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Grain rotation in impurity-doped two-dimensional colloidal polycrystals
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Grain texture evolution and coarsening after quenching can be achieved by curvature-driven growth and grain
rotation. Here we examine grain rotation in coarsening, impurity-doped, two-dimensional colloidal polycrystals.
We find the rate of rotation to be independent of the impurity concentration and proportional to the inverse
of the grain size. The latter is rationalized by considering grain rotation driven by grain-boundary sliding and
particle diffusion in the lattice. We also show that rotation driven grain growth and curvature driven growth are
independent, with the latter being the dominant mechanism in our system. Next, we examine the dislocation
reactions underlying grain rotation and observing its facilitation via the effective “sinking” of grain-boundary
dislocations into triple junctions, as has been predicted by simulations.
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I. INTRODUCTION

Rotation at the microscale is often driven by a torque re-
sulting from an energy gradient along the surface of the body;
examples being micromotors utilizing interfacial tension gra-
dients [1], cholesteric droplets rotating with a temperature
gradient [2], and electrochemical gradients in motor proteins
driving the rotation of bacterial flagella [3]. Domain growth
in polycrystals is typically driven by a reduction in the total
interfacial energy of the system, which generally manifests
as curvature-driven grain growth [4]. However, grain rotation
is another means of interfacial energy reduction, as grain
boundaries (GBs) with smaller misorientations are generally
lower in energy with a lower density of dislocations [5]. With
sufficient rotation grains can combine, a process known as
grain-rotation-induced coalescence [6–8].

Grain rotations can be observed in atomic systems under
certain conditions, such as annealing thin films [9,10], mate-
rials under strain [11,12], and in the coarsening of alloys and
ceramics [13–15]. There have also been numerous simulations
studying the rates and incidence of grain rotation during coars-
ening [16–19]. In particular, Moldovan et al. [6] found the
angular velocity ω of simulated grains to be well described by
ω = Mτ , where M = CR−p is the rotational mobility, R is the
radius of the grain, p an integer, C a constant dependent upon
the width of the GB, grain size and ratio of particle diffusion
constants within the lattice and GB [20], and τ is the torque.
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In setting out a theory for the mechanism of grain rotation,
Li [13] suggested there are two possible rate-controlling pro-
cesses: the motion of dislocations in the grain boundary and
diffusion of particles in the grain. Whichever mechanism is
the slowest will determine C and p.

In atomic systems, rotation-induced coalescence is often
measured under conditions where the relative contribution of
rotation to grain growth is elevated, such as via increased
torque through applied stress, or faster particle diffusion at
higher temperatures [13,21–23]. For grain growth during typ-
ical recrystallization, however, curvature-driven growth can
be impeded by the presence of impurities, as Zener pinning
lowers the translational mobility of grain boundaries [4]. The
mechanism of grain rotation will be affected differently by
the presence of impurities, therefore, the relative contribu-
tion of grain rotation to grain growth may be different for
doped materials. As real materials are likely to contain impu-
rities [5,24], understanding grain rotation is important to help
controlling grain size and therefore material properties.

Grain rotation has also been observed in colloidal
crystals—which allowed for a detailed analysis of the
structure and dynamics at the particle level—during the co-
alescence of isolated crystallites [7] and the shrinkage of
grain-boundary loops [25–27]. However, the latter experi-
ments are not necessarily representative of grain growth in
polycrystals, owing to the lack of a grain-boundary network.
More recently, grain rotation in colloidal polycrystals un-
der shear was studied [28], finding stress-induced rotation
to be permitted by the emission of dislocations from grain
boundaries. Additionally, spontaneous grain rotation leading
to coalescence has been observed in adjacent grain-boundary
loops [29]. Also, the role of impurities in grain-boundary seg-
regation [30] and curvature driven grain growth [31] has been
addressed in colloidal crystals containing a controlled amount
of impurities. However, the effect of impurities on grain
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FIG. 1. (a) A representative image of the doped polycrystalline
colloidal monolayer. (b) An image showing the grains colored by
orientation (see the color bar), and the grain boundaries drawn in
black. (c) A distribution of individual particles’ orientations within a
representative single grain, relative to the average.

rotation in polycrystalline colloidal systems have not been
addressed to date. Furthermore, previous work has suggested
that triple-junctions may be reaction sites that effectively act
as “sinks” for dislocations during grain rotation, which has
been observed in simulations [32].

In this work, we measure and examine the role of grain
rotation in an impurity-doped polycrystalline monolayer of
colloidal particles undergoing grain growth. Note that the
roles of crystallization and curvature-induced grain growth
were studied in Ref. [31]. Here, we track the rotational ve-
locity of the grains, finding that it is proportional to the
inverse of the grain size, with the apparent mechanism con-
sistent with grain sliding [33]. We contextualise the rates
of rotation and rotation driven grain growth to the overall
rate of coarsening and presence of impurities. We next di-
rectly visualize the dislocation dynamics underlying grain
rotation, and demonstrate the role of triple junction as an
effective “source” and sink of dislocations during grain
rotation.

II. EXPERIMENTAL METHODS

The experimental colloidal system is formed by a mono-
layer of melamine formaldehyde spheres, comprised of
host and impurity particles, with diameters of 2.95 μm
and 6.20 μm, respectively. The monolayer sits at the bot-
tom of a quartz (20 mm × 9 mm × 200 μm) Hellma
cell [25,30,31,34], an example of which can be seen in
Fig. 1(a). The total area fraction is φ ≈ 0.75, with six
impurity concentrations in the range 0 < φi � 0.114, and
the data are averaged over 42 different experimental runs.
Images are taken on an Olympus CKX41 bright-field micro-

scope with an Olympus 20× objective, and a field-of-view
encompassing ≈3.5 × 104 particles. Image recording be-
gins concurrent with the sedimentation of particles to
the bottom of the cell. The result is a polycrystalline struc-
ture which coarsens over time, with grains consisting of
neighboring similarly orientated particles, shown in Fig. 1(b).
As particles sediment to the bottom of the cell, the system
becomes quenched into the crystalline phase and therefore
crystallizes. Crystal growth occurs simultaneously with grain
boundary driven growth, as was addressed in our previous
work [31].

We find particle coordinates using standard proce-
dures [35], and we detect individual grains and the grain
boundaries using the methods of Lavergne et al. [31,34].
Next, we find all of the particles within a single grain and
the segments of the grain boundary, each with a length � j

and misorientation �θ j . A representative distribution of the
orientations of the particles, θ , is shown in Fig. 1(c). The grain
radius R is approximated using the number of particles, n, in
the grain: R = 1

2 a0
√

n, where a0 is the lattice spacing. The
orientation of the grain is taken as the average of the distri-
bution, 〈θ〉. We measure the angular velocity ω, by measuring
the change in 〈θ〉 over a time range of 15tB (where tB ≈ 30 s).
This time range is chosen as the fluctuations in 〈θ〉 are found
to be uncorrelated after this time lag.

III. RESULTS AND DISCUSSION

A. Quantifying grain rotation in a polycrystal

From our experiments, we determine how the average ori-
entation of the particles in a grain, 〈θ〉, changes with time at
a rate ω = d〈θ〉/dt , where ω is the angular velocity. First, we
examine the probability distributions of the measured angular
velocities in Fig. 2(a) for three different impurity concentra-
tions φi. Crucially, we examine a narrow window of grain
sizes (radii of 4a0–6a0) to minimize any size-dependence of
the angular velocity. This is important because higher impu-
rity concentrations lead to slower grain growth rates and a
smaller average grain size, as shown in our previous work
on this system [31]. Interestingly, there is no apparent dif-
ference between each φi, which suggests that the presence
of impurities does not affect the grain rotation mechanism.
Thus, in the following, we average our data over all φi. Ad-
ditionally, the majority of impurities are located in the grain
boundaries [30,31], which would sensitively affect the motion
of dislocations in the boundaries. Therefore, we anticipate the
diffusion of particles in the grain to be the rate-determining
mechanism for grain rotation [13].

Next, we quantify the rate of grain rotation. Following
Ref. [6], we note that a grain has multiple neighboring grains,
each contributing a segment j to the total grain-boundary
length, with its own misorientation �θ j , length � j , and grain-
boundary energy γ j . Each segment will provide a contribution
to the total torque based on the magnitude and direction
of the energy gradient, and length of the boundary: τ =∑

j � jγ
′
j , where γ ′

j = dγ j/d�θ j , which is positive (nega-
tive) if the energy gradient favors clockwise (anticlockwise)
rotation [6,9,20]. Using the Read-Shockley equation for grain-
boundary energy [36], γ = γ0�θ (A − ln �θ ), where γ0 and A
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FIG. 2. (a) The distributions of grain angular velocities for three different impurity area fractions, φi, all taken for a small window of grain
sizes (4a0–6a0). (b) A plot of grain radius R, scaled by the lattice spacing a0 against the magnitude of the angular velocity of each grain, ω, in
radians per Brownian time tB. The inset is the log-log plot of this. (c) The components of Eq. (4) plotted.

are constants, the torque can be expressed as

τ = 2πRγ0(AW − 
W ). (1)

Here, AW and 
W are the sums over the grain-boundary
segments’ contributions to the grain-boundary energy
gradient, AW = {A − 1} ∑

j s j� j/2πR and 
W =∑
j s j� j ln �θ j/2πR. Note that both AW and 
W are divided

by the perimeter of the grain
∑

j � j = 2πR (assuming
circular grains), meaning that both quantities are weighted
averages, which are measurable from our experiments.

The direction of the grain boundary energy gradient is en-
compassed by s j = ±1. Recalling that ω = Mτ = CτR−p [6],
we can use Eq. (1) to write the angular velocity of a rotating
grain as

ω = 2πCγ0
AW − 
W

Rp−1
. (2)

From Eq. (2), we expect a power-law relationship between ω

and R. As shown in Fig. 2(b), where we plot |ω| as a function
of the grain size R, we find that ω is almost inversely propor-
tional to R: |ω| ∼ R−k , with k = 0.92. Intriguingly, this is in
contrast with previous analytical and simulation approaches
to grain rotation in polycrystalline networks [9,13,37], where
the exponent was reported to be all integers from −5 to 0,
excluding −1.

To rationalize this dependence, similarly to the approach
of Moldovan et al. [20], we apply Raj and Ashby’s theory
of diffusion-accommodated grain-boundary sliding [33] to
obtain an expression for the angular velocity of grain rotation.
As shown in the Appendix, we find the following expression:

ω = 2τ

kBT R2
DL, (3)

where DL is the diffusion constant of particles in the lattice.
Comparing Eq. (3) with ω = Mτ = CR−pτ [6] shows that
within this diffusion-accommodated grain-boundary sliding
approach [33], p = 2 and C = 2DL/kBT . Therefore, the ro-
tational mobility M = 2DL/kBT R2.

As ω ∝ R−(p−1) [see Eq. (2)], this leads to ω ∝ R−1, con-
sistent with the exponent measured in our experiments. It is
important to note that to obtain Eq. (3) (see Appendix), we
deviate from Moldovan et al. [20] in two respects. First, we

treat the shape of the grain boundary to be independent of
the grain size. This is based on our previous work on this
system [31], where we found that the system exhibits dynamic
scaling. Hence, we expect self-similarity in the grain size and
shape and therefore that they are independent. Second, we
truncate the Fourier series describing the boundary shape at
the first term (see Appendix), as in our colloidal system, any
roughness should be averaged out due to thermal fluctuations
of the boundary [38]. From the comparison with the diffusion-
accommodated grain-boundary sliding approach [33], we thus
infer that the grain rotation observed in our experiments are
being driven by particle diffusion through the lattice. This is
encapsulated in the rotational mobility M, which is dependent
upon rate of diffusion DL and inversely proportional to the
number of particles that must diffuse (M ∝ n−1 as n ∝ R2).

Having quantified and uncovered the origin of the grain-
size dependence of ω, we can now use Eq. (3) to test if the
torque is well described using the Read-Shockley equation,
and then determine DL. From our data, we measure the grain
radius R, angular velocity |ω| and weighted average misori-
entation 
W and AW . The latter parameter AW is rewritten
as AW = {A − 1}W , where W = ∑

j s j� j/2πR. Combining
Eqs. (1) and (3) and rearranging, we find:

ωR

W
= 4πγ0DL

kBT

(
{A − 1} − 
W

W

)
. (4)

Based on Eq. (4), we plot ωR/w as a function of −
W /W , as
shown in Fig. 2(c), and observe that the data are indeed well
described by a linear fit. From the gradient, we can determine
DL, as γ0 = Ea0/8π (1 − ν2) [36], where E is the Young’s
modulus, a0 the lattice spacing, and ν the Poisson ratio. From
previous work on colloidal crystals, we use the approximate
values of ν = 1/3 [39] and E = 560kBT/a2

0 [40] and combine
this with the measured gradient of 1.20a0t−1

B to find a value of
DL = 1.1 × 10−3 μm2 s−1.

Within our experimental time window we did not reach the
long-time diffusive limit to be able to reasonably measure DL

directly. Nevertheless, there are experimental studies examin-
ing vacancy diffusion albeit in very soft colloidal crystals [41]
where the vacancies are delocalized, resulting in high diffu-
sivity [42]. For hard-sphere potentials, simulations show that
vacancy diffusivity decreases with an increased area fraction
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FIG. 3. A 2D histogram of the change in the number of particles
in a grain, dn/dt , versus the angular velocity, ω. Note that the
quantities have been averaged over 10tB to reduce noise.

to become one or two orders of magnitude slower than that of
a single particle [43,44]. As we are not aware of experimental
measurements of lattice diffusion in the literature, we ratio-
nalize the value of DL, by considering lattice diffusion as the
activated motion of particles mediated by an activation energy
Ea, in line with previous theoretical [45] and simulation ap-
proaches [46]. Assuming an Arrhenius-like equation for the
rate of diffusion in the lattice, DL = D0 exp(−Ea/kBT ), we
can take D0 as the Stokes-Einstein diffusion coefficient for our
colloidal particles (D0 = 1.4 × 10−1 μm2 s−1, which is the
expected [43] two orders of magnitude higher than our lattice
diffusion), and therefore find Ea. We estimate Ea ≈ 4.5kBT ,
which is in line with the values for particle diffusion in
the lattice for comparable hard-sphere colloidal crystals [46]
and thus validates our measurement of DL. Finally, from
the intercept: using the fact that in the Read-Shockley equa-
tion A = 1 + ln a0/2πr0 [36], where r0 is the dislocation core
radius [5], we measure a value of A = 0.656, which leads to
a0/r0 = 4.40, consistent with values previously measured in
colloidal crystals [47,48].

B. Contribution of grain rotation to grain growth

Next we briefly and qualitatively discuss the relative con-
tribution of grain rotation to the overall rate of grain growth
in the colloidal polycrystals. Rotation-induced grain growth
occurs when a grain rotates to coalescence with a neighboring
grain, whereas motion of the grain boundaries perpendicular
to their profile serves to reduce the curvature, and thereby
energy, of the boundaries [4,49]. First, we establish whether
there is a coupling between these two mechanisms by plotting
a two-dimensional (2D) histogram of the angular velocity,
ω, versus the rate of change in the number of particles in
the grain, dn/dt , as shown in Fig. 3. It is observed that the
distribution is symmetric in both axes with no skew, and has
a Pearson correlation coefficient of ρX,Y = 0.018. Therefore,
there appears to be no correlation between the rotational
velocity and change in grain size, which suggests there
is no significant coupling between rotation-mediated and

curvature-driven grain growth. As a result, we can separate
the two mechanisms and combine them into a single growth
law for the grain size R as follows:

dR

dt
=

(
dR

dt

)
curv

+
(

dR

dt

)
rot

, (5)

where curv and rot denote contributions from curvature- and
rotation-driven grain growth, respectively.

In principle, this may suggest that curvature- and rotation-
driven growth could have equal importance with respect to
grain growth, however in our experiments we find this not to
be the case. Grain growth in our system has been success-
fully described with only curvature driven growth accounted
for Ref. [31], which suggests that the contribution of grain-
rotation-induced coalescence is only minor in our system.
This is illustrated by the following example: a grain with a
diameter of 4a0 and a misorientation of 1◦ would coalesce via
grain rotation in ≈20tB.

As the rotation rate is found to be independent of the (low)
impurity concentration used here, we compare this to the cur-
vature (κ) driven rate in an impurity-free GB estimated using
the Herring relation for linear GB velocity, v = M�κ [4]. Us-
ing experimental values for the GB stiffness, � and mobility,
M [38], a grain with a diameter of 4a0 would disappear in
≈1tB, i.e., much faster than via grain rotation (despite the
small grain size and misorientation). We note, however, that
at impurity concentrations higher than in our experiments,
the rate of curvature driven growth may be slower than rota-
tion, due to Zener pinning. Additionally, rotation driven grain
growth may become more significant in other situations, as
has been shown in atomic systems, either through a higher
temperature and rate of particle diffusion [13,21,22,50] or an
increase in torque, e.g., via an applied stress [23,28,51,52].
This may mean that rotation forms part of the mechanisms
of recovery after deformation via annealing, and dynamic
recrystallization at high temperatures, and strains [4]. How-
ever, given our colloidal system follows the crystallization
and grain growth after the quenching of a fluid, the small
contribution of rotation to grain growth is consistent with
observations of atomic systems.

C. Dislocation dynamics during grain rotation

As established in Sec. III A, particle diffusion in the grain is
the dominant rate-limiting mechanism for grain rotation in our
system. The alternative rate-controlling process, as originally
suggested by Li [13], is the motion of dislocations in the
grain boundary. While the latter mechanism may not be rate
limiting in our system, it is crucial to facilitate rotation to a
lower misorientation, as the number density of dislocations
must necessarily be reduced [5]. This is achieved by dis-
locations gliding towards one another and reacting [25,53].
Such behavior has been observed in a colloidal polycrys-
tal under shear [28], with dislocations gliding cross-grain,
perpendicular to the boundary, to annihilate on the opposite
side. In spite of this, recent work on atomic systems [54] has
shown rotations at tilt boundaries (such as those in our sys-
tem) can occur with dislocation glide and reactions along the
boundary itself, resulting in little change in the shape of the
boundary. In this work they also follow dislocation
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FIG. 4. Rotation to coalescence of a single grain during coarsening. (a) Microscopy images of a small grain A, which rotates to coalesce
with a larger adjacent grain B. (b) Particle coordinates from panel (a) colored by orientation (see key) with grain boundaries drawn in black.
The left image is before rotation, the right shows the same field-of-view after grains A and B have coalesced. (c) The orientations of grains A
and B over time (scaled by the particles’ Brownian time tB), showing grain A’s rotation to coalescence. (d)–(i) Voronoi constructions during the
coalescence process with five- and seven-coordinate particles represented in red and green, respectively. Dislocation reactions with associated
Burgers vectors are highlighted with boxes below the corresponding snapshots.

reactions via simulations, where they note that triple junctions
effectively act as sinks, similar to previous simulations [32].
Despite the fact that particle diffusion in the lattice is the
rate-limiting mechanism in our system, we do observe rare
yet noteworthy instances of small grains rapidly rotating to
coalescence. During this process, the dislocation density must
be reduced through dislocations gliding and reacting, hence
these rare occurrences provide a perfect opportunity to exper-
imentally follow dislocation reactions and the role of triple
junctions in a grain that rotates to coalescence.

We now study the rotation to coalescence of a small grain.
These instances are unusual in terms of their relatively fast
rate of rotation. However, because of this increase in angu-
lar motion, the relative timescales of the two rate-limiting
mechanisms are much closer and we can clearly observe
dislocation motion and reactions during coalescence. An ex-
ample of this small grain rotation to coalescence is shown
in Fig. 4(a), where grain A coalesces with grain B, as is
also evident from the orientation plots in Figs. 4(b) and 4(c).
Note that the small size (≈5a0) and the fact that both the left
and right grain boundaries’ misorientations are lowered by
an anticlockwise rotation, make this particular grain highly
receptive to grain rotation. Interestingly, the particles in grain
A move collectively (see Appendix), in stark contrast with
the diffusive motion we suppose in Sec. III A. Such motion,
coupled with the sudden start to rotation [seen in Fig. 4(c) at
≈370tB], indicates a relaxation of some elastic energy. This

may even be a fingerprint of grain sliding, as Gifkins [55]
notes: during the sliding process, dislocations can accumulate
at the triple-junctions, causing a buildup of stress, which is
then subsequently relieved by the rotation of the grain and the
gliding and reactions of dislocations along the boundary.

We do indeed find this particular dislocation motion, with
the gliding and reactions associated with the rotation shown
in Figs. 4(d)–4(i). These are Voronoi constructions of the
particle coordinates at points during the coalescence, with
cells colored by the number of neighboring particles (6-white,
5-red, and 7-green). The 5,7 coordinate pairs constituting
dislocations sit along the grain boundaries with their orien-
tation defined by one of six Burgers vectors. These have a
magnitude of one and are defined by a hexagonal coordinate
system (a, b) which is restricted to a and b being equal to
−1, 0, or 1. Figures 4(d)–4(i) are a time series, showing
the progression of dislocation gliding and reactions during
the process of rotation of grain A. Highlighted in boxes and
underneath each figure are the important dislocations (labeled
with their Burgers vector) that are involved in and produced by
reactions.

The first reaction occurs in Fig. 4(d) at the bottom-most
triple junction, with three dislocations combining. Next, from
Figs. 4(e)–4(f), a dislocation from the top-most triple junction
glides along the grain boundary, and reacts with a dislocation
in the A-B boundary. The produced dislocation continues
this anticlockwise motion along the A-B boundary from
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Figs. 4(g)–4(h). Finally, a dislocation from the bottom-most
triple junction glides out, along the boundary, to annihilate
with the final dislocation between A and B, leading to a total
Burgers vector of (0,0) and no overall grain boundary. From
this, we surmise that the grain rotation in our system occurs
with dislocations gliding parallel to the grain boundary, and
that the triple junctions are of key importance to this, acting as
reaction sites for reactions, and are hence rendered as sources
and sinks [32,54,56] for dislocations.

IV. CONCLUSIONS

Overall, we have studied the rate, role, and mechanism of
grain rotation during coarsening in an impurity-doped two-
dimensional colloidal polycrystal. We find the rate of rotation
to be inversely proportional to the grain size and indepen-
dent of the impurity concentration. This indicates that the
rate-limiting mechanism is the diffusion of particles in the
lattice, which we rationalize by comparing our measurements
to an expression for the angular velocity of grain rotation
based on diffusion-accommodated grain-boundary sliding.
We contextualise the contribution of rotation-induced coales-
cence to grain growth, showing that rotation is independent
of curvature-driven growth, which is highly dominant un-
der our experimental conditions. We note the existence of
rare elastically driven rotation events, utilizing their pres-
ence to examine the dislocation reactions associated with
grain-rotation-induced coalescence and confirm predictions
that triple-junctions enable rotation by effectively acting as a
sink for the dislocations.
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APPENDIX

1. A sliding circular grain

Moldovan et al. [20] applied Raj and Ashby’s theory of
diffusion-accommodated sliding [33] to rotating columnar
grains. Here we apply the assumptions of Moldovan et al.
to find an expression describing the rotation of our circular
grains. Raj and Ashby describe grain-boundary sliding due to
an applied shear stress T in the y direction along a boundary
whose shape is described by a cosine Fourier series:

x =
∞∑

n=1

hn cos
2π

λ
ny, (A1)

where hn is the magnitude of the mode and λ is the wave-
length. The diffusion-controlled sliding rate U is found to
be [33]

U = 2

π

T �

kBT

λ

h2
DL

⎛
⎝ ∞∑

n=1

⎧⎨
⎩

h2
n

h2(
1 + nπδ

λ

D⊥
GB

DL

)
⎫⎬
⎭

⎞
⎠

−1

, (A2)

where � is the atomic volume, δ is the width of the bound-
ary, and DL and D⊥

GB are the diffusion constants through the
lattice and across the grain boundary, respectively. Specif-
ically, D⊥

GB quantizes the rate of diffusion of a particle
moving from one grain to another across the grain bound-
ary. This is analogous to the perpendicular diffusion of the
grain boundary [38], rather than the supercooled-like dif-
fusion of particles parallel to, and within large-angle grain
boundaries [57,58].

In this case, we truncate the Fourier series at the first term,
as the thermal fluctuations of the boundaries are large enough
that roughness is averaged out [38], hence h1 = h/2 and
hn �=1 = 0. As our grains are circular and therefore periodic,
we approximate the wavelength as the length of the boundary
λ = 2πR. Therefore, Eq. (A2) simplifies to

U = 16
T �

kBT

R

h2
DL

{
1 + δ

2R

D⊥
GB

DL

}
. (A3)

The linear velocity is related to the rotational velocity: U =
ωR, and the stress being the force per unit length (in 2D) is
T = τ/2πR2, as the force is τ/R. Assuming the shape of the
boundary to be independent of the grain size [31], we take the
amplitude of grain-boundary fluctuations to be on the order of
the lattice spacing [38], hence h ≈ a0. The atomic volume is
� = πa2

0/4. Combining this with Eq. (A3) leads to

ω = 2τ

kBT R2
DL

{
1 + δ

2R

D⊥
GB

DL

}
. (A4)

Experimentally we find that ω ∝ τ/R2, which implies that
1 
 (δ/2R)(D⊥

GB/DL ), meaning lattice based diffusion DL

dominates and we find

ω = 2τ

kBT R2
DL. (A5)

We can rationalize the observation that 1 

(δ/2R)(D⊥

GB/DL ) as follows: From our measurements we
find that DL = 1.1 × 10−3 μm2 s−1 (Sec. III A), and from
Skinner et al. [38], who studied a very similar colloidal
system, we infer that D⊥

GB = 1.0 × 10−3 μm2 s−1. While
this is very similar to the lattice diffusion coefficient, the
importance of perpendicular GB diffusion also depends on
the ratio of the grain-boundary width to the grain radius.
From the mean-square grain-boundary width of Skinner
et al. [38], we find a boundary width of δ = 0.80a0. From
our previous work [31], we find the average grain sizes for
different impurity concentrations to vary from 5a0 to 18a0,
meaning the width to radius ratio is small. Hence, for our
system 0.020 � (δ/2R)(D⊥

GB/DL ) � 0.073, which is indeed
much smaller than unity, consistent with our experimental
observations.

2. Particle trajectories during rotation

In Fig. 5, we show a zoomed-in image of the particle
trajectories, with an overlay of the lattice of grain B (open
black circles) and the lattice of grain A (closed red circles).
The particles in grain A move from their initial positions
on the red circles to their final positions in the closest
black circle leading to an effective rotational motion. This
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FIG. 5. The trajectories in the background in grayscale, with the
lattice of grain B as black open circles and the lattice of grain A as
red closed circles.

motion is achieved as a collective, with all particles mov-
ing directly to their new lattice sites showing little diffusive
motion.

FIG. 6. (a), (b) Probability distributions of angular velocity at
high (φi = 0.114) and low (φi = 0.005) impurity concentrations, re-
spectively. Each line represents a different time interval, whose edges
are [0,50,100,150,200,250,300,400,500,750,1000], referenced in the
color bar. (c) A two-dimensional histogram, testing correlations be-
tween neighboring grains’ angular velocities, ωi, j , normalized for
their respective grain size Ri, j .

FIG. 7. Snapshots of the positions of particles colored by their
grain’s angular velocity, scaled by grain size. These are for a single
experiment with a low impurity concentration (a) at 200tB and (b) at
800tB.

3. Chirality in grain rotation

Here, we examine the possibility of chirality playing a
role in grain rotation. To this end, we measure the probabil-
ity distribution of angular velocities in a single experiment,
differentiating between clockwise (+) and anticlockwise (−)
motion. In Figs. 6(a) and 6(b), we plot this for high (φi =
0.114) and low (φi = 0.005) impurity concentrations, respec-
tively, at sequential times during the coarsening process.
Irrespective of φi, we see a consistent balance between clock-
wise and anticlockwise angular velocities, which implies that
overall there is no chirality in grain rotation in our system.
As each grain begins with a random orientation, the grain-
boundary orientations and thereby the torques acting on each
grain are also random, hence a symmetric angular velocity
distribution is expected. Note that, in our previous work [31],
we found there to be no change in the distribution of grain-
boundary orientations over time, so we do not expect the
emergence of chirality over time either.

We furthermore analyzed the correlations between the
angular velocities of neighboring grains by comparing the an-
gular velocity of each grain, i to that of one of its neighbors, j.
Using the fact that ω ∝ 1/R, we multiply the angular velocity
by the radius to normalize for the grain size. In Fig. 6(c), we
plot a two-dimensional histogram of ωiRi vs ω jR j to examine
the correlations and find that there is little skew or asymmetry
about the axes, implying that there is not much correla-
tion. This is further quantified by calculating the Pearson
correlation coefficient ρXY = 0.081, which is far from unity
and close zero, indicating no local correlation between angular
velocities of neighboring grains. To visualize this, we plot
the positions of grains in Fig. 7, colored by their size scaled
angular velocities, at times t = 200tB [Fig. 7(a)] and 800tB
[Fig. 7(b)]. The fact that there is no apparent spatial ordering
to the direction of rotation at either time and that most of
the grains have evolved to a reach different angular velocity
between the two times corroborates the lack of local angular
velocity correlations.
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