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The diffusive phase transformations occurring in feldspar, a common mineral in the crust of the Earth, are
essential for reconstructing the thermal histories of magmatic and metamorphic rocks. Due to the long timescales
over which these transformations proceed, the mechanism responsible for sodium diffusion and its possible
anisotropy has remained a topic of debate. To elucidate this defect-controlled process, we have developed a
neural network potential (NNP) trained on first-principle calculations of Na-feldspar (albite) and its charged
defects. This force field reproduces various experimentally known properties of feldspar, including its lattice
parameters and elastic constants as well as heat capacity and DFT-calculated defect formation energies. A new
type of dumbbell interstitial defect is found to be most favorable, and its free energy of formation at finite
temperature is calculated using thermodynamic integration. The necessity of including electrostatic corrections
before training an NNP is demonstrated by predicting more consistent defect formation energies.

DOL: 10.1103/PhysRevMaterials.8.073602

I. INTRODUCTION

Feldspar is the most abundant mineral in the Earth’s
crust and an important ingredient for ceramics [1]. It
forms a solid solution between a sodium (NaAlSi;Og, al-
bite), calcium (CaAl,Si,Og, anorthite), and a potassium
(KAISi;0g, K-feldspar) end-member component. The most
prominent feldspar groups are represented by the plagio-
clase (NaAlSi3;Og, CaAl,Si;Og) and the alkali feldspar
(NaAlSi3;Og, KAISi3Og) solid solution series. At high temper-
atures typical for magmatic and metamorphic environments,
both solid solution series show complete miscibility. Towards
lower temperatures miscibility gaps open, and feldspars of
intermediate composition tend to exsolve, typically producing
lamellar intergrowth of feldspars with different compositions.
The exsolution microstructures are of particular interest for
reconstructing the thermal history of magmatic and metamor-
phic rocks [2,3]. In addition, elastic strain associated with
exsolution microstructures may lead to pseudocleavage along
the so-called Murchison plane, which may enhance the ice
nucleation activity of exsolved feldspar making the corre-
sponding aerosol particles potentially important players in the
glaciation of clouds [4].

Exsolution of an initially homogeneous feldspar implies
segregation of the different cations on the alkali and alkali
earth sub-lattices, which occurs by intracrystalline diffu-
sion. Due to the long timescales over which diffusive phase
transformations in feldspar proceed, the underlying diffusion
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mechanisms and their possible anisotropy still hold unre-
solved questions, such as the recently discussed systematic
differences between experimentally determined Na-K inter-
diffusion coefficients and those theoretically predicted from
measured tracer diffusion coefficients [5-9].

On the computational side, the diffusion of alkali defects
in feldspar has been studied with kinetic Monte Carlo sim-
ulations [10-12] using empirical rate constants. Interatomic
potentials capturing all constituent elements of the mate-
rial and its defects are needed for studying the microscopic
mechanism of diffusion without referring to laboratory exper-
iments. It has been demonstrated that classical force fields are
capable of reproducing the overall properties of various kinds
of silicates and aluminosilicates [13], and they have been
applied for studying diffusion barriers of sodium vacancies
in Na- and K-feldspar [14]. These classical force fields, how-
ever, fall behind density functional theory (DFT) methods,
which have been demonstrated to predict various properties of
feldspar accurately [15]. Yet DFT and other ab initio methods
are computationally considerably more expensive than classi-
cal force fields, drastically limiting the accessible system sizes
and simulation times. Recently, machine learned force fields
(MLFFs) have been shown to offer accuracy comparable to
first-principle electronic-structure calculations at a cost com-
parable to that of classical force-field calculations [16,17].
Such MLFFs have already been used to study a vast array of
systems ranging from organic molecules and inorganic crys-
tals to surfaces, aqueous systems, and biomolecules [18-20].
In particular, MLFFs have been used for studying diffusion in
lead and cadmium telluride [21], and an MLFF for studying
ice nucleation on K-feldspar has been developed recently [22].

In this paper we address sodium feldspar albite
(NaAlSi3Og), the conventional unit cell of which contains
four formula units in a C1 spacegroup and is illustrated in
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FIG. 1. Unit cell of albite (a) and three possible defects (b)—(d).
White tetrahedrons are [SiO4]~*, black ones are [AlO4]>, and yel-
low spheres are Na™. The defects are shown relative to the central
eight-membered ring of tetrahedrons. The three defects, shown in
side and top view, are (b) the Na:;m L interstitial defect, (c) the dumb-

bell interstitial Na;, and (d) the vacancy Vy,. The configurations
shown above were relaxed using NNPw/corr. Note that the unit cell
111

used here is shifted by (53 5) with respect to the origin of the unit

cell usually used for feldspar.

Fig. 1(a). We develop a Behler-Parrinello-type neural network
potential (NNP) for sodium feldspar, paying particular
attention to an accurate representation of defects. Trained
on a reference data set obtained with DFT using the PBE
functional [23], our NNP accurately reproduces forces and
energies, and it can be used to carry out extensive molecular
dynamics simulations. We demonstrate its applicability by
computing the heat capacity as well the elastic constants
and the geometry of the unit cell of Na-feldspar over a
wide range of temperatures, finding good agreement with
experimental data. In addition, we investigate the structure
and diffusion of charged interstitial and vacancy defects,
taking electrostatic finite-size corrections into account.
Such Frenkel pairs, consisting of Na™ interstitials and Na™*
vacancies, are expected to be the majority carrier of alkali
defects, since Schottky defects are energetically improbable
due to the high Si-O bonding energy [24]. The computational
efficiency of the NNP allowed us to determine the defect
formation free energy, and from it the defect concentrations
for temperatures from 0 K up to 1400 K using thermodynamic
integration. Furthermore, our simulations revealed a new
interstitial configuration, in which two Na™ cations share
an alkali lattice site [Fig. 1(c)]. This dumbbell-like defect
is thermodynamically more favorable than the NazBO 1
interstitial shown in Fig. 1(b) that was considered previouslzy
[25]. Interestingly, the energetically favorable orientation of
the dumbbell changes discontinuously at a temperature of
about 752 K. The current version of our NNP can be used
to model sodium feldspar, but it can be readily extended to
potassium feldspar and the solid solution of alkali feldspar by
retraining it with an extended traning set.

The remainder of the paper is organized as follows. In
Sec. I we describe the computational methods used in our
work, including the preparation of the reference data and the

training of the NNP. Results are presented and discussed in
Sec. III, and conclusions are provided in Sec. I'V.

II. METHODS
A. Ab initio calculations

All our DFT calculations were performed using the Vi-
enna Ab-initio Simulation Package (VASP) [26-28] with
the projector augmented wave method [29] utilizing the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional [23]. The conventional cell containing four formula
units of NaAlSi;Og, initially constructed using experimental
data of Armbruster and colleagues [30] with Al always kept
at the T;O-sites, was sampled using a 6 x4 x6 I'-centered
k-point mesh. The same k-point density in the Brillouin zone
was kept across all calculations, and the energy cutoff was set
to 560 eV. The convergence criteria were 10> eV A~ for the
self-consistent cycle and 1073 eV A~! for ionic relaxations.
When varying the number of electrons, a neutralizing jellium
background was included.

B. Defect formation energies and their correction

To determine the equilibrium concentrations of point
defects in Na-feldspar it is necessary to calculate defect
formation energies. Since vacancies and interstitials carry
a charge, their energy in a periodicically replicated system
suffers from strong finite-size effects that require proper cor-
rections. For charged defects in a periodic supercell the defect
formation energy is given by [31,32]

Etorm = (E[Defect] + Eor[Defect]) — E[Bulk]

— > mitti + qlevpm + AEr). ()

Here E[Defect] is the total energy obtained from a supercell
calculation containing the defect and E[Bulk] is the total
energy of the pristine supercell. The term E .. [Defect] is
a finite-size correction explained in more detail below. The
integer n; is the number of atoms of type i added to (n; > 0)
or removed from (n; < 0) the system, and u; is the corre-
sponding chemical potential in the reservoir with which the
atoms are exchanged. The last term in the equation represents
the energy required to introduce or remove the electronic
charge g, which is g = —1 for Na® vacancies and g = +1
for Na™ interstitials. Here eygy is the electron energy at the
valence band maximum (VBM) and AFEF the Fermi level. As
is common for 0 K DFT calculations, we identify AEp = 0.

As mentioned above, when calculating the formation
energy of charged defects in the supercell approach one invari-
ably introduces interactions between the defect, its periodic
images, and the neutralizing background charge, necessitating
the correction E.q. The most important contribution to this
correction is the spurious Coulomb interaction, which remains
significant for any practical supercell size. Several methods
exist to subtract this interaction from the defective supercells.
Apart from the extrapolative scheme, in which the defect
formation energy is determined for a sequence of supercells
of increasing size whose limiting value can be identified with
the dilute limit, there have been major developments in for-
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TABLE 1. Ionic () and electronic (¢*) contributions to the
static dielectric tensor €;;(0) of Na-feldspar computed in GGA. To
compare with experimental data, we estimated the dielectric con-
stant of a polycrystalline sample by €,y = (A; + A2 + A3)/3, where
M1, A2, A3 are the eigenvalues of the dielectric tensor. The result is an
€poly €qual to 6.18 vs values of 7 and 8 from experiments of Olhoeft
[36] and Jones et al. [14], respectively.

€® € p))
€xx 2.404 2.602 5.006
€y 2.441 4.664 7.105
€, 2.415 4.019 6.434
€y —0.005 —1.576 —1.581
€2x —0.007 —0.273 —0.280
€xy 0.001 0.110 0.111

mally removing the electrostatic interactions by corrections
[33]. Here we use the correction of Kumagai and Oba, which
was introduced as the “extended FNV scheme” in [33]. The
effects of microscopic screening are inferred by the atomic
site electrostatic potentials of the pristine system and of the
system with the defect after ionic relaxation. To compute this
correction, we first determined the dielectric tensor of albite
using DFT perturbation routines in VASP [34]; see Table I.
Then we calculated the correction from pristine and relaxed
defective supercells of the various systems (listed in Table IV)
using the Spinney package [35]. The potentials involved in the
correction are provided in the Supplemental Material [77].

C. Architecture of the NNP committee

In this work the potential energy surface is represented by
artificial neural networks as proposed by Behler and Parrinello
in 2007 [16]. Local atomic environments are expressed by
radial and angular atom-centered symmetry functions with
a cutoff of 6A. The atomic feed-forward neural networks
consist of an input layer containing 256 nodes in the case
of aluminum, 272 for silicon, 273 for sodium, and 276 for
oxygen. All four networks further consist of two hidden layers
with 25 nodes each and one single output node. The weights
and biases were initialized randomly and optimized using
a parallel Kalman-Filter [37] to minimize the root-mean-
squared deviation between predicted energies and forces and
the reference values. The n2p2 package [38] was used to
train the potentials and to interface them with the molecular
dynamics simulation package LAMMPS [39].

We used several independent NNPs, trained with different
initial weights, in a committee machine, i.e., predictions for
a certain configuration A are calculated as an average over N
independent predictions y;:

_ 1
ya) =+ ZYKA)- )

For all our calculations we used the committee method im-
plemented in n2p2 by Kyvala et al. [40] with a committee
size of N = 4. Committee machines are known to increase the
precision of machine-learning models and reduce overfitting,
and they have been used to improve predictions of various

physical properties [41,42]. Furthermore, the variance o (A)
of the individual predictions can serve as a measure for the
uncertainty of the averaged prediction y(A) [43-45]. As ex-
plained below, we use this uncertainty in our active learning
strategy for the generation of the reference data.

D. Data set generation
1. Active learning

To generate the data set needed to train and test our NNP,
we used a two-stage strategy. In the first stage, we carried
out an on-the-fly machine learning simulation using VASP
[46,47]. In this approach, an ab initio molecular dynamics
simulation is started and a Gaussian process regression (GPR)
model is continuously trained on the energies and forces com-
puted from DFT. As the simulation proceeds and the accuracy
of the GPR model improves, the expensive electronic structure
calculations are successively replaced by the computation-
ally inexpensive GPR model. DFT calculations are carried
out only if the accuracy of the GPR model, as determined
from Bayesian error estimation, falls below a given threshold.
Since with time the relevant part of configuration space gets
explored by the simulation, fewer and fewer DFT calculations
become necessary, speeding up the simulation considerably.

With this on-the-fly approach, a relaxed 2 x 1 x 2 supercell
was driven from 0 to 1300 K in 20000 steps at atmospheric
pressure in the NPT ensemble. In these and all subsequent
on-the-fly simulations a timestep of 1.5 fs was used. When-
ever an electronic structure calculation was carried out, the
respective configuration together with its energy and forces
was added to the reference data set. The simulation was
continued at 1300 K until there were no new uncertain con-
figurations added to the reference set for a span of at least
20 000 steps. The same procedure was repeated for a relaxed
2 x 1 x 2 supercell in which a sodium atom was introduced
and an electron removed to create an Na;" interstitial defect.
This system took the longest to reach acceptable predictive
accuracy at 1300 K with 100 000 steps necessary. Finally, the
procedure was carried out for a relaxed supercell in which a
sodium was removed and an additional electron introduced
to create a Vi, vacancy. Throughout all of these simulations a
total of 220 000 time steps were carried out, long enough such
that several intracrystalline hopping events of the defects were
already observed therein. Of the total number of timesteps,
1679 were calculated using forces determined ab initio.

While MD simulations can be carried out with the GPR
model directly, it is known that NNPs are superior to GPR
models in terms of speed. In the second stage of our strategy,
we have therefore used energies and forces computed ab initio
for the 1679 configurations collected on the fly to train an
NNP. More specifically, a committee of four neural-network
potentials (their architecture is given in Sec. II C) was trained
with n2p2. The committee was then used to run MD simula-
tions with 2x2x 2 supercells in a pristine system and with
interstitial or vacancy defects in the NPT ensemble up to
1400 K with a time step of 1 fs. Every fifth time step the force
uncertainty for each atom was determined. Since the force
uncertainty is a local quantity in contrast to the uncertainty
of the total energy, we expect it to be a more suitable mea-
sure of uncertainty. Configurations where any atomwise force
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uncertainty was above the threshold of five times the RMSE
(analogous to Ref. [48]) were collected. Configurations that
were at least 100 fs apart were recalculated with VASP and put
into the reference data set. With this augmented reference data
set a new committee was trained and the process was repeated.
After four such iterations the committee produced a low rate
of uncertain configurations and the procedure was stopped.
A total of 670 additional DFT calculations were necessary in
this procedure. An increase in the required training set size
between the initial GPR model of VASP, and the final NNP
had to be expected as GPR models are known to require less
data than NNPs; see, e.g., Ref. [49]. In total, the training set
contained 2351 configurations with energies and forces.

To test the prediction of the NNP, a test set was created
by sampling random structures throughout all simulations. In
addition, with the final committee, MD simulations exceeding
3ns of the 2 x2x2 systems were performed, and 400 struc-
tures each of the pristine system and the system containing an
Na;" as well as the system with a Vy, were calculated with
first principles and added to the test set. In total, the test set
contained 1302 configurations with energies and forces. Let
us denote the data set obtained so far by

A = {A;, (Ei, 1)},

where A; are the configurations, and E; and f; are the corre-
sponding potential energies and forces, respectively, obtained
in the supercell calculations.

2. Including electrostatic corrections in the data set

The data set A, does not contain the finite-size corrections
stipulated in Eq. (1) to calculate defect formation energies.
Since machine-learning force fields allow us to go to large
system sizes at which the spurious long-range Coloumb inter-
action between a charged defect and its periodic images may
actually become negligible, it was not clear if electrostatic
finite-size effects should be included or corrected for in the
reference data. To ensure a proper force field that treats these
charged defects consistently, we created a second labeled
data set:

Ay = {A;, (Ei + Econ(A)), £},

where E.,(A;) is the electrostatic finite-size correction that
depends on the configuration A;. That is, corresponding to
the system size and defect type, we add the correction before
training to incorporate it into the neural-network potential.
Apart from this, the configurations of A, are identical to
those of .A;. Note that the Kumagai-Oba correction allows us
to include effects of lattice relaxations into the microscopic
screening. We then identified E..(A;) for any finite tempera-
ture configuration A; by the correction of the relaxed system
of the same supercell-size and defect type.

E. Heat capacity, elastic constants, and phonons

To assess the performance of the NNP compared to its
DFT reference as well as to experimental data we calcu-
lated the elastic constants and heat capacity. To calculate
the elastic constants at the DFT level we used displace-
ments of the box and of the ions with a step size of
0.015 A for the stress-strain relationship [50] implemented in

VASP. To calculate the elastic constants with NNPs we used
box displacements with a relative deformation magnitude of
2 x 10~ for the stress-strain relationship as implemented in
LAMMPS/examples/ELASTIC. The isochoric heat capacity
Cy was determined through the phonon density of states
obtained using the phonopy [51] codes for DFT and the
NNPs respectively. To compare with experiments the iso-
choric heat capacity Cy was transformed to the isobaric heat
capacity Cp through the relation Cp = Cy + TVa?K. Values
for the thermal expansion coefficient o were calculated from
the temperature dependence of the volume that we obtained
from thermodynamic integration (next section) and the bulk
modulus K was calculated using the Voigt-Reuss-Hill aver-
age of the elastic constants. A finite temperature anharmonic
renormalization of the phonon band structure was performed
using normal-mode decomposition [52] as implemented in
dynaphopy [53].

F. Thermodynamic integration and parallel tempering

One of the goals of this work is to compute the equilibrium
concentrations of interstitial and vacancy defects as a function
of temperature. We accomplish this by determining the free
energy of formation of Frenkel pairs Ggp(T ), from which their
concentration follows [54]

2kgT )

Crp(T) = exp <M>
The formation free energy Gpp(7') is calculated via thermo-
dynamic integration following Cheng and Ceriotti [55] using
i-PI [56] and LAMMPS [39]. To achieve sufficient sampling
also at low temperatures, we employ a parallel replica scheme
[57] coupling isothermal-isobaric MD simulations at different
temperatures, from 100 K up to the melting point of 1400 K
[58-60]. Note that this approach takes into account full an-
harmonic effects, which can become relevant at the higher
temperatures [61,62]. Details about this free energy calcula-

tion are included in the Supplemental Material [77].

III. RESULTS

A. Performance of the neural network potentials

The accuracy of the neural network potential committees
trained without charge corrections (NNPw/o) and with charge
corrections (NNPw/corr) was first assessed by comparing the
predicted forces and total energies with the reference data
for the test set. The test set of NNPw/corr was appropriately
shifted just like its training set Aj.

As can be seen in Fig. 2 and Table II, the NNP predictions
are close to the reference data with an accuracy that is on par
with similarly constructed neural-network potentials [21] or
other types of machine-learning force fields [47]. In particular,
the errors for NNPw/o and NNPw/corr are essentially the
same.

B. Heat capacity, elastic constants, and unit cell

In Fig. 3(a) the elastic constants obtained from DFT as well
as with the NNP with (NNPw/corr) and without (NNPw/o0)
corrections are shown. The figure also includes results of DFT
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FIG. 2. (a) Deviation of the predicted energy from the reference
energy vs. reference energy for NNPw/o and NNPw/corr; (b) pre-
dicted forces vs reference forces for NNPw/o and NNPw/corr.

calculations of Kaercher et al. [15] and experimental results of
Brown et al. [63] and Rhyzova [64]. Note that in the calcula-
tions of Kaercher et al. [15] the volume of the system was
fixed at the experimental density during relaxation, making
their results correspond to a high pressure. The results for
NNPw/o and NNPw/corr almost fall on top of each other
and both reproduce the DFT generated constants well overall.
For the bulk modulus, the Voigt-Reuss-Hill average yields
54.0 GPa in the case of the NNPs and 58.7 GPa if referring
to DFT. The latter is closer to the bulk modulus of 59.5 GPa
as reported from measurements of Brown et al. [63].

In Fig. 3(b) the isobaric heat capacity obtained from DFT,
NNPw/o, and NNPw/corr and the experiments of Benisek
et al. [65] and Salje et al. [66] are shown. The heat capac-
ities we obtained with the three methods trace Salje’s data,
which are marginally higher than Benisek’s experiments. The

TABLE II. Root-mean-squared errors for the test set obtained
from the committee trained without charge correction (NNPw/o) and
and with charge corrections (NNPw/corr).

a -
(@) X4 —e— GGA
1501 —<— NNPw/corr
—— NNPw/o
--<-- (An0) Brown et al. (2006)
& 100+ = (An9) Rhyzova (1964)
8 LDA Kaercher (2014)
(@) GGA Kaercher (2014)
501
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FIG. 3. (a) Elastic constants obtained from the NNP, DFT,
and experiments. We use the orientation convention Z|c, Y|la x
¢, X||Y x Z). (b) Isobaric heat capacity Cp vs temperature.

phonon band structure and DOS that is used to calculate the
heat capacity for the NNPw/corr are shown in the Supplemen-
tal Material Fig. S-14 [77].

In Table III we list the unit cell parameters obtained from
DFT, NNPw/o, and NNPw/corr as well as the experimental
results of Brown et al. [63]. As is common with GGA-DFT,
the lattice parameters are slightly overestimated, and this is
reproduced in both NNPs. In Fig. 4 we plotted the change
in unit cell dimensions as a function of temperature for the
NNPw/corr. As can be inferred from the figure, the lattice
parameters increase anisotropically with temperature. The
change of the box angles is in the correct direction as feldspars
become more monoclinic as temperature increases [67]. The
thermal expansion coefficient that follows from Fig. 4 ranges
from 3.3 x 107> between 0 and 100K to 4.7 x 10~ between
1300 and 1400 K. This compares reasonably well to experi-
mental data which range from 3.0 x 107> [68] to 4.6 x 107>
[69] and from 2.5 x 107° at 298K to 3.4 x 10> at 900K
for a fit of Tribaudino et al. [70]. The whole temperature

TABLE III. Unit cell parameters of Na-feldspar for the experi-
ment of Brown and coworkers [63] and fully relaxed unit cells of
GGA and the two NNPs.

a[A] b[A] c[A] o[deg] PBldeg] y [deg]

RMSE NNPw/o NNPw/corr  GGA 8260 12933 7.250 94210 116489 87.555
— NNPw/corr 8254 12929 7.250 94.171 116474 87.556
AE [Gom 0.40 0.39 NNPw/o 8.248 12.935 7.250 94.165 116471 87.573
AF [] 0.065 0.065 Browneral. 8.137 12786 7.158 94253 116.605 87.756
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FIG. 4. Percent changes of the edge lengths a, b, and ¢ (left
y axis) of the unit cell as a function of temperature with respect to the
unit cell at 0 K for NNPw/corr. Also shown are the angles «, 8, and
y of the unit cell (right y axis).

dependence of the thermal expansion coefficient is shown in
the Supplemental Material in Fig. S-10 [77].

C. Defect formation energies at 0 K

In the feldspar structure illustrated in Fig. 1(a) an intersti-
tial atom can occupy only a restricted number of positions. We
started by placing a sodium cation at the (0, O, %) position, as
proposed by Petrovic [25], and relaxed the system. This inter-

stitial is refered to as Na:(”)0 5 and is shown in Fig. 1(b). In this
2

configuration, the inserted cation lies on the same (010) plane
as its neighboring sodium ions, to which it has a large separa-
tion. The two nearest sodium neighbors are 4.17 A away and
the two next nearest are at a distance of 4.34 A, such that the
defect is at an electrostatically favorable position as argued
by Petrovic. While this defect is mechanically stable at low
temperatures, on heating the system as described in Sec. II D 1
we observed that at a temperature of roughly 600 K the defect
transitions to the dumbbell-type defect Na;\; in which two
Na™ share a single alkali lattice site, as shown in Fig. 1(c).
The reverse transition, from dumbbell type to Na;BO 1) Was
observed only transiently in the parallel tempering runs and
at higher temperatures (see Sec. III D 1). Such a dumbbell
configuration is rare for ionic crystals due to electrostatic
repulsion, but the large cavities of the feldspar framework
seem to allow for this extra ion. The two Na™ ions lie outside
the (010) plane spanned by the other sodiums. They are only
2.67 A apart but have a comparable separation to their next-
nearest neighbors as conventionally occupied Na sites. We
also initialized a supercell with a sodium interstitial between
two neighboring Na sites inside the folded eight-membered
ring as was suggested by Behrens and coworkers [24]. How-
ever, this configuration was unstable and reconfigured to the
dumbbell configuration during relaxation. The final defect we
discuss is the sodium vacancy V, pictured in Fig. 1(d).

The conventional unit cell of Na-feldspar contains four for-
mula units of NaAlSi;Og in a CI space group. A single
formula unit supports only half of one (0, 0, %)-site, whereas
the dumbbell and vacancy can appear once for every

TABLE IV. Defect formation energies at 0 K for various defects
after full ionic and volumetric relaxation. The defect energies were
calculated according to Eq. (1) using the internal energy per atom
of sodium bce, uy, = —1.31eV, and a valence band maximum of
evpm = 1.18 eV, both determined in GGA. The Fermi level was set
at the VBM, AEp. = 0. The defect energy in the last row is that of
the lowest energy Frenkel pair in the 2 x 2 x 2 system resulting from
summation of the energies in rows 1 and 3.

Formation energies Ef [€V]

GGA NNP
Defect type System ¢ w/o  w/corr  w/o  w/corr
Vi 2x2x2 —1 5.11 529 4091 5.20
Vi 2x1x2 -1 5.03 532 4091 5.21
Naj, 2x2x2  +1 —-334 -3.16 -3.38 -3.13
Na(*ool) 2x2x2  +1 -3.00 -2.82 -—-3.10 -—2.83
Na(*oo]) 2xIx2  +1 —=3.06 —2.79 —3.08 —2.81
2
V. + Nafy 2x2x2 40 1.87 - 149  2.03
Vi + Na(*00 N 2x2x2 40 227 - 1.79 235
2
Lowest energy +0 1.77 2.13 1.53 2.07

Frenkel pair

sodium site. The conventional unit cell therefore supports 2
0,0, %) sites, four vacancy sites, and four dumbbell sites,
each of them equivalent up to symmetry, respectively. We
convinced ourselves of this explicitly for the dumbbell con-
figuration and noticed that its axis remains the same on all
possible locations. This implies that the two Na™ are equidis-
tant to the center of inversion, which is situated in the middle
of the eight-membered ring of tetrahedrons.

In Table IV we show the formation energies calculated
for the defects in individual supercells as well as in systems
containing both interstitial and vacancy defects together. The
defect energies, calculated according to Eq. (1), were ob-
tained for GGA, GGA including electrostatic corrections, the
NNP committee trained on a reference without corrections
(NNPw/0), and the NNP committee trained on a reference
including corrections (NNPw/corr). The KO finite-size charge
correction for the charged defects is relevant in the 2x 1 x2
and only marginally less so in the 2x2x2 system. The cor-
rected formation energy does, however, seem to be converged
rather well already in the 2x2x2 system, decreasing only
by 0.03eV compared to the smaller system for both Vg,
and Na(*(‘)o%).

To calculate the defect energy according to Eq. (1) we
use the chemical potential of sodium bcec computed at 7 = 0
and P = 0 with GGA. The electron energy at the valence
band maximum, eygym, of the perfect feldspar crystal was
also determined with GGA under the same conditions. Note
that in Ref. [71], GGA formation energies of sodium cation
vacancies were computed without separating elemental and
electronic contributions to the formation energy. Instead, the
authors used the energy of a charged sodium ion in vacuum as
reference, resulting in a defect formation energy that is 9eV
higher than the corresponding energy shown in Table I'V.

The necessity of including NNPw/o and the NNPw/corr
in this study becomes apparent when looking at the
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TABLE V. Defect formation energies calculated with GGA with-
out altering the number of electrons in the supercells.

Defect type System q Eform [eV]

Vi 2x2x2 +0 5.15

Nal, 2x2x2 +0 1.53

Na® 2x2x2 +0 1.91
00})

Na’ | 2x1x2 +0 1.92
©04)

Lowest energy +0 6.68

Frenkel pair

defect formation energies shown in the rightmost columns of
Table IV. Generally, NNPw/o and NNPw/corr seem to
reproduce the uncorrected and corrected DFT reference, re-
spectively. The precision at which this is accomplished,
however, favors NNPw/corr. In particular, for the formation
energy of the Frenkel pair, shown in the last row of Table IV,
NNPw/corr predicts a value quite close to the corrected refer-
ence, while NNPw/o predicts neither the uncorrected energy
nor the corrected one with acceptable precision. Note that this
formation energy of the Frenkel pair is consistent with the
upper limit of ~2.4eV of the enthalpic contribution to the
formation free energy, which was deduced by El Maanaoui
and coworkers [9] using ionic conductivity measurements in
K-rich feldspar. The need for corrections is most visible in
the defect formation energy of the Frenkel pairs in a single
supercell, (Vy, + Naj;) and (Vy, + Najoo%)). As the Frenkel
defect pair has no total charge, no charge correction is needed
in this case. However, due to the finite size of the cell there
remains an attraction between the interstitial defect and the
vacancy, which decreases the formation energy compared to
the sum of formation energies of Vy, and Naj, or Nago%).
In both cases, the NNPw/corr formation energy is closer to
the reference than the NNPw/o result. Since no electrostatic
correction needs to be applied in calculating the single Frenkel
pair, and no configuration of a Frenkel pair in a single system
was included in the training data, the good agreement of
the NNPw/corr corroborates the validity of the electrostatic
correction and indicates that it is a necessary ingredient in the
construction of the training set.

To ensure that we correctly identified the lowest energy
charge state of the Frenkel pair defect, we also calculated
the defect formation energies without altering the numbers
of electrons and listed these energies in Table V. The last
row shows the sum of uncharged VY, and Na{y, which cor-
responds to a Frenkel pair without charge transfer between
vacancy and interstitial. The formation energy of this Frenkel
pair is much higher than its counterpart with charge transfer
shown in the last row of Table IV. Since the latter is also
similar in value to the direct Frenkel pair V, + NafgB in the
single supercell, we conclude that it is the appropriate lowest
energy charge state.

The energies shown in Tables V and IV hold information
on the transitions between charge states. The difference in for-
mation energy of the interstitial in its neutral and charged state
is 4.69 eV in the case of the dumbbell and 4.73 eV in the case
of Na:;o%). An optical transition (Nady + 7 —> Naj, + hiw)
with % being a hole in the valence band would yield a photon

2.054e 10-3
-9
2.00 10
10—15
1.95 3‘
21y
3. HWH + 10
~ . -
& 0
[+
1.85 10—33 C)L
1.80 10739
e Formation free energy Ggp as
1.75 Concentration Cgp 10

0 200 400 600 800
T/K

1000 1200 1400

FIG. 5. Formation free energy Ggp with error bars of the Frenkel
pair as a function o temperature 7. The estimation of the error
bars is described in the Supplemental Material [77]. Also shown is
the resulting defect concentration Cgp obtained by applying Eq. (3).
Defect concentrations are given in defects per formula unit (d.p.f.u).

with an energy of 4.65 eV, where slight dissimilarities in the
local lattice relaxations of NaQ; and Naj, are taken into
account. Possibly this transition is related to a prominent peak
in arecent XEOL spectrum of Na-rich feldspar at4.5to 4.3 eV
(for 300 to 100K) that has not been categorized yet [72].
Moreover, Garcia and coworkers [73] have detected a peak at
4.3 eV and speculated that it originates from Na™ at interfaces.
Finally, a peak is also visible at 4.5eV in the phosphores-
cence spectrum of Na-feldspar [74]. An argument against a
connection between Nad), —> Naj, and those peaks is that
the latter study also reports a small peak at 4.4eV in the
phosphorescence spectra of two out of four specimens of
K-rich feldspar. All these systems, however, contain also some
amount of Na (as do all natural occurring alkali feldspars),
and we suspect that in alkali feldspars of any composition,
the dumbbell defect should be the most favorable interstitial
defect as both K-K dumbbells and Na-K dumbbells would be
sterically unfavorable compared to Na;;.

D. Finite temperature behavior
1. Free energy of defect formation

Using thermodynamic integration starting from a harmonic
reference model we calculated the free energies at finite tem-
peratures and atmospheric pressure for a pristine system, a
system containing a vacancy Vy,, and a system containing an
interstitial Na;". Details of the thermodynamic integration pro-
cedure, combined with parallel tempering, and the resulting
free energies are provided in the Supplemental Material [77].
Based on these individual free energies we determined the
free energy of formation of the Frenkel pair as a function of
temperature

GFP — GVNa —+ GNa;F - 2Gpristinea

which is plotted in Fig. 5. Interestingly, the free energy de-
creases monotonically with increasing temperature, but goes
through an inflection point at around 650 K. Below this tem-
perature the free energy of formation decreases in a convex
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FIG. 6. The lowest normal mode frequency at the I" point. Here
anharmonic renormalization refers to normal-mode-decomposition
[53]. The first minimum at 751.91 K is related to a discontinuity in
the orientational axis of the dumbbell. The soft mode at 1325.60 K
disappears when including anharmonic effects.

fashion, and above it it decreases concavely. Since S = —Z—(;,

this implies a minimum of the formation entropy.

To investigate the origin of the inflection point in the defect
formation energy we computed the relative frequency of the
two possible interstitial defect states, Nafy; and Na ), . The
thermodynamic integration over temperature allows the defect
to sample both of these states. Using an algorithm that can
discern between the Napy and the Na( ), states [75], we

determined the relative concentration that the latter exhibited
during the parallel tempering run. The fraction of Nazt)o 1

2
ranges from 0.6% at 1400K and about 0.02% at 1000K to
0% below 1000 K. The Na:(’)01 state did therefore not have

any contribution to the formation free energy below 1000 K

and cannot be the origin of the inflection. The relative con-
centration as a function of T can be found in the Supplemental
Maerial Fig. S-9 [77].

2. Discontinuity in the dumbbell orientation
and a dynamical instability

Further insights into the nature of the dumbbell defect can
be obtained by analyzing the normal mode frequencies of the
system with and without defect. In Fig. 6 we show the lowest
normal mode frequency at the I" point of systems containing
a dumbbell and of the pristine crystal as a function of temper-
ature. We calculated the normal mode frequencies using the
harmonic approximation or normal-mode decomposition, as
described in Sec. IIE, for the box dimensions corresponding
to the respective temperatures (cf. Fig. 4). The box dimensions
as a function of temperature were determined from parallel
tempering simulations. Close to the instability temperature
discussed below additional box sizes were obtained by inter-
polation and at higher temperature by extrapolation.

AE [ eV \

'
——_ 5
0 0E=2/30 eV 1.6 M2 [100] /

FIG. 7. The orientation of the dumbbell axis is shown using a
stereographic projection, visualized in the upper left. To obtain this
projection, the axis at P which lives on the upper hemisphere is
mapped into the point P’ of the image plane. The [010] direction is
kept at Orad latitude and the [100] at 0° longitude. In the upper right
panel, the axis orientation corresponding to the energy minimum at
all temperatures of Fig. 6 is plotted, and the discontinuity in latitude
occurring at 751.91 K is evident. The lower part shows the potential
energy landscapes sampled for different box dimensions. The axis
orientation corresponding to the energy minimum is indicated by a
star.

In the system with the dumbbell, at a temperature of about
752K a frequency vanishes and reappears at a different value.
Such a discontinuity implies that a minimum in the potential
energy landscape disappears, after which the system relaxes
to a different minimum. Since we do not observe the same
discontinuity in the pristine system, we conclude that this
effect is related to a mechanical instability of the dumbbell
defect.

A closer analysis reveals that the instability at 752K is
related to the orientation of the axis of the dumbbell. Figure 7
(upper right) shows this axis at the potential energy minimum
for all box dimensions in a stereographic projection. At 0K it
has an almost 45° angle to the [010] direction [cf. Fig. 1(c)].
With increasing temperature this angle slightly decreases, and
at 752K it jumps by about 22.5°. Upon further temperature
increase the angle decreases to almost 0° at 1400 K.

The lower parts of Fig. 7 show the potential energy
landscape as a function of the axis orientation for different
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Frequency / THz

FIG. 8. Phonon bandstructure in the harmonic approximation
(blue) and with anharmonicity included using normal-mode decom-
position (red) at 1325.60 K. Only a step of the band path suggested
in [76] is shown. The complete band structure is included in the
Supplemental Material [77].

temperatures. To determine these energy landscapes, we held
the axis of the two Na™ in the dumbbell fixed at random values
and relaxed all other degrees of freedom (including the dis-
tance of the dumbbell atoms to each other). Only samples with
a separation of the two Na* smaller than 3.8 A are counted
as dumbbell defects. Configurations with a larger separation
correspond to a Naj, at a different alkali site or even an
Na:(r)o%) defect.

Across all box dimensions the dumbbell axis shows
high anisotropy and energetically favors orientations between
[010] and [001]. Orientations between [010] and [100] are en-
ergetically much more costly. As the box dimensions increase
with temperature, the well between [010] and [001] flattens
and at 752 K a new minimum emerges. As only one alkali site
is considered, the potential energy landscape would have to
be appropriately inverted for an Naj; at the alternative alkali
site.

The necessity for using thermodynamic integration to in-
corporate anharmonic effects in the free energies of Fig. 5 is
evidenced by the appearance of a soft mode at about 1325 K
in the harmonic approximation in both pristine and interstitial
systems, as shown in Fig 6. Below 1300 K the crystal is dy-
namically stable, but between 1300—1400 K an optical mode
almost vanishes and an acoustic band exhibits a dynamical
instability. An excerpt of the band structure at 1325.60K is
shown in Fig. 8. Curiously, the crystal regains its harmonic
stability if we extrapolate the box dimensions beyond 1400 K.
The dynamical instability in the band structure disappears
completely after renormalizing the bands by incorporating
finite temperature effects using normal-mode decomposition.
This shows that the dynamical instability is a harmonic ar-
tifact and that anharmonic effects are essential in modeling
Na-feldspar at these high temperatures.

IV. CONCLUSIONS

In this work we presented an NNP, purpose-built for
Na-feldspar (albite) and its defects, and demonstrated its
applicability to simulate this system by predicting relevant
physical properties. In constructing the potential we made use
of on-the-fly machine learning initially and then expanded the
dataset using an NNP committee machine. This way to pro-
ceed required less human intervention than typically needed
for NNPs and should be widely applicable.

We have shown that electrostatic corrections need to be
included into the training dataset for the NNP. This is particu-
larly important when defect formation energies are of interest.
Including corrections after training produces a potential that
cannot transfer to systems that are made up of multiple defects
that neutralize each other, such as Frenkel pairs in Na-feldspar.

Based on our NNP, we have found a new kind of interstitial
defect in the dumbbell configuration Nag,, where two Na™
cations share a single site on the alkali sublattice. This defect
is the energetically most favorable, but at elevated tempera-
tures transitions occur between Naf; and the less favorable
(“:)m )-interstitial, which was observed previously. These dif-
ferent defect configurations as well as the instability in the
axis orientation of the dumbbell defect might affect the free
energy of formation of the Frenkel pair, which we found to go
through an inflection at elevated temperatures.

A promising future application of the NNP develped in
our work will be the direct determination of diffusion coef-
ficients of defects using MD. Combined with the free energy
of defect formation, it will be possible to compare these with
experimentally determined tracer diffusion coefficients and
elucidate the underlying diffusion mechanism. The latter is
key for understanding the formation of exsolution microsc-
tructures in alkali feldspar used in reconstructing the thermal
history of magmatic and metamorphic rocks [2,3]. A second
topic of interest is the extension of this NNP potential to in-
clude also potassium feldspar to study mixed systems of both
sodium and potassium feldspar, if possible including disorder
in the sites occupied by silicon and aluminum. These points
will be addressed in future research.

The training and test data, the NNPw/corr, a template for
molecular dynamics as well as LAMMPS-DATA configura-
tions of the pristine, Na' | , Naf,, Vy,, Vy, +Naj, and

(003)’
Ve Naz)o 1 systems are openly available through the Zen-
2

odo repository [78].
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