limiting
them to a one-step crystallization transition at constant φ.
By contrast, the chains in Model B have no such plateau,
so a stiffness-driven crystallization is possible as temperature
decreases even for moderate densities. Thus, Model B can
exhibit an isochoric two-step crystallization transition.

C. Effect of excluded volume on the phase behavior of Model C

While useful for Monte Carlo studies, models with hard
sphere repulsion and rigid bonds are rarely useful in molec-
ular dynamics and are not compatible with simulations in
a constant pressure ensemble. As such, in this section we
investigate a model with a continuous bending potential,
spring-like bonds, and nonbonded interactions modeled by
a WCA potential (i.e., the CSW model or Model C). The
softness of nonbonded interactions are also important for the
debate on polyethyelene crystallization, because models with
different levels of coarse graining are largely distinguished
by their nonbonded interaction parameters. Accordingly, we
investigate here if the relative strength of excluded volume
interactions significantly alter the phase behavior [93,94].

The addition of spring-like bonds and soft-sphere repul-
sive interactions introduces new degrees of freedom to the
dimensional analysis. The spring bonding potential Eq. (12)
contains a length scale l0 and an energy scale εl , and the WCA
nonbonded potential Eq. (16) contains an energy scale εi j . As
discussed in Sec. II A, l0 is constrained to be equal to the bead
diameter σ in order to ensure crystallization is possible. Addi-
tionally, very flexible bonds are only appropriate for capturing
the “entropic spring” behavior of highly coarse-grained mod-
els, rather than the more detailed models we examine here that
are appropriate for studying crystallization. As such, we are
restricted to the case where εl � 1kBT/a2. Our preliminary
tests with this parameter did not result in meaningful effects
on low-temperature phase behavior.

By contrast, the strength of nonbonded interactions are
very impactful for crystallization. We define a dimensionless
parameter ε∗

θ = εθ/εi j as the ratio of the bending modulus
to the excluded volume parameter. When ε∗

θ � 1, bend-
ing dominates over excluded volume interactions, and when
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ε∗
θ � 1, the excluded volume interactions dominate over

bending.
Figure 7 shows a phase diagram for Model C with ε∗

θ ∈
{0.1, 1, 10} alongside the data for Model B from above. The
thermal profiles for Model C used to create this diagram are
given within the SM [70]. Similar to Model B, the phase
diagram for Model C contains a IN transition at higher Tr

and a NC transition at lower Tr along an isochore. While
the phase diagram for Model C appears qualitatively similar
to the behavior of Model B, there are apparent quantitative
differences in the φ−Tr plane based on the relative strength of
the excluded volume interactions ε∗

θ .
The isotropic to nematic (IN) transition line for Model C

with ε∗
θ ∈ {0.1, 1, 10} and for Model B is shown in Fig. 7(a).

The line for hard bead interactions (Model B) appears to be
the limiting behavior, and the IN line shifts to the left as
excluded volume interactions weaken. In other words, for an
equal value of φ, chains with softer nonbonded interactions
order at a lower TIN .

The nematic to crystallization transition line (NC) from
the same simulations is shown in Fig. 7(b). Similarly, the
hard bead interactions are to the right of all of the soft bead
curves, with the NC line shifting to the left as the nonbonded
interactions soften.

Apparently, for both types of transitions, softness reduces
the drive to order. Given that both alignment and crystalliza-
tion are driven by entropy, softer excluded volume interactions
mean the effective bead size is smaller, giving the system rel-
atively more degrees of freedom for individual bead motion.
Finally, recall that Tr is normalized by the bending modulus,
so the effect of bending is scaled out.

The importance of excluded volume reinforces the notion
that the system volume fraction is of primary importance.
However, the volume fraction φ defined in Eq. (1) does not
account for the bead overlap that is permitted when using the
softer WCA potential. As such, we compute an effective hard
sphere diameter [71]

aeff =
∫ ∞

0
(1 − e−Upair (ri j )/kBT )dri j, (35)

and use it to define an effective volume fraction

φeff (T ) = πa3
effNcNb

6V
. (36)

Figure 7(c) shows the phase diagram for Model C using the
newly defined φeff . Remarkably, both the IN and NC curves
for all values of ε∗

θ collapse to the hard sphere data from
Model B. From this, we infer that the dimensionless parame-
ters φeff and Tr are sufficient to explain the phase behavior, and
that Model C exhibits the same qualitative and quantitative
phase behavior as Model B when propertly scaled.

IV. CONCLUSIONS

We have shown that the crystallization behavior of simple
polymer models critically depends on the character of its local
stiffness. Using an equilibrium approach based on WLMC
simulations, we simulated two families of relatively simple

FIG. 7. Phase diagram for Model C (soft bead) where the param-
eter characterizing excluded volume interactions (ε∗

θ ) varies over two
orders of magnitude. Data for Model B (hard bead) is also shown for
comparison. (a) The IN transition line in the φ−Tr plane for various
values of ε∗

θ . Curves are drawn on the data to guide the eye. (b) The
NC transition line in the φ−Tr plane for various values of ε∗

θ . Curves
are drawn on the data to guide the eye. (c) All data in a rescaled phase
diagram in the φeff−Tr plane. Lines and shading are unchanged from
Fig. 5(b) above.
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polymer models: polymers with a discontinuous local bending
potential (Model A) and those with continuous local bending
potential (Models B and C). Polymers in Model A exhibit only
a one-step isochoric crystallization transition due to excluded
volume interactions. By contrast, polymers in Models B and
C can show a two-step isochoric crystallization transition that
is mediated by nematic ordering. Importantly, the persistence
length behavior of the chain is only a function of the reduced
temperature, and its low temperature trend predicts the crys-
tallization behavior.

Comparing simulations of hard beads (Model B) and
purely repulsive soft beads (Model C) reveals that the strength
of the excluded volume interactions also plays an important
role in the crystallization behavior. Remarkably, these inter-
actions are fully accounted for using an effective hard sphere
diameter. Thus, the type of bending potential appears to deter-
mine the “universality class” of crystallization phase behavior
for these models.

The hypothesis that local polymer stiffness controls the
mechanism of polymer crystallization mechanism is intrigu-
ing but it has yet to be tested with chemistry-specific models
or experimental data. Certainly, an immediate area of interest
are models that include attraction and models with stiffness
created by torsional degrees of freedom rather than bending.
Notably, the role of attractive interactions has already gener-
ated attention, with recent research suggesting that attraction
“shifts” phase boundaries but does not qualitatively change
behavior [37–40,59,60,69].

Additionally, more study is needed related to the effects of
a finite simulation box and chain length. Studies on finite-size
scaling of first-order phase transitions [95–97] and our own
preliminary data (see the SM [70]) suggest that the precise
values of the transition temperatures (but not the relative loca-
tion) may depend on the box size, but additional data is needed
to perform a more careful study. The effects of polymer chain
length are also very interesting and potentially have implica-
tions for the origin of folded-chain crystals [37,38,98]. Studies
of both effects will require methodological refinements to be
able to access larger simulation domains.

Regardless, the approach and results demonstrated here
have the potential to reframe the ongoing debate about pri-
mary nucleation in polymer crystallization. For example, one
can imagine reframing simulation parameters of existing mod-
els in terms of dimensionless groups with respect to universal
phase diagrams. Doing so could help researchers rigorously
compare their models and to better understand the effects
of thermodynamics versus kinetics in determining the crystal
nucleation mechanism.
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