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Electron-optical phonon scattering in doped GaAs quantum well
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The influence of the presence of free electrons on the spectra of optical phonons and on electron-optical
phonon scattering in quantum wells has been theoretically studied. As an example, calculations of the optical
phonon spectra, intrasubband and intersubband electron-optical phonon scattering in 10-nm-GaAs quantum
wells surrounded by Al0.3Ga0.7As barriers were carried out at two temperatures of 77 and 300 K. It was shown
that the frequency of intrasubband scattering varies nonmonotonically with increasing electron concentration
in the quantum well. The relaxation rates of the wave vector and energy for scattering in the first and second
subbands are found. It is shown that with increasing electron concentration in the quantum well, the frequency
of intersubband scattering decreases.
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I. INTRODUCTION

Electron-optical phonon scattering is one of the main
mechanisms of electron energy relaxation in semiconductors.
It plays an important role in the operation of many semi-
conductor devices, including devices that use quantum wells.
Examples of such devices include injection lasers with quan-
tum wells (QWs) [1], quantum cascade lasers (QCLs) [2,3],
and quantum well radiation detectors (QWIPs) [4]. These
processes are especially important in QCLs, in which the
populations of working levels are often determined by the
scattering of electrons by optical phonons [3].

It is well known that the optical phonon properties in quan-
tum wells differ from those in bulk semiconductors. This was
pointed out in Ref. [5], in which optical phonons in a slab of
a polar semiconductor with an isotropic dielectric permittivity
were studied. It was shown that the optical phonons in such
a system can be divided into two groups: bulklike and sur-
face [5,6]. For bulklike optical phonons, lattice vibrations are
concentrated inside the slab (quantum well) and are absent
outside it. For surface optical phonons, lattice vibrations are
concentrated near the slab boundaries. In Refs. [7,8], the opti-
cal phonons were considered in quantum wells with a wurtzite
structure, where the dielectric permittivity is anisotropic. In a
number of works [7–16], the rates of electron-optical phonon
scattering in quantum wells in which there are no free carriers
were calculated.

It is interesting to note that until recently the influence of
electrons in a quantum well on the properties of the optical
phonons in it was not considered. The physical reason for
this effect is that both optical lattice vibrations and electron
density oscillations create an electric field. This field affects
both lattice vibrations and electron density oscillations. Or,

*Contact author: aleshkin@ipmras.ru
†Contact author: sanya@ipmras.ru

in other words, the contribution of electrons to the dielectric
constant of a quantum well changes the properties of the
optical phonons in it.

To date, two approaches have been outlined to take into
account the influence of electrons in a quantum well on the
properties of the optical phonons in it. In the first approach,
the influence of free carriers was taken into account only as
static screening of the electric potential, i.e., in electronic
polarizability, its dependence on frequency was not taken
into account [17–19]. This approach has been used to study
phonons in graphene [17] and GaSe [18] and InSe [19] layers
that include several atomic planes. As noted in Ref. [17], this
approximation ignores plasmonic effects.

The second approach is to take into account plasmonic ef-
fects in electronic polarization [20–22]. In Ref. [20], electron
scattering by optical phonons in MoS2 monolayers was con-
sidered. Note that in Refs. [17–20] systems were considered in
which the thickness of quantum wells is much smaller than the
characteristic scale of the change of the electric field created
by the phonon. Therefore, in these works, the change in the
electric potential inside the quantum well was neglected. In
this work, as in Refs. [21,22], the width of the quantum well
is on the order of the scale of the change of the phonon electric
field. For this reason, when calculating the phonon spectrum
and electron-phonon scattering rates, it is necessary to take
into account the change of the electric field of phonons inside
the QW.

A significant change in the spectra of optical phonons
in quantum wells of narrow-gap HgTe/CdHgTe heterostruc-
tures due to plasmonic effects was shown in Refs. [21,22].
However, these works did not take into account the spatial
dispersion of electronic polarizability, which must be taken
into account for a correct description of the phonon spec-
trum at sufficiently large vectors (q � ω/v), where ω is the
phonon frequency, v is the characteristic electron velocity.
The energy of a longitudinal optical phonon in GaAs ap-
proximately equals 36 meV, and the electron effective mass
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is 0.067 m0 where m0 is a free electron mass. The thermal
speed of an electron at a temperature of 300 K in a quan-
tum well is about 3 · 107 cm/s. Therefore, wave vectors at
which the spatial dispersion of the electronic contribution
to the dielectric permittivity is significant must satisfy the
condition q � 0.15 nm−1. If we take the wave vector of an
electron, whose energy is equal to the optical phonon energy,
as the characteristic vector of the optical phonon involved in
scattering, then we obtain the value q = 0.25 nm−1. From
the above estimates, it is obvious that taking into account
the spatial dispersion of the electronic contribution to the
dielectric permittivity of the QW is important for calculating
electron-optical phonon scattering in GaAs QWs.

The purpose of this work is to develop the approach pro-
posed in Refs. [21,22], by taking into account the spatial
dispersion of the contribution to the dielectric permittivity of
the quantum well from electrons located in the QW. In this
work, using the example of a 10-nm GaAs QW surrounded
by Al0.3Ga0.7As barriers, we studied the effect of the con-
centration of electrons located in the conduction band of the
QW on the optical phonon spectra and on the probabilities of
electron-optical phonon scattering. Note that the use of QWs
with a high electron concentration (>1011 cm−3) can signifi-
cantly reduce the number of cascades required to implement
terahertz QCLs [23].

II. OPTICAL PHONONS IN A DOPED GaAs/AlGaAs
HETEROSTRUCTURE

To describe the optical phonon spectrum, we will use
the dielectric continuum model developed for semiconduc-
tors with an isotropic dielectric constant in Refs. [5,6], and
for semiconductors with an anisotropic dielectric constant in
Refs. [7,8]. This model works well when the QW width is
much larger than the lattice constant.

Recall that in the dielectric continuum model, the medium
is characterized by a local dielectric permittivity. However, it
is known that the dielectric permittivity of a two-dimensional
electron gas κ is nonlocal [24] and the relationship between
the electric induction D and the electric field E has the
form

D(z) = 1

d

∫
dz′κ (z, z′)E (z′), (1)

where d is the QW width and the direction z is chosen along
the normal to the QW. To avoid computational difficulties
caused by the nonlocality of the dielectric permittivity, we
use the following approximation. If we assume the scale of
the change of the electric field along the z direction is much
greater than the QW width, then Eq. (1) can be rewritten as

D(z) ≈ E (z)
1

d

∫
dz′κ (z, z′). (2)

In this case, the dielectric permittivity of the electron
gas is characterized by an “averaged” local value: κ (z) =
d−1

∫
dz′κ (z, z′). In the problem under consideration, the

scale of change in the field E is of the order of the QW width,
and this approximation reduces the accuracy of the results
obtained.

(

 (e
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)

FIG. 1. Electron spectrum in a 10-nm GaAs quantum well. The
dotted line corresponds to the bottom of the Al0.3Ga0.7As conduc-
tion band. The energy reference point corresponds to the bottom of
the GaAs conduction band. The numbers in the figure indicate the
subband numbers.

Let us consider a 10-nm GaAs quantum well surrounded
by Al0.3Ga0.7As barriers. This quantum well thickness and
barrier composition are typical for interband diode lasers in
the 808–850-nm range [25–27], as well as THz QCLs with
operating temperatures above 200 K [28–30]. We will assume
that the structure is grown on the (001) plane. For simplicity,
we will assume the QW is rectangular, i.e., we neglect the
influence of electrons on its shape.

Figure 1 shows the electron spectrum in the QW under con-
sideration, calculated in the Kane model taking into account
deformation effects. The explicit form of the Kane Hamilto-
nian and details of the calculations are given in [31]. It can be
seen from Fig. 1 that in the conduction band of the quantum
well there are three size quantization subbands. The distance
between the first and second subbands is 91 meV and between
the first and third subbands is 212 meV. Calculations show
that in such a quantum well at electron concentrations of no
more than 1012 cm−2 and temperatures at room temperature
and below, the main part of the electron is located in the first
and second subbands. The contribution to the dielectric per-
mittivity from a two-dimensional electron gas in the frequency
range corresponding to the optical phonons is determined by
two types of electron motion. The first type of movement is
intrasubband. The second type of motion is intersubband, as
a result of which an electron transits from one subband to
another. The conductivity of electrons along a quantum well in
the system under consideration is determined by intrasubband
motion, and across the quantum well by intersubband elec-
tronic transitions. Since the electronic conductivities along
and across the quantum well are different, the contribution to
the dielectric permittivity from free electrons is a tensor.

Intrasubband electron motion contributes only to the di-
agonal components of the dielectric permittivity in the QW
plane, since this motion occurs along the QW (for an electron
with a quadratic dispersion law). The contribution to the di-
electric permittivity of intrasubband electron motion within
the random phase approximation (RPA) framework can be
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represented as

κ intra
xx (q, ω) = κ intra

yy (q, ω)

= 4πe2

Sdq2

∑
k, j

f j (k) − f j (k + q)

ε j (k) − ε j (k + q) + h̄ω + ih̄α
,

(3)

where q and ω are the wave vector and cyclic frequency of
the wave propagating along the QW, respectively, S is the QW
square, e is the electron charge, index j includes the subband
number and spin index, ε j (k) is the energy of the electron
in the jth state with the wave vector k, f j (k) is the electron
distribution function, α is an infinitesimal positive quantity, h̄
is Planck’s constant. Further we will assume that f j (k) is the
Fermi-Dirac distribution function.

Since electrons occupy a small part of the space of wave
vectors, to simplify the calculation of (3) we will assume that
the electron mass is isotropic and independent of the electron
energy. In this case, the sum over the wave vector in Eq. (3) is
reduced to a one-dimensional integral (see Appendix A).

Intersubband electron transitions contribute only to the zz
component of the dielectric permittivity tensor:

κ inter
zz (q, ω) = 4πe2

dS

∑
l,m,k

|zk+q,m;k,l |2[ fl (k) − fm(k + q)]

εm(k + q) − εl (k) − h̄ω − ih̄α
,

(4)

where zk+q,m;k,l is the matrix element of the operator ẑ be-
tween the state of the electron located with the wave vector
k + q in the mth subband and the state of the electron with
the wave vector k in the lth subband. The derivation of
Eq. (4) is given in Appendix B. To simplify the calculation
of (4), we will assume the electron masses in the first and
second subbands to be the same. In this case, the sum over
the wave vector in (4) is also reduced to a one-dimensional
integral (see Appendix B). Note that the calculation in the
Kane model shows the difference in electron masses by no
more than 5% in the range of wave vectors (0–0.6 nm−1). In
addition, the effective masses at the bottom of the first and
second size quantization subbands differ by 13%. Therefore,
the assumption made about the constancy of the electron mass
is a reasonable approximation.

The diagonal components of the dielectric permittivity ten-
sor can be written as

κ j j (q, ω) = δ j, jκ
latt (ω) + κ intra

j j (q, ω) + κ inter
j j (q, ω), (5)

where κ latt (ω) is the dielectric permittivity of a quantum well
without electrons, which in the frequency range under consid-
eration can be represented as [32]

κ latt(ω) = κ∞
ω2 − ω2

L

ω2 − ω2
T

, (6)

where κ∞ is the high-frequency dielectric constant of the
quantum well material and ωL and ωT are the longitudinal and
transverse optical phonon frequencies in the QW, respectively.

The barrier is a ternary solid solution. Let us assume
that there are no electrons in it. Then the barrier dielectric

permittivity can be written in the following form [15]:

κb(ω) = κ∞b

(
ω2 − ω2

LGaAs

)(
ω2 − ω2

LAlAs

)
(
ω2 − ω2

TGaAs

)(
ω2 − ω2

TAlAs

) , (7)

where κ∞b is the high-frequency dielectric constant of the
barrier, ωLGaAs and ωTGaAs are the frequencies of longitu-
dinal and transverse GaAs-like optical phonons, and ωLAlAs

and ωTAlAs are the frequencies of longitudinal and transverse
AlAs-like optical phonons. For calculations, the quantities ωL,
ωT , ωLGaAs, ωTGaAs, ωLAlAs, ωTAlAs, κ∞, and κ∞b were taken
from Ref. [33].

The phase velocities of the optical phonons taking part in
electron scattering are much lower than the speed of light.
Therefore, the electric fields created by lattice vibrations and
electron density oscillations can be described using an electric
potential. Let the phonon propagate along the x direction.
Then the electric potential ϕq(r, t ) created by the optical
phonon with wave vector q can be represented in the following
form:

ϕq(r, t ) = [cq exp(iqx − iωt ) + c.c.]	q(z, ω), (8)

where cq are the coefficients that determine the potential value
and the symbol c.c. stands for the complex conjugate term,
and 	q(z, ω) is a dimensionless function describing the de-
pendence of potential on z and ω.

For a medium with an anisotropic dielectric permittivity
depending on the z coordinate, Maxwell’s equation for elec-
trical induction can be written in the form [7,8]

−q2κxx(q, ω, z)	q(z, ω) + ∂

∂z

(
κzz(q, ω, z)

∂	q(z, ω)

∂z

)
= 0.

(9)

Let the quantum well occupy the region |z| < d/2. The sys-
tem under consideration has a plane of symmetry at z = 0.
Therefore, solutions to Eq. (9) can be divided into even and
odd ones. For even solutions, the dependence 	q(z, ω) on z
has the form [21]

	q(z, ω) =
{

cos(βq(ω)qz), |z| < d/2,

cos
( βq (ω)qd

2

)
exp

( qd
2 − q|z|), |z| > d

2 ,

(10)

where βq(ω) = √−κxx(q, ω)/κzz(q, ω). Expression (10) is
valid in the frequency range where κxx(q, ω)κzz(q, ω) < 0.
In the frequency range where κxx(q, ω)κzz(q, ω) > 0, solution
(9) can be represented as

	q(z, ω) =
{

cosh(γq(ω)qz), |z| < d/2,

cosh
( γq (ω)qd

2

)
exp

( qd
2 − q|z|), |z| > d

2 ,

(11)

where γq(ω) = √
κxx(q, ω)/κzz(q, ω). Similarly, we can write

odd solutions in the frequency range where the condition
κxx(q, ω)κzz(q, ω) < 0 is satisfied:

	q(z, ω) =
{

sin(βq(ω)qz), |z| < d/2,

z
|z| sin

( βq (ω)qd
2

)
exp

( qd
2 − q|z|), |z| > d

2 ,

(12)
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and in the frequency range where the inequality
κxx(q, ω)κzz(q, ω) > 0 is true:

	q(z, ω) =
{

sinh(γq(ω)qz), |z| < d/2,

z
|z| sinh

( γq (ω)qd
2

)
exp

( qd
2 − q|z|), |z| > d

2 ,

(13)

When κxx(q, ω) → κzz(q, ω), solutions (10) and (12) trans-
form into known solutions for bulklike phonons [5,6], and (11)
and (13) into solutions for surface phonons. Therefore, we will
further call phonons corresponding to solutions (10) and (12)
bulklike ones, and phonons corresponding to solutions (11)
and (13) surface ones.

Functions (10)–(13) are continuous at the boundaries of
the QW. From the condition for matching the derivative,
we obtain equations for determining the spectrum of optical
phonons. For even bulklike phonons, this equation is given in
Eq. (14), and for surface phonons in Eq. (15) [21]:

κzz(q, ω)βq(ω) tan(βq(ω)qd/2) = κb(ω), (14)

κzz(q, ω)γq(ω) tanh(γq(ω)qd/2) = −κb(ω). (15)

Similar equations for odd bulklike phonons are given in
Eq. (16), and for surface phonons in Eq. (17):

κb(ω) tan[βq(ω)qd/2] = −κzz(q, ω)βq(ω), (16)

κb(ω) tanh[γq(ω)qd/2] = −κzz(q, ω)γq(ω). (17)

Figure 2 shows the calculated spectra of even phonons for
the structure under consideration for four electron concentra-
tions in the QW (0, 1011, 3 × 1011 and 1012 cm−2) and two
temperatures (77 and 300 K). The quantum well contains four
optical phonons with energies of ∼46, 36, 35, and 33 meV.
In the absence of electrons in the QW, all branches except the
branch with an energy close to the energy of the longitudinal
optical phonon in GaAs (∼36 meV) are surface ones. This
statement remains valid for electron concentrations of 1011,
3 × 1011 cm−2. At a concentration of n = 1012 cm−2, the
high-frequency branch at 0 < q < 0.12 nm−1 at 300 K and
at 0 < q < 0.16 nm−1 at T = 77 K is bulklike, and outside
this interval it is a surface one.

It can be seen from the Fig. 2 that an increase in
the electron concentration most strongly affects the two
high-frequency phonon branches in the region of wave vec-
tors q < 1 nm−1. This influence increases with decreasing
temperature.

For the lowest frequency phonon branch, the presence of
electrons has virtually no effect on the dependence ω(q).
For the branch with the next highest energy, the change in
the optical phonon energy due to the presence of electrons
in the QW does not exceed 0.6 meV. With increasing wave
vector, the influence of electrons on the spectrum of optical
phonons weakens and at q > 1 nm−1 it becomes negligible.
The reason for this is the spatial dispersion of electronic polar-
izability, which leads to a decrease in the latter with increasing
wave vector at fixed frequency. Figure 3 shows the spectra
of odd phonons. Only the branch corresponding to bulklike
phonons at (36 meV) is not shown, since it is practically not
affected by the presence of electrons of the concentrations
under consideration. From the comparison of Figs. 2 and 3
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FIG. 2. Spectra of four branches of the even optical phonons
calculated for four electron concentrations and two temperatures.
Panels (c) and (d) correspond to the bulklike optical phonons.

it is clear that the influence of electrons in the QW on the
spectrum of the odd optical phonons is noticeably weaker than
on the spectrum of the even optical phonons. This is due to
the well-known feature of plasma effects of two-dimensional
electron gas, which are the physical cause of the influence of
electrons on phonons. This feature, in particular, is manifested
in the fact that the potential of two-dimensional plasmons is
an even function of the coordinate normal to the plane of
the quantum well, and odd two-dimensional plasmons do not
exist [34].

Note that the presence of electrons in the quantum well
leads to the existence of two more types of excitations,
the spectra of which are not given in this work. One of
them is a low-frequency plasmon, the frequency of which
is proportional

√
q at small wave vectors. The second is an

intersubband plasmon, the frequency of which is close to
the energy difference between the first and second electron
subbands. The probabilities of electron scattering by these ex-
citations are small compared to the probabilities of scattering
by the optical phonons. Therefore, these excitations are not
considered in this work.
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FIG. 3. Spectra of three branches of odd surface optical phonons
calculated for four electron concentrations and two temperatures.

III. RATES OF ELECTRON-OPTICAL
PHONON SCATTERING

A. Expressions for calculating scattering characteristics

It is well known that the main mechanism of scattering of
-valley electrons by optical phonons is the Frohlich mech-
anism [35]. In this mechanism, electrons interact with the
macroscopic electric potential created by lattice vibrations
[35]. The operator of the electric potential created by the
optical phonon in the system under consideration can be rep-
resented as [22]

ϕ̂s
q(r, t ) = 	q,s(z)

√
h̄ωq,s

Fq,s(ωq,s)
[âq,s exp(iqr − iωq,st )

+ â+
q,s exp(−iqr + iωq,st )], (18)

where â+
q,s, âq,s are the operators of creation and annihilation

of the optical phonon with a wave vector q and frequency
ωq,s, and the subscript s denotes the type of optical phonon.
The explicit form of the functions Fq,s(ωq,s) for even and odd
phonons is given in Appendix C.

The probability of scattering of an electron with wave
vector k from the lth subband to the mth subband with the
emission of the optical phonon has the form [35]

W +s
k,l→k−q,m = 2π

h̄
e2

∣∣ϕs
k,l;k−q,m

∣∣2|(Nq + 1)[1 − fm(k − q)]

× δ[εl (k) − εm(k − q) − h̄ωq,s], (19)

where ϕs
k,l;k−q,m is the matrix element of the electric potential

operator and Nq is the number of phonons with wave vector
q. Further we will assume that phonons are described by the
Bose-Einstein distribution. The expression for the probability
of scattering with phonon absorption has the form

W −s
k,l→k+q,m = 2π

h̄
e2

∣∣ϕs
k,l;k+q,m

∣∣2|Nq[1 − fm(k + q)]

× δ[εl (k) − εm(k + q) + h̄ωq,s]. (20)

Important scattering characteristics are the scattering fre-
quency, the wave vector relaxation rate, and the electron
energy relaxation rate [35]. The scattering frequency of an
electron with wave vector k from the lth subband is equal to

Wl (k) =
∑
q,s,m

(
W +s

k,l→k−q,m + W −s
k,l→k+q,m

)
(21)

The relaxation rate of the electron wave vector can be
represented as

Pl (k) =
∑
q,s,m

q
(
W +s

k,l→k−q,m − W −s
k,l→k+q,m

)
(22)

Due to the isotropy of the electron and phonon spectra in the
plane of the quantum well, the vector Pl (k) is collinear with
the wave vector q.

The rate of electron energy relaxation due to scattering by
optical phonons can be represented in the following form:

Ql (k) =
∑
q,s,m

h̄ωq,s
(
W +s

k,l→k−q,m − W −s
k,l→k+q,m

)
(23)

B. Intrasubband scattering

During intrasubband scattering, the parity of the electron
wave function is preserved. Therefore, in symmetric wells,
only even phonons can participate in intrasubband scattering.
Calculations show that the main contribution to intrasubband
scattering comes from scattering from a phonon mode, which
is close in energy to the energy of a longitudinal optical
phonon in GaAs (its contribution is ∼50%). The contribution
of the lowest frequency surface mode to scattering is small
(∼1%). Figure 4 shows the dependencies of the scattering
frequencies and the relaxation rate of the wave vector and
energy on the initial wave vector of the electron for scattering
in the first subband. From Fig. 4(a) it is clear that at T =
300 K in the range of wave vectors 0−0.4 nm−1 the scattering
frequency decreases with increasing electron concentration
from 0 to 1011 cm−2 and from 3 × 1011 cm−2 to 1012 cm−2.
At k > 0.4 nm−1, the dependence of the scattering frequency
on the electron concentration is nonmonotonic. In this region,
as the electron concentration increases to 3 × 1011 cm−2,
the scattering frequency decreases, and at a concentration of
1012 cm−2, the scattering frequency increases significantly.
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FIG. 4. Dependencies of the electron-optical phonon scattering
frequency (a), (b), wave vector relaxation rate (c), (d), and energy
relaxation rate (e), (f) on the initial electron wave number at T =
300 K and T = 77 K for four electron concentrations for scattering
in the first subband.

A different situation occurs at T = 77 K. In this case, with
increasing electron concentration, the scattering frequency in-
creases, with the exception of those regions where scattering
is affected by the electron filling of final states (the region
to the left of the maximum scattering frequency). From the
comparison of Figs. 4(a) and 4(b) it is clear that a decrease in
temperature leads to a decrease in the scattering frequency,
which is due to a decrease in the probability of scattering
with the optical phonon absorption. The same reason leads
to a decrease in the relaxation rate of the wave vector with
decreasing temperature [see Figs. 4(c) and 4(d)].

From Figs. 4(c) and 4(d) it is clear that the maximum
momentum relaxation rate monotonically decreases with in-
creasing electron concentration at 300 K and changes slightly
at 77 K. Note that at T = 300 K in the wave vector range
0−0.4 nm−1 the momentum relaxation rate decreases with
increasing electron concentration, similar to what occurs for
the scattering frequency. A similar situation occurs for the
absolute value of the energy relaxation rate at T = 300 K

 ×

 (
 (

 (

 (  )  (  )

 )
 )

 )

FIG. 5. Dependencies of the electron-optical phonon scattering
frequency (a), (b), wave vector relaxation rate (c), (d), and energy
relaxation rate (e), (f) on the initial electron wave number at T =
300 K and T = 77 K for four electron concentrations for scattering
in the second subband.

[Fig. 4(e)], which in this wave number range decreases with
increasing electron concentration. In the region of small wave
numbers, this value is negative, which is due to the optical
phonon absorption. At T = 77 K, the dependencies of the en-
ergy relaxation rate on the electron wave number and electron
concentration are similar to corresponding dependencies for
the scattering frequency.

Figure 5 shows the dependencies of the scattering fre-
quency, wave vector relaxation rate, and energy on the initial
electron wave number for the second electron subband. Due to
the weak filling of the final electronic states, the wave vector
from which scattering with phonon emission is “switched
on” does not depend on the electron concentration. From the
comparison of Figs. 4 and 5 it can be seen that the scattering
frequencies and relaxation rates of the wave vector and energy
are approximately the same for the first and second subbands.
However, there is also a difference. In the second subband as
the temperature decreases from 300 to 77 K, the scattering
frequency for an electron concentration of 1012 cm−2 changes
slightly. In addition, the relaxation rates of the wave vector
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FIG. 6. Dependencies of the probability of intersubband scatter-
ing on the initial electron wave vector for two temperatures and four
electron concentrations.

and energy for an electron concentration of 1012 cm−2 at 77 K
in the second subband are significantly higher than in the first
subband.

Note that the presence of electrons with the concentra-
tions under consideration does not greatly change the phonon
spectrum, but has a noticeable effect on the scattering fre-
quencies and on the relaxation rates of the wave vector and
energy. The reason for this is that the presence of electrons
changes the potential created by the phonon. Therefore, the
matrix element of the operator of electron-optical phonon
interaction changes. Despite the small change in phonon en-
ergy, the change in the matrix element may not be small.
For large phonon wave vectors, when electrons practically
do not change the phonon energy, the matrix element of the
electron-phonon interaction does not change. However, for
small phonon wave vectors, the change in the matrix element
of the electron-phonon interaction is not small. Note that as
the electron wave vector increases, the minimum wave vector
of the phonon, which can take part in scattering, decreases.
In addition, the probability of scattering by polar phonons
increases with decreasing phonon wave vector [35]. There-
fore, the strongest effect on scattering can be seen for an
electron concentration of 1012 cm−2 in the region of large
initial electron wave vectors.

C. Intersubband scattering

Only odd optical phonons can take part in intersubband
scattering, since such scattering changes the parity of the
electron wave function. Figure 6 shows the dependence of
the probability of electron scattering from the second sub-
band into the first subband W21 on the initial electron wave
vector for four electron concentrations and two temperatures.
It can be seen from the figure that as the electron concentra-
tion increases, the probability of intersubband electron-optical
phonon scattering decreases. This decrease is most clearly
visible at a temperature of 300 K. However, in the range of
electron concentrations considered, the decrease in probabil-
ity is not large. The decrease in probability for small electron
wave vectors at n = 1012 cm−2 is due to the Pauli principle,
since a noticeable filling of the final electron states appears.
From Fig. 6 it can be seen that with increasing temperature the

probability of intersubband scattering increases. The reason
for this is the increase in the number of the optical phonons
with increasing temperature.

Calculations show that the main contribution to intersub-
band electron scattering comes from a bulklike phonon mode
with a phonon energy of about 36 meV, similar to intrasub-
band scattering. However, unlike intrasubband scattering, the
probability of intersubband scattering on this mode is prac-
tically independent of the electron concentration. Therefore,
the change in the probability of intersubband scattering with a
change in the electron concentration occurs due to scattering
on surface modes with energies of about 45 and 35 meV
[Figs. 3(a) and 3(b)]. The surface mode with an energy of
about 33 meV [Fig. 3(c)] makes a negligible contribution to
the probability of intersubband electron scattering.

IV. CONCLUSION

In conclusion, we present the main results of the work
and briefly discuss the some physical consequences of the
influence of the electron concentration on the electron-optical
scattering phonon. The main results of the work are as
follows:

(i) The work proposes a scheme for calculating the influ-
ence of the concentration of free electrons in a quantum well
on the spectrum of optical phonons and on electron-optical
phonon scattering. Using the proposed scheme, the spectra of
optical phonons in a 10-nm GaAs quantum well surrounded
by Al0.3Ga0.7As barriers were calculated. It is shown that the
presence of free electrons has the greatest influence on the
spectrum of two high-frequency optical phonons. This effect
is strongest on phonons with a wave vector less than 1 nm−1.

(ii) The influence of free electrons on intrasubband
electron-optical phonon scattering in a 10-nm GaAs quantum
well was studied. It is shown that the frequency of such
scattering varies nonmonotonically with increasing electron
concentration. The relaxation rates of the wave vector and
energy for scattering in the first and second subbands of size
quantization are found.

(iii) The influence of free electrons on the scattering of
electrons from the second subband to the first with the par-
ticipation of the optical phonons was studied. It is shown
that with increasing electron concentration, the frequency of
intersubband scattering decreases.

Let us now briefly discuss some physical consequences
of the influence of electron concentration on electron-optical
phonon scattering. From the presented results it is clear that
the frequency of intrasubband electron-optical phonon scat-
tering in GaAs is approximately an order of magnitude higher
than the frequency of intersubband scattering. Therefore, in
semiconductor laser diodes with GaAs quantum wells, a
decrease in the probability of intersubband scattering with in-
creasing concentration of nonequilibrium carriers accelerates
the filling of the vicinity of the bottom of the second size quan-
tization subband. This circumstance accelerates the switching
of the laser radiation frequency from a value corresponding to
the gap between the ground electron and hole subbands to a
value corresponding to the gap between the excited subbands.
This phenomenon is often observed in semiconductor laser
diodes with increasing concentration of nonequilibrium carri-
ers (see, for example, [36]).
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In the case of QCLs, doping to create an electron concen-
tration in the QW of up to 1012 cm−2 will lead to a decrease
in intersubband scattering between subbands, electron tran-
sitions between which generate radiation. An increase in the
time of electron scattering from the upper working subband
to the lower one with the participation of optical phonons will
lead to an increase in the difference in electron concentrations
in these subbands and an increase in population inversion
(see, for example, formula (1) in [37]). Therefore, QCLs with
higher doping will have lower threshold current densities and
higher maximum operating temperatures.

A decrease in the frequency of intersubband scattering with
increasing electron concentration also improves the character-
istics of quantum well photodetectors, since it prevents the
return of a photoexcited electron from the second subband to
the first one.

Data underlying the results presented in this paper are not
publicly available at this time but may be obtained from the
authors upon reasonable request.
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APPENDIX A

In order to express Eq. (3) in the form of a one-dimensional
integral, we use the method of obtaining electronic polariz-
ability at any temperature from the expression for it at zero
temperature [38]. An expression for electronic polarizability
at zero temperature was obtained by Stern [34]. The essence
of the method is as follows. Let us consider the difference
between two polarizabilities χ (q, ω, F ), one of which corre-
sponds to the chemical potential F , and the other to F + δ.
Then their difference corresponds to the contribution to the
polarizability of filled electronic states located in the energy
range from F to F + δ. If δ is an infinitesimal value then this
difference can be represented as

χ (q, ω, F + δ) − χ (q, ω, F ) = δ
∂χ (q, ω, F )

∂F
. (A1)

In order to find the contribution of electronic states to
polarizability in the range F to F + δ at nonzero temperature,
it is necessary to multiply (A1) by the electron distribution
function. Therefore, electronic polarizability at a finite tem-
perature can be written as

χT (q, ω, F ) =
∫ ∞

0
dε

∂χ (q, ω, ε)

∂ε

[
1 + exp

(
ε − F

kBT

)]−1

,

(A2)

where kB is Boltzmann’s constant. Integrating (A2) by
parts we obtain the following expression for electronic
polarizability:

χT (q, ω, F ) = 1

4kBT

∫ ∞

0
dεχ (q, ω, ε) cosh−2

(
ε − F

2kBT

)
.

(A3)

Taking into account that κ intra
xx (q, ω) = 4πd−1χT (q, ω, F ) and

the explicit form of the real part χ (q, ω, F ) [34], we obtain the
following expression for κ intra

xx (q, ω):

κ intra
xx (q, ω) = mee2

2h̄3q4dkBT

∫ ∞

0
dε{2h̄q2 − c−θ−(ε)

×
√

(h̄q2 − 2meω)2 − 8meq2ε

− θ+(ε)
√

(h̄q2 + 2meω)2 − 8meq2ε}

× cosh−2

(
ε − F

2kBT

)
, (A4)

where me is the effective electron mass,

c− = sgn(h̄q2 − 2meω), sgn(x) = x/|x|,
θ±(ε) = θ [(h̄q2 ± 2meω)2 − 8meq2ε], and θ (x) is the Heavi-
side function.

APPENDIX B

Let us consider the propagation along the QW of a wave
that has a field component normal to the QW plane (z compo-
nent) equal to −E . Let us consider the effect of this electric
field component on the electron gas. This field component
creates an electric potential:

ϕ(r, t ) = Ez(eiqr−iωt+αt + e−iqr+iωt+αt ). (B1)

Using first order perturbation theory to find the wave
functions ψ (k, r) and the definition for the z component of
polarization:

�z(r, t ) = e
∑
k,l

fl (k)
∫

dzψ+
l (k, r)zψ (k, r), (B2)

we find the following expression for it:

�z(r, t ) = e2E

S
(eiqr−iωt+αt + e−iqr+iωt+αt )

×
∑
k,l,m

( |zk+q,m;k,l |2
εl (k) − εm(k + q) + h̄ω + ih̄α

+ |zk−q,m;k,l |2
εl (k) − εm(k − q) − h̄ω − ih̄α

)
. (B3)

From Eq. (B3) it is clear that the polarization can be di-
vided into two parts, proportional to exp(iqr − iωt + αt ) and
exp(−iqr + iωt + αt ). Therefore, these parts can be consid-
ered separately.

Since �z(r, t ) = −χE [the z component of the field is
equal to −E as it follows from (B1)], where χ is the polar-
izability of a unit volume, and the electron contribution to the
dielectric permittivity can be written in the form κzz = 4πχ ,
we find

κzz(q, ω) = 4πe2

dS

∑
k,l,m

( −|zk+q,m;k,l |2
εl (k) − εm(k + q) + h̄ω + ih̄α

+ |zk−q,m;k,l |2
εl (k) − εm(k − q) − h̄ω − ih̄α

)
fl (k). (B4)
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If we make the following substitutions in the second term:
k − q → k, l → m, m → l , then from Eq. (B4) we obtain
Eq. (4). When q → 0 from Eq. (B4) we obtain the formula for
the contribution of intersubband transitions to the dielectric
constant without taking into account spatial dispersion:

κzz(ω) = −4πe2

dS

∑
k,l,m

|zk,l;k,m|2 fl (k) − fm(k)

εl (k) − εl (k) − h̄ω
. (B5)

If we assume that the matrix element z does not depend on
k, and the electron dispersion law is quadratic with the same
mass in the subbands under consideration, then taking into
account the contribution from only two subbands, (B4) can be
represented as

κzz(q, ω) = 4e2|z1,2|2
d

∫
dk{k f1(k)[H (q, ω,�, k)

+ H (q,−ω,�, k)] + f2(k)[H (q, ω,−�, k)

+ H (q,−ω,−�, k)]}, (B6)

where

H (q, ω,�, k) = sgn[G(q, ω,�)]θ [G2(q, ω,�) − b(k, q)]√
G2(q, ω,�) − b(k, q)

,

(B7)

G(q, ω,�) = � + h̄2q2

2me
− h̄ω, b(k, q) =

(
h̄2kq

me

)2

,

(B8)

� = ε2(k) − ε1(k).

APPENDIX C

Functions Fq,s(ωq,s) for even phonons were found in
Ref. [22], but the functions in Ref. [22] were chosen differ-
ently from those in this paper. The functions Fq,s(ωq,s) are
found from the following equation:

Fq,s(ωq,s)

= S

2π

{
∂[ωq,sκxx(ωq,s)]

∂ωq,s

∫ 0

−d/2
dzq2	2

q,s(z)

+ ∂[ωq,sκb(ωq,s)]

∂ωq,s

∫ −d/2

−∞
dz

[
	2

q,s(z) +
(

∂	q,s

∂z

)2
]

+ ∂[ωq,sκzz(ωq,s)]

∂ωq,s

∫ 0

−d/2
dz

(
∂	q,s(z)

∂z

)2
}

, (C1)

where the right-hand side (C1) is the expression for the
phonon energy, and the index s in 	q,s(z) denotes the branch
of the phonon mode.

For bulklike even phonons this function has the form

Fq,s = Sq

8π

{
4∂[ωq,sκb(ωq,s)]

∂ωq,s
cos2(βqqd/2)

+ ∂[ωq,sκxx(ωq,s)]

∂ωq,s

[βqqd + sin(βqqd )]

βq

+ ∂[ωq,sκzz(ωq,s)]

∂ωq,s
βq[βqqd − sin(βqqd )]

}
, (C2)

where βq = βq(ωq,s)
For surface even phonons this function has the form

Fq,s = Sq

8π

{
4∂[ωq,sκb(ωq,s)]

∂ωq,s
cosh2(γqqd/2)

+ ∂[ωq,sκxx(ωq,s)]

∂ωq,s

[γqqd + sinh(γqqd )]

βq

+ ∂[ωq,sκzz(ωq,s)]

∂ωq,s
γq[−γqqd + sinh(γqqd )]

}
, (C3)

where γq = γq(ωq,s).
For bulklike odd phonons this function has the form

Fq,s = Sq

8π

{
4∂[ωq,sκb(ωq,s)]

∂ωq,s
cos2(βqqd/2)

+ ∂[ωq,sκxx(ωq,s)]

∂ωq,s

[βqqd − sin(βqqd )]

βq

+ ∂[ωq,sκzz(ωq,s)]

∂ωq,s
βq[βqqd + sin(βqqd )]

}
. (C4)

For surface odd phonons this function has the form

Fq,s = Sq

8π

{
4∂[ωq,sκb(ωq,s)]

∂ωq,s
cosh2(γqqd/2)

+ ∂[ωq,sκxx(ωq,s)]

∂ωq,s

[−γqqd + sinh(γqqd )]

βq

+ ∂[ωq,sκzz(ωq,s)]

∂ωq,s
γq[γqqd + sinh(γqqd )]

}
. (C5)
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