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Enhanced diffusion and universal Rouse-like scaling of an active polymer in poor solvent
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By means of Brownian dynamics simulations we study the steady-state dynamic properties of a flexible active
polymer in a poor solvent condition. Our results show that the effective diffusion constant of the polymer Deff gets
significantly enhanced as activity increases, much like in active particles. The simulation data are in agreement
with a theoretically constructed Rouse model of active polymer, demonstrating that irrespective of the strength
of activity, the long-time dynamics of the polymer chain is characterized by a universal Rouse-like scaling
Deff ∼ N−1, where N is the chain length. We argue that the presence of hydrodynamic interactions will only
have an insignificant effect on the observed scaling behavior.
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I. INTRODUCTION

Biomolecules are subjected to athermal fluctuations orig-
inating from chemical reactions or other energy conversions,
rendering them to fall out of equilibrium. Often that is the
underlying cause for many biological activities, e.g., bacte-
rial motion, shape fluctuations of red blood cell membranes,
enzyme catalysis [1–5]. Hence, given the enormous progress
in understanding of active particles [6–8], over the years a
number of studies on active polymers have emerged as well
[9–20]. The motivation for such studies stems from the need of
introducing shape variety, flexibility, and coupling topology in
active entities [21–26]. Besides, it is intriguing to check how
the knowledge of polymer physics [27–29] can be deployed
to understand active matters.

Active polymer models can be classified into two cat-
egories. One way is to consider the monomers as active
particles and then connecting them linearly with a bond con-
straint [10,13,14,16,18–20]. In the other approach one takes
a passive polymer, i.e., without any activity, immersed in a
bath of active particles [30–35]. Apart from the biological
motivation, current technical advancement allows one to syn-
thesize polymers made of active colloids connected artificially
by DNA or freely jointed droplets [36,37]. Theoretically, the
constituent monomers can be made active by (i) introducing
a local force tangential to the polymer backbone [13], (ii) by
considering the monomers having Brownian activity [16,20],
or (iii) Vicsek-like activity [17–19].

The conformations and dynamics of a passive polymer
are characterized by various scaling laws [27–29]. A poly-
mer undergoes a coil to globule transition upon changing
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the solvent condition from good (where monomer-solvent
interaction dominates) to poor (where monomer-monomer
interaction dominates). The spatial extension of the confor-
mations, in terms of the radius of gyration Rg typically follows
the scaling Rg ∼ Nν with respect to the chain length or num-
ber of monomers N . The values of the exponent ν ≈ 3/5
and 1/3 characterize the conformations, respectively, in good
and poor solvents. The dynamics of a polymer under a good
solvent condition in the free-draining limit, i.e., ignoring hy-
drodynamics, is characterized by the Rouse scaling D ∼ N−1,
where D is the diffusion constant of the center of mass of the
polymer [38]. In presence of hydrodynamics, one expects the
Zimm model [39] (with excluded volume interaction) to be
valid exhibiting the scaling D ∼ N−ν . In a poor solvent condi-
tion, however, there is no consensus among the available stud-
ies [40,41] with even reports of slow glassy dynamics [42].

For active polymers too, the focus has been on understand-
ing the steady-state conformations and dynamics. Attempts
have been made to adapt scaling theories of passive polymers
to study active polymers in good solvent. In Ref. [13] using a
local tangential active force along the polymer backbone, an
activity induced collapse of a polymer in good solvent has
been reported. There at large activities an enhancement of
the diffusion constant was also observed, which was shown
to be independent of the polymer length N for long chains.
In all these previous studies the self-avoidance in good sol-
vent condition has been realized using repulsively interacting
constituent monomers. Only recently, an interaction potential
with both attractive and repulsive components has been con-
sidered [16–20]. A passive polymer having such an interaction
exhibits a temperature-dependent coil-globule transition. We
have shown that a polymer with active Brownian monomers
in poor solvent condition exhibits a transition from a globule
at small activity to coil at large activity [20]. Expectedly, the
dynamics of such active polymers would also reveal interest-
ing features.
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In this work, using computer simulation supported by ana-
lytical reasoning we investigate the steady-state dynamics of a
flexible coarse-grained model active polymer in a poor solvent
condition. To probe the dynamics we monitor the motions of
the center of mass of the polymer and two different tagged
monomers, viz., the central and end monomers. All these
motions exhibit long-time diffusive behaviors allowing us to
calculate the effective diffusion constant Deff of the polymer,
which shows a universal Rouse-like scaling with respect to N ,
at all considered strengths of activity.

The remainder of the paper is organized in the following
manner. In Sec. II we present details of the model and sim-
ulation method. Followed by that in Sec. III we present our
main results. Finally, in Sec. IV we provide a brief summary,
conclusion, and outlook to future work.

II. MODEL AND SIMULATION METHOD

We consider a bead-spring model of a flexible polymer
chain in which the monomers are connected in a linear
way. The bonded interaction between successive monomers is
modeled with the standard finitely extensible nonlinear elastic
(FENE) potential defined as

VFENE(r) = −K

2
R2ln

[
1 −

(
r − r0

R

)2]
, (1)

where K = 40 is the spring constant, r0 = 0.7 the equilibrium
bond length, and R = 0.3 is the maximum allowed extension
of the bond.

The nonbonded interaction among different monomers
with separation r is modeled via the standard Lennard-Jones
potential

VLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (2)

where ε = 1 is the interaction strength. The bead diameter σ

is related to r0 as σ = r0/21/6. This potential has a minimum
at 21/6σ ≡ r0.

For computational benefit during simulations the LJ po-
tential VLJ is truncated and shifted at rc = 2.5σ such that the
nonbonded interaction has the form

VNB(r) =
{

VLJ(r)−VLJ(rc)−(r−rc) dVLJ
dr

∣∣
r=rc

r < rc,

0 otherwise,
(3)

which has the same qualitative behavior as VLJ.
Each bead is considered as an active Brownian particle.

The activity for each bead works along its intrinsic propul-
sion direction, which changes stochastically with time. Thus
the overdamped dynamics for each bead is modeled via the
equations in an implicit solvent

∂t �ri = Dtr

kBT
[ fpn̂i − �∇Ui] +

√
2Dtr ��tr

i , (4)

and

∂t n̂i =
√

2Drot
(
n̂i × ��rot

i

)
, (5)

where �ri and n̂i represent the position and orientational direc-
tion of the i-th bead, respectively, Ui is the passive interaction
consisting of both VFENE and VNB, and fp denotes the strength

of the self-propulsion force acting along n̂i. ��tr
i and ��rot

i are
random noises with zero mean and unit variance and are δ-
correlated over different particles and time given by〈 ��i(t ) ��T

j (t ′)
〉 = Iδi jδ(t, t ′), (6)

where I is the identity matrix. In Eqs. (4) and (5) Dtr and Drot

are the translational and rotational diffusion constants, which
are related via the parameter � as

� = Dtr

Drotσ 2
, (7)

where we have considered � = 1/3 in our simulations. The
translational diffusion constant Dtr is related to the tempera-
ture T and the drag or friction coefficient γ as Dtr = kBT/γ .
We have chosen γ = 1 and set the integration time step for
MD simulations to 10−5 in units of the time scale τ0 = σ 2γ /ε

(∝ 1/Drot = �σ 2γ /kBT at fixed kBT/ε).
The activity is measured in terms of a dimensionless quan-

tity, the Péclet number Pe, defined as the ratio between the
active force fp and the thermal force kBT/σ as

Pe = fpσ

kBT
. (8)

In our simulations we have fixed the temperature at T =
0.1ε/kB, well below the coil-globule or θ -transition temper-
ature of the passive polymer (the case with Pe = 0), thus
mimicking a poor solvent condition [43]. At the same time
this temperature is small enough to keep the thermal noise
much lower compared to the active force. In all the subsequent
results activity is expressed in terms of Pe.

We started our simulations using self-avoiding coils as
initial condition. Then, we allow the system to reach its steady
state by running it for sufficiently long times at the desired
T and Pe. All the presented quantities are calculated after
the polymer reaches its corresponding steady state. We con-
sidered chains with N varying between 32 � N � 380 and
self-propulsion value Pe between 0 � Pe � 62.5.

III. RESULTS

Typical steady-state conformations of a polymer of length
N = 128 obtained for different Pe are presented in Fig. 1. The
conformation of the passive polymer, i.e., Pe = 0, is a per-
fectly collapsed globule. It remains in such a globular state for
relatively smaller activities Pe � 25 as well. For intermediate
values of Pe one may observe globule or head-tail-like confor-
mations (as the one presented for Pe = 37.5). For even larger
Pe the polymer becomes an extended coil. The corresponding
quantitative picture is presented in Fig. 1 in the form of the
distribution of end-to-end distance

Re = |�rN − �r1|. (9)

It shows that for Pe < 37.5 the peaks are at Re ≈ 3, indicative
of collapsed globules. The decrease in peak height as Pe
increases is reflective of the fact that the probability of getting
a collapsed globule decreases and encountering a head-tail-
like conformations increases. For Pe > 37.5 the distribution
broadens and the peak position shifts towards Re > 15 sug-
gesting a dominance of coil-like conformations. The overall
picture is reminiscent of the temperature driven coil-globule
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FIG. 1. Typical steady-state conformations of a polymer of
length N = 128 at different activity strength Pe, obtained from
simulations at a fixed temperature T = 0.1ε/kB. The plots are
for corresponding normalized distributions of the end-to-end
distance Re.

transition of a passive polymer. Here, however, it is driven by
the activity strength. In fact, we have confirmed in Ref. [20]
that the conformations obey the scaling law Rg ∼ Nν with
ν = 1/3 and ≈3/5, respectively, at small and large Pe.

To probe the dynamics we monitor the trajectory of the
position vector of the center of mass (cm), central monomer
or bead (cb), and end beads (eb) of the polymer given as

�rcm = 1

N

N∑
i=1

�ri; �rcb = �rN/2; �reb = �r1 and �rN . (10)

A bare look at the typical trajectories over a fixed time
period as presented in Fig. 2 reveals that although motions are
random in general, the distance covered varies significantly
for different Pe. From the obtained trajectories we calculate
the corresponding mean-square displacements

MSDi(t ) = 〈[�ri(t ) − �ri(0)]2〉; i ≡ cm, cb, and eb, (11)

as a function of time t . Figure 3(a) shows that the cm exhibits a
typical long-time diffusive motion ∼t , with pronounced short-
time ballistic behavior as the activity increases. A similar
long-time behavior is also observed for the motions of cb and
eb, shown, respectively, in Figs. 3(b) and 3(c). Significantly,
different is the appearance of an intermediate regime, which
becomes longer as Pe increases. In this regime the behavior of
the central bead appears to be ∼t2/3 for large Pe, which may
lure one to consider it as Zimm’s scaling of a passive poly-
mer in good solvent [44–47]. However, this is very unlikely
since our simulations do not consider hydrodynamics. The
end beads show an extended intermediate regime, although the
corresponding power-law exponent seems to be smaller than
2/3. This rather suggests a Rouse-like behavior, expected for
a passive polymer in good solvent.

For a better understanding of the time-dependent power-
law behavior of MSDi ∼ tα , we calculate the instantaneous
exponent

αi(t ) = d ln MSDi(t )

d ln t
. (12)

Corresponding plots of αi(t ) are presented in Fig. 4.
The exponent αcm for Pe > 0 starts at a value >1 and
quickly [beginning of the darker shade in Fig. 4(a)]
approaches 1, consistent with the long-time diffusive
behavior.

For Pe � 50, where the polymer is in a coiled state, starting
from a value around 0.9, the exponent αcb drops significantly
before it climbs up in the diffusive regime [Fig. 4(b)]. How-
ever, one can hardly see a flat intermediate region to consider
this as a true scaling regime. Importantly, the data never really
show a steady behavior around the value 2/3, thus ruling out
the apparent Zimm’s scaling. This drop in αcb can rather be
interpreted as an effect of gradual crossover to the long-time
diffusive regime. The crossover gets delayed with increase in
Pe, as evident from Figs. 3(d)–3(f) showing that the data for
MSDcb(t ) merge with the one for MSDcm(t ) at large t .

The time-dependent exponent αeb(t ) for the end beads
shows a similar behavior of approaching 1 at late times
[Fig. 4(c)]. This implies that the data for MSDeb(t ) must
coincide with MSDcm(t ) at large t , which can be verified
from the plots in Figs. 3(d), 3(e), and 3(f). Similar to αcb, at
intermediate times the data for αeb show a drop from 1 and
tend to become flat before it finally approaches 1 at large t .
This indicates the presence of a true intermediate power-law
regime. For Pe � 50, the value of αeb in the intermediate flat
regime is less than 2/3. For a Rouse polymer with excluded
volume, in the intermediate regime, the scaling for the end
monomers is given by [44–46,48]

MSDeb(t ) ∼ t2ν/(1+2ν). (13)

For a Gaussian chain having ν = 1/2 this provides a ∼t1/2

behavior. In the present case at large Pe, the polymer behaves
like a self-avoiding coil with ν ≈ 3/5 producing a scaling
∼t6/11. Our data is indeed consistent with such a behavior,
shown by the dashed lines in Figs. 3(c) and 3(f). Thus it can be
inferred that the intermediate Rouse scaling, which in general
does not hold for a passive polymer in poor solvent [42], can
be recovered in an active polymer at sufficiently large strength
of activity.

To provide a theoretical understanding for the scaling be-
havior observed for the effective diffusion constant Deff of
cm of the active polymer in poor solvent, we consider an
analog of the Rouse model [38]. For a passive polymer, the
Rouse model correctly predicts the scaling of the diffusion
constant in absence of hydrodynamic effects in good solvent.
It is a bead-spring model where only a harmonic potential
is considered to mimic the bonded interaction between suc-
cessive monomers. In the active Rouse model, in addition to
the above feature, we consider that the monomers are active
Brownian particles, and there exists a nonbonded interaction
between the monomers in order to take care of the solvent
condition. For a polymer chain of length N , the equation of
motion for a bead (except the ones at the ends) can be
written as:

�̇ri = −k(2�ri − �ri−1 − �ri+1) + �Fi; i ∈ [2, N − 1], (14)

where k is the spring constant of the harmonic bonds and �Fi

is the net force acting on the bead due to a combination of
the thermal noise, self-propulsion, or active force, and the
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FIG. 2. Typical trajectories of the (a) center of mass, (b) central monomer, and (c) end monomer of a polymer of length N = 128, for
different strengths of activity Pe at temperature T = 0.1ε/kB. Note the increasing spatial scales with increasing Pe.

nonbonded interaction in poor solvent condition. Since the
end monomers experience only one bonded interaction, their
equations of motion are given as

�̇r1 = −k(�r1 − �r2) + �F1, (15)

and

�̇rN = −k(�rN − �rN−1) + �FN . (16)

Adding (14), (15), and (16), the equation of motion of the cm
of the polymer is obtained as

�̇rcm = 1

N

N∑
i=1

�Fi. (17)

Integrating Eq. (17) we get

�rcm(t ) − �rcm(0) = 1

N

∫ t

0
dt ′

[
N∑

i=1

�Fi(t
′)

]
. (18)
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FIG. 3. Steady-state mean-square displacement MSDi(t ) of the (a) center of mass, (b) central bead, and (c) end beads of a polymer of
length N = 128 for different activity strengths Pe. Plots in (d), (e), and (f) present a comparison among the different MSDs for different values
of Pe. The dashed lines represent different power laws. All data are from simulations at temperature T = 0.1ε/kB.

This leads to the expression for MSD of the cm of the polymer
as

MSDcm(t ) = 〈[�rcm(t ) − �rcm(0)]2〉

= 1

N2

〈∫ t

0

∫ t

0
dt ′dt ′′

[
N∑

i=1

�Fi(t
′)

]
·
⎡
⎣ N∑

j=1

�Fj (t
′′)

⎤
⎦〉

.

(19)

We assume that the net force �Fi acting on an individual bead
is random and δ-correlated over space and time, i.e.,

〈 �Fi(t
′) �Fj (t

′′)〉 = 6
Da

Dm
δi jδ(t ′ − t ′′), (20)

FIG. 4. Time-dependent exponent αi(t ) for the data presented in
Fig. 3. The gray shades are introduced to distinguish the early-time
regime from the long-time diffusive regime.

where Da is the diffusion constant of an active particle and
Dm is the factor by which Da gets modified in a poor solvent
condition. Thus the effective diffusion constant of the bead
becomes Da/Dm. Using Eq. (20) in Eq. (19) we obtain

MSDcm(t ) = 6Defft, (21)

where Deff is the effective diffusion constant of the cm of the
polymer and is given as

Deff = (Da/Dm)

N
. (22)

In Eq. (22), the expression for Da can be derived from
MSD(t ) = 6Dat of a noninteracting active Brownian particle,
which is given as [49]

MSDa(t ) = 〈[�ri(t ) − �ri(0)]2〉

= 6Dtrt + v2
0

D2
rot

[Drott + exp(−Drott ) − 1], (23)

where Dtr and Drot are the translational and rotational diffusion
constants, respectively, as defined previously in Sec. II, and
v0 is the ballistic velocity. At large t (� τ0), Drott � 1 and
Eq. (23) reduces to

MSDa(t ) =
(

6Dtr + v2
0

Drot

)
t . (24)

Inserting Dtr = kBT/γ , Drot = 3Dtr/σ
2, and the ballistic

velocity for each bead v0 = fp/γ = PekBT/σγ , Eq. (24)
transforms to

MSDa(t ) =
(

1 + Pe2

18

)
6kBT t

γ
. (25)
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FIG. 5. Chain-length dependence of the mean-square displacement of the center of mass of the polymer at temperature T = 0.1ε/kB for
(a) Pe = 0, (b) Pe = 25, and (c) Pe = 62.5. Regions with darker shades mark the time period t ∈ [102 : 103], over which the diffusion constant
Deff is calculated. (d) Scaling of Deff with N for different Pe. The dashed lines represent the scaling Deff ∼ N−1 for fixed Pe, predicted in
Eq. (27) using Dm = 0.42. (e) Deff as a function of Pe for different N . There the dashed lines represent the scaling Deff ∼ Pe2 for fixed N ,
embedded in Eq. (27) using Dm = 0.42.

This provides the diffusion constant of an active particle as

Da =
(

1 + Pe2

18

)
kBT

γ
. (26)

Finally, inserting the above expression of Da in Eq. (22) we
get

Deff =
(

1 + Pe2

18

)
kBT

γ DmN
, (27)

implying a Rouse-like scaling Deff ∼ N−1 at a fixed Pe, and
Deff ∼ Pe2 for fixed N .

We now calculate

Deff = 1

6
lim

t→∞
d

dt
MSDcm(t ), (28)

using the simulation data for MSDcm(t ) for different N , pre-
sented in Figs. 5(a)–5(c). The extracted Deff as a function of
N for fixed Pe are presented in Fig. 5(d) showing a power-law
scaling. Similarly, as Pe increases a significant enhancement
of Deff is noticed, depicted in Fig. 5(e) via plots of Deff as a
function of Pe for fixed N , also showing a power-law scaling.
The dashed lines in Figs. 5(d) and 5(e) represent the prediction
in Eq. (27) with Dm = 0.42, obtained following a rigorous fit-
ting exercise presented in Appendix A. The consistency of our
data with the dashed lines in Fig. 5(d) confirms the presence
of a universal Rouse-like scaling with the chain length N for
fixed Pe, embedded in the prediction (27). At the same time
the consistency of the data with the dashed lines in Fig. 5(e)
not only depict an unambiguous validity of the prediction in
Eq. (27) but also indicates that the modification factor Dm is
rather universal, regardless of N and Pe.

Enhanced diffusion of repulsive active particles can be un-
derstood via mapping to effectively high-temperature passive
Brownian particles [50]. A similar mapping could qualita-
tively explain the enhanced diffusion observed here for the
center-of mass of the active polymer. However, given the bond

constraint between successive monomers and the attractive
poor solvent condition this mapping is still open to interpreta-
tion. Even though we do not model hydrodynamic interactions
in the simulations, our predictions should still hold strong
for a wide range of realistic situations where hydrodynam-
ics is negligible. Typically, in the equation of motion of the
active monomers one can include hydrodynamic tensors with-
out affecting the activity term [14,51,52]. This is justified
by the rational that the beads are intrinsically self-propelled,
independent of the external conditions including the solvent
effects [9]. With such a setup it can be argued that apart from
a small window in the low-activity limit, it is very unlikely that
hydrodynamic interactions are going to change the scaling
behaviors observed here (see Appendix B).

IV. CONCLUSION

In conclusion, this work explores the steady-state dynamics
of an active Brownian polymer in poor solvent. We have
investigated the dynamics by monitoring the motions of the
center of mass, the central monomer, and the end monomers.
Although they show different dynamics at intermediate times
as a function of activity, in the long-time limit the mean-
square displacement of the central and end monomers merge
with the diffusive behavior of the center of mass, allowing us
to estimate an effective diffusion constant Deff of the poly-
mer. Analytically, we predict an enhanced diffusion of the
polymer obeying the scalings Deff ∼ N−1 and Deff ∼ Pe2 as
a function of the chain length N and activity strength Pe,
respectively. Our numerical results are in perfect agreement
with the theoretical predictions. Furthermore, we have ar-
gued that hydrodynamic interactions should not influence the
scaling behavior observed here. However, still it would be
worth to explore explicit solvent simulations of this apparently
universal dynamics of active polymers [53–55].

As another future endeavour, it would be rewarding to
perform similar investigations of other active polymer models.
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Our result of activity induced enhanced diffusion of a poly-
mer in a poor solvent condition might indulge in design of
synthetic active polymers, which potentially can be employed
in delivering drugs for a wide variety of medium. It would
also be interesting to explore the robustness of the observed
scalings for semiflexible polymers with activity [56].
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APPENDIX A: FITTING RESULTS

Equation (27) predicts the scaling laws Deff ∼ N−1 and
Deff ∼ Pe2 for fixed Pe and N , respectively. In order to verify
the simulation data, however, one can assume that Deff ∼ N−x

and Deff ∼ Pey for fixed Pe and N , respectively. Keeping
Eq. (27) in mind, thus the ansatz for fitting can be written as

Deff =
(

1 + Pey

18

)
kBT

γ DmNx
. (A1)

In Tables I–IV we tabulate the results from our fitting exercise
using the above ansatz for our simulation data of Deff , both as
a function of N and Pe.

From the presented fitting exercise we conclude that our
simulation data is consistent with the prediction (27) using a
Rouse model of active polymer. It also indicates that the only
free parameter in the model Dm ≈ 0.42 appears to be robust,
independent of the chain length N and strength of activity Pe.

APPENDIX B: POSSIBLE EFFECT OF HYDRODYNAMICS

For a better comparison with an experimental situation
where polymers are generally in solution, the role of hydro-
dynamic interaction due to the solvent should be taken into

TABLE I. Fitting results for different fixed Pe using y = 2 in the
ansatz (A1) with both Dm and x as fit parameters. The quality of the
fitting can be judged from the reduced chi-squared χ2

r = χ 2/d.o.f;
where d.o.f is the number of degrees of freedom. From the results
we conclude that the mean values of Dm and x are 0.47 and 0.98,
respectively. The corresponding standard deviations are 0.07 and
0.03, respectively.

Pe Dm x χ 2
r

0.0 0.46(4) 0.96(2) 1.45
12.5 0.41(8) 1.00(4) 0.40
25.0 0.55(8) 0.96(3) 0.52
37.5 0.37(7) 1.02(4) 1.58
50.0 0.54(8) 0.96(3) 2.17
62.5 0.49(8) 0.96(5) 0.69

TABLE II. Results from fitting for different fixed Pe using
y = 2 in the ansatz (A1) with Dm as the only fit parameter and fixing
the exponent x = 1. The obtained mean value of Dm is 0.42 with a
standard deviation of 0.03.

Pe Dm χ 2
r

0.0 0.39(4) 2.17
12.5 0.41(1) 0.33
25.0 0.45(8) 0.64
37.5 0.42(7) 1.37
50.0 0.46(8) 2.13
62.5 0.40(8) 0.74

account. With this in hindsight, here we are going to argue
that with the introduction of hydrodynamics interactions in
the present case no significant effects are expected as far as
the scaling of Deff with N and Pe is concerned. One way
of inclusion of hydrodynamic interaction is by writing the
equation of motion for the active monomers as [9]

∂t �ri = Dtr

kBT
fpn̂i −

N∑
j=1

Hi j �∇Ui +
√

2Dtrγ

N∑
j=1

Hi j ��tr
i ,

(B1)

and

∂t n̂i =
√

2Drot
(
n̂i × ��rot

i

)
, (B2)

where 〈 ��tr
i (t ) ��trT

j (t ′)
〉 =

(
Dtr

kBT

)
H−1

i j δ(t, t ′). (B3)

The tensor Hi j is given as

Hi j (�ri j ) = δi jI/γ + (1 − δi j )�i j (�ri j ), (B4)

where �i j (�ri j ) takes care of the hydrodynamic interaction
arising from the interaction of the solvent molecules with
the monomers. Numerically this is achieved using the Rotne-
Prager-Yamakawa tensor for spherical particles [51,52] and
analytically via the preaveraged Oseen tensor [28]. In the
nonhydrodynamic limit �i j (�ri j ) = 0, leading to the recovery
of the equation of motions we have used in our simulations.
In such a treatment the hydrodynamic interaction does not
affect the activity term, which is justified by the rational that

TABLE III. Fitting results for different fixed N using x = 1 in the
ansatz (A1) with both Dm and y as fit parameters. The obtained mean
values of Dm and y are 0.39 and 1.97, respectively. The corresponding
standard deviations are 0.04 and 0.03, respectively.

N Dm y χ 2
r

32 0.47(4) 2.00(2) 1.19
64 0.40(2) 1.98(2) 0.84

128 0.35(3) 1.94(3) 0.98
192 0.37(3) 1.94(2) 2.08
256 0.35(2) 1.95(2) 2.94
310 0.40(3) 2.00(2) 0.51
380 0.37(3) 1.96(2) 0.45
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TABLE IV. Results from fitting for different fixed N using
x = 1 in the ansatz (A1) with Dm as the only fit parameter and fixing
the exponent y = 2. The obtained mean value of Dm is 0.42 with a
standard deviation of 0.03.

N Dm χ 2
r

32 0.47(2) 0.96
64 0.41(1) 0.77

128 0.42(2) 1.50
192 0.44(2) 2.80
256 0.40(3) 3.11
310 0.40(2) 0.41
380 0.42(1) 0.97

the origin of active force is solely due to certain intrinsic
kicks that the monomers receive internally, independent of the
external conditions including the effect of solvents [9]. Using
the above equations it can be shown that the center of mass
mean-square displacement is given as [14]

MSDcm(t ) = 6kBT

Nσ
H00t + v2

0

DrotN
t . (B5)

Here H00 is the zeroth mode representation of the hydrody-
namic tensor Hi j (�ri j ), which is related to the corresponding
preaveraged Oseen tensor as

Hnm =
(

σ

γ
δnm + �nm

)
. (B6)

Rewriting Eq. (B5) in terms of the Péclet number Pe, it
reads as

MSDcm(t ) ∼ 6kBT

Nσ
H00t + kBT

3Nγ
Pe2t, (B7)

since v0 = PekBT/σγ . This implies that the effective diffu-
sion constant would be

Deff ∼
(

γ

σ
H00 + Pe2

18

)
kBT

γ DmN
. (B8)

In the nonhydrodynamic limit when H00 = σ/γ , Eq. (B8) is
analogous to Eq. (27) of the main text. It also implies that the
scaling Deff ∼ Pe2 remains unaffected even in presence of hy-
drodynamics, suggesting that the quadratic dependence of the
diffusion constant on the activity is rather universal. Presence
of hydrodynamics may introduce an additional ∼N−x depen-
dence from the first term, i.e., H00kBT/σDmN in Eq. (B8)
resulting in an overall dependence as

Deff = f (N−x ) + g(N−1). (B9)

The function f can be intuitively obtained by considering the
Zimm scaling ∼N−ν , i.e., ∼N−3/5 for a passive polymer in
presence of hydrodynamics [39], resulting in

Deff = f (N−3/5) + g(N−1). (B10)

The effective scaling of Deff with respect to the polymer length
N will thus depend on the relative strength of hydrodynamic
interactions and the activity. In the limit of large Pe, the
relevant regime for biological systems [8], the scaling will
again be predominantly given by Deff ∼ N−1, i.e., a Rouse-
like behavior. Thus we argue that apart from a small window
in the low-activity limit, it is very unlikely that hydrodynamic
interactions are going to change the scaling behaviors reported
in the main text.
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