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Quantum confinement theory of the heat capacity of thin films
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A theory and mechanistic understanding of the thermal properties of solids under nanoscale confinement
are currently missing. We develop a theoretical quantum confinement description of thin films which predicts
a quantitative physical law for the heat capacity. In particular, due to the suppression of vibrational modes
caused by the thin-film confinement, the vibrational density of states deviates from the Debye quadratic law in
frequency and is, instead, cubic in frequency. This leads to a temperature dependence of the heat capacity which
is ∼T 4 instead of Debye’s ∼T 3 law. Furthermore, this theory predicts a linear increase of the heat capacity
upon increasing the nanometric film thickness. Both dependencies are found in excellent agreement with recent
experimental data on NbTiN thin films.
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I. INTRODUCTION

Understanding the thermodynamic properties of nanoscale
materials is important for both our fundamental understand-
ing of matter under confinement as well as for a myriad of
technological applications. Thin films, in particular, are now
routinely being developed with thicknesses in the order of few
nanometers, which has a strong impact on their electronic,
magnetic, and thermal properties. The specific heat or heat
capacity is a key thermodynamic property which can be lever-
aged to infer entropy and enthalpy, and plays an important
role for materials used as nanocalorimeters or for thermal
rectification and insulation in nanoscale devices [1–3]. In su-
perconducting materials, such as in superconducting nanowire
single-photon detectors (SNSPDs) that find application in
space communications, the phonon heat capacity is a key
parameter to control the detection quantum yield [4].

In spite of intense research, a theoretical mechanistic de-
scription of confinement effects leading to the experimentally
observed dependence of heat capacity of thin films on tem-
perature and on film thickness is currently missing. Ab initio
density functional theory (DFT) methods cannot simulate
thicknesses beyond a few angstroms [5] due to intrinsic limita-
tions in the number of atoms that can be simulated, which is in
the order of 103 [6], hence insufficient to describe nanometric
thin films.

Recent work has highlighted the existence of a generic
or universal effect of thin-film confinement on the propaga-
tion of quantum plane waves such as phonons (vibrational
excitations) or nearly free electrons. Without having to as-
sume hard-wall boundary conditions (which are often not
realistic in view of the atomic-scale roughness of the film)
it has been shown that the occupancy of quasiparticle states
in certain regions of momentum space gets suppressed [7–9].
The formation of unoccupied “hole” pockets in the k-space
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distribution of vibrational excitations is responsible for the
experimentally observed emergent low-frequency elasticity
and viscoelasticity of thin liquid films [10–12]. This effect
is also reflected in the experimentally observed suppression
of THz modes in nanoconfined water [13,14]. The same ef-
fect is responsible for the observed thickness dependence of
the dielectric permittivity of ferroelectric thin films [15] or
the thickness dependence of the Bose-Einstein condensation
(BEC) critical temperature in thin films of cold atoms [8]. In
superconducting thin films, the hole pockets in the Fermi sea
appear as two symmetric spherical cavities along the confine-
ment axis, which eventually can grow with confinement up
to a topological transition point in the Fermi surface that coin-
cides with a point of maximum of the superconducting critical
temperature Tc, in quantitative agreement with experimental
data [9].

Here, we apply the quantum confinement description of
phonons in a thin film and derive a different fundamental law
for the heat capacity of thin films that fully takes into account
the restriction in the k-space occupancy of phonons due to
confinement. This law is verified in comparison with recent
experimental data in terms of both the predicted dependencies
on temperature and thickness.

II. DEBYE THEORY FOR BULK SOLIDS

A. Debye density of states

The number of phonon states with momentum k′ < k is
given by [16]

N (k′ < k) = V

(2π )3
Volk, (1)

which follows from considering that there is one allowed
value of momentum k per volume, (2π )3/V . By multiplying
this by the volume of occupied states in k space, Volk , one
then obtains the number of states with k′ < k given by the
above expression.
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For a bulk solid, the volume of occupied states in k space is
given by the Debye sphere, Volk = 4

3πk3. Hence, the number
of states up to momentum k is given by

N (k′ < k) = V

(2π )3

4

3
πk3. (2)

For a given phonon polarization or branch, the phonon fre-
quency is related to the phonon momentum via ω = vk. Hence
the phonon density of states is given by

g(ω) = d

dω
N (ω′ < ω) = V

(2π )3

4

3
π

d

dω

(ω

v

)3
= V

2π2

ω2

v3
.

(3)
This is the well-known Debye density of states (VDOS). For
a three-dimensional (3D) solid, this still has to be multiplied
by a factor of 3 to account for the fact that in a solid there are
three polarizations or phonon branches [16].

B. Debye heat capacity

The total internal (thermal) energy of the system is given
by [16]

U =
∫

dω g(ω)〈n(ω)〉h̄ω (4)

=
∫ ωD

0
dω

(
3V

2π2

ω2

v3

)(
h̄ω

eh̄ω/kBT − 1

)
. (5)

The heat capacity is readily obtained by differentiating the
internal energy expression above with respect to temperature,

Cv = 3V h̄2

2π2v3kBT 2

∫ ωD

0
dω

ω4eh̄ω/kBT

(eh̄ω/kBT − 1)2
. (6)

Upon changing variable in the integral, from ω to x =
h̄ω/kBT , one thus obtains

Cv = 9NkB

(
T

�

)3 ∫ xD

0
dx

x4ex

(ex − 1)2
, (7)

where � = h̄v
kB

( 6π2N
V )1/3 is the Debye temperature.

By taking the low-T limit, i.e., the limit xD → ∞ in the
above integral, one arrives at the following formula [16],

Cv = 12π4

5
NkB

(
T

�

)3

, (8)

with the celebrated ∼T 3 Debye prediction for the heat ca-
pacity of solids. Upon considering the heat capacity per unit
volume, and using the definition of Debye temperature, the
following formula is readily retrieved,

Cv,Debye = 2

5
π2k4

B

T 3

h̄3v3
, (9)

where v is the average speed of sound.

III. CONFINEMENT THEORY FOR THIN FILMS

A. Density of states under confinement

We now turn to the case of thin-film confinement, and
we consider a 3D slab which is extended in the horizontal x
and y directions, and confined along the vertical z direction,

FIG. 1. (a) shows the thin-film geometry in real space (confined
along the z axis but unconfined along the x and y axis), with the
maximum wavelength that corresponds to a certain polar angle θ .
(b) shows a section of the corresponding geometry of k space, where
the Debye sphere (of radius kD, in red) gets distorted because it
now contains two symmetric spheres (hole pockets of radius π/L,
in white) of forbidden states. These are phonon states in k space that
remain unoccupied due to confinement along the z axis. See Ref. [7]
for a detailed mathematical derivation of this result.

as depicted in Fig. 1(a). The thickness of the film along the
confined direction is denoted as L.

As demonstrated in previous work [7,8,14], in the presence
of confinement along one direction (z axis), there exists a
maximum wavelength, λmax = L/ cos θ , where θ is the polar
angle measured with respect to the z axis. This clearly recov-
ers the fact that, in the xy plane orthogonal to z, there is no
confinement for in-plane phonon propagation, while, along z,
the maximum wavelength is set by the film thickness L. This
means that, for each orientation θ , there exists a minimum
value of the phonon momentum set by confinement,

kmin = 2π cos θ/L. (10)

This is the parametric equation of two identical spheres which
are the mirror image of each other across the xy plane, as
predicted in Ref. [7] and shown here in Fig. 1(b). The two
“open” spheres, which are contained within the Debye sphere,
represent the forbidden states (hole pockets) that cannot be
occupied due to the confinement. Upon further increasing the
confinement (i.e., decreasing L) these two forbidden spheres
eventually touch the Debye sphere surface and, for further
confinement, the surface of the highest momentum is no
longer spherical, as depicted schematically in Fig. 1(b).

In the latter case, the occupied volume in k space is no
longer given by a sphere as in Eq. (2), but it is given instead
by the volume of the Debye sphere minus its intersection with
the volumes of the two spheres of forbidden states defined by
Eq. (10). The intersection volume of the L-dependent volume
of the two white spheres in Fig. 1 with the Debye red sphere,
denoted as Vinter, can be exactly calculated using Eq. (10) and
standard tools of solid geometry. This is done by integrating
the areas of stacked disks along the z direction (in general,
the volume of a cylindrically symmetric object is obtained
by summing the areas of all the disks that are stacked on
each other to form the object; since these disks are densely
infinite, the sum is, in fact, an integral) [9]. The exact calcu-
lation gives Vinter = 4πk3

3 − Lk4

2 and, thus, Volk = 4πk3

3 − Vinter,
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follows as [8,9]

Volk = Lk4

2
. (11)

The number of states in k space with k < k′ then readily
follows as

N (k < k′) = V

(2π )3

Lk4

2
. (12)

The phonon density of states in the thin film then follows
immediately,

g(ω) = d

dω
N (ω < ω′) = V

4π3
L

ω3

v4
, (13)

which exhibits a cubic frequency dependence ∼ω3 that was
verified both experimentally (inelastic neutron scattering) and
by molecular dynamics simulations in Ref. [14]. Importantly,
the ω3 law holds for both crystalline thin films as well as for
completely amorphous thin films.

As before, the above VDOS is for just one phonon polariza-
tion, and a factor of 3 has to be implemented when computing
the total internal energy U [16].

Also to be noted is the dependence of the VDOS on the
film thickness L, and the inverse quartic dependence on the
average speed of sound v.

As already pointed out in Ref. [14], the above VDOS
crosses over into the Debye VDOS when the frequency be-
comes ω× = 2π

L v. Hence, the full VDOS can be written as
follows:

g(ω) = V

4π3
L

ω3

v4
for ω < ω×,

g(ω) = V

2π2

ω2

v3
for ω > ω×.

(14)

This crossover was verified experimentally and numeri-
cally in Ref. [14]. For a thin film which is several nanometers
thick, the crossover frequency ω× is on the order of few
terahertz (THz), hence about less than one order of magni-
tude smaller than the Debye frequency (which is the highest
frequency of the system). Hence ω× is a quite high-frequency
value such that it is safe to take the heat capacity integral up
to ω× instead of up to ωD. This is tantamount to ignoring the
additional Debye contribution that is brought about by the
integral from ω× to ωD, since this latter integral is expected
to be much smaller than the integral from 0 to ω×. Also, as
shown below, this contribution vanishes anyway upon taking
the low-T limit.

B. Heat capacity of thin films

To derive the heat capacity, one proceeds mutatis mutandis
in the same way as for the Debye theory, i.e., by using the new
VDOS Eq. (13) inside the internal energy formula Eq. (5),

U =
∫

dω g(ω)〈n(ω)〉h̄ω (15)

=
∫ ω×

0
dω

(
3V

4π3
L

ω3

v4

)(
h̄ω

eh̄ω/kBT − 1

)
. (16)

Upon differentiating with respect to T , the heat capacity
per unit volume is obtained as

Cv = 3

4π3

L

v4

h̄2

kBT 2

∫ ω×

0
dω

ω5eh̄ω/kBT

(eh̄ω/kBT − 1)2
(17)

= 3kBL

4π3

(
kBT

h̄v

)4 ∫ ∞

0
dx

x5ex

(ex − 1)2
. (18)

In the integral we took the upper limit as ω× instead of
ωD because, as explained above, ω× is just a fraction of
ωD and anyway this difference disappears when taking the
low-temperature limit, x× = h̄ω×/kBT → ∞, in the second
equality. Furthermore, the integral is correctly extended only
up to ω× because that is the frequency which separates the
regime where the VDOS is given by ω3 from the regime where
the VDOS is given by ω2, as found quantitatively on the basis
of simulation and experiments in Ref. [14].

The integral in x can be evaluated as
∫ ∞

0
dx

x5ex

(ex − 1)2
= 120 ζ (5) ≈ 124.431, (19)

where ζ denotes the Riemann zeta function.
We thus finally arrive at the formula for the heat capacity

of thin films,

Cv = 120 ζ (5)
3

4π3

L

v4
kB

(
kBT

h̄

)4

. (20)

This is the most important result of this paper, and represents
an altogether different fundamental physical law. This formula
has the correct physical units, as one can verify. It exhibits a
∼T 4 dependence of the heat capacity on temperature, and a
dependence ∼L on the film thickness. This law of physics is
brought about by the quantum confinement of phonons, which
we can now compare to recent experimental observations.

C. Recovering the Debye formula in the L → ∞ limit

We also observe that in the large L limit the above expres-
sion correctly reduces to the Debye expression for the bulk
material. This fact can be shown as follows. Using the full
VDOS Eq. (14) in the first of Eq. (16), one obtains

Cv (T, L) = Cv,Debye + 3kBL

4π3

(
kBT

h̄v

)4 ∫ x×

0
dx

x5ex

(ex − 1)2

− 3kB

2π2

(
kBT

h̄v

)3 ∫ x×

0
dx

x4ex

(ex − 1)2
, (21)

where Cv,Debye denotes the Debye expression Eq. (9) and x× =
2πv

LkBT . At low temperature and for thin films, one immediately
recovers Eq. (18). Upon rearranging, we obtain

Cv (T, L)

Cv,Debye
= 1 + 15L

8π5

kBT

h̄v

∫ x×

0

x5ex

(ex − 1)2
dx. (22)

Therefore, in the limit L → ∞, we have that x× → 0 and
the integral in the above equation shrinks to zero, leaving the
Debye formula. This shows the ability of this formula for thin
films to correctly recover the bulk results in the appropriate
L → ∞ limit.
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FIG. 2. Comparison between the T 4 temperature dependence of
the phonon heat capacity predicted by Eq. (20) (blue line) and experi-
mental data (circles) on NbTiN thin films (L = 6 nm) from Ref. [17].
There is only one parameter in the comparison, which is the speed of
sound v ∼ 4000 m/s, which has been taken as a characteristic value
of speed of sound in metals and a plausible value for this material.
The Debye T 3 scaling (orange line) is also shown for reference. The
dashed line indicates the onset of deviation from the T 4 scaling due
to the boson peak anomaly which in amorphous thin films typically
shows up for T > 10 K [15].

IV. COMPARISON WITH EXPERIMENTAL DATA

In Fig. 2 we present a comparison with recent experimental
data for the phonon heat capacity of NbTiN amorphous films
as a function of temperature, taken from Ref. [17]. As shown
in the comparison, the experimental data follow our T 4 law
for the heat capacity, instead of the Debye T 3 valid for the
bulk material.

The experimental data are in good agreement with the T 4

law predicted by Eq. (20) up to T ≈ 10 K where the heat
capacity of amorphous thin films is known to be affected by
the boson peak (BP) anomaly, which shows up as a peak in the
Debye-normalized heat capacity [15,18], and originates from
anharmonic damping of acoustic phonons [19].

As opposed to the Debye theory, which obviously does not
feature any dependence on the system length scale, this law
Eq. (20) shows a linear increasing dependence of the heat
capacity on the film thickness, C ∼ L. We now test also this
prediction against experimental measurements for the same
system, i.e., thin films of NbN, from Ref. [20]. The compar-
ison is shown in Fig. 3. While the data could also support a
dependence on L with a power exponent slightly larger than
one, the experimental noise is such that a linear dependence
may well be within the error bar.

We note that this linearly increasing trend of the heat
capacity with the film thickness L has been reported exper-
imentally also in previous work, notably for aluminum thin
films in the range 13.5–200 nm [21]. This fact reflects the uni-
versal character of this fundamental law, which is independent
of the chemical composition of the material, and is induced by
the generic confinement physics of vibrational modes.

This theory also offers a mechanistic understanding of this
system-size dependence of the heat capacity: Upon increasing
the confinement, the hole pockets inside the Debye sphere
become larger, which highlights the suppression of vibrational

FIG. 3. Comparison between the C ∝ L thickness dependence of
the heat capacity predicted by Eq. (20) (solid line) and experimental
data (circles) on NbN thin films (L = 6 nm) from Ref. [20]. The
experimental data were taken at temperatures about 10 K or slightly
below.

modes in the acoustic to THz vibrational spectrum [13,14]
and the redistribution of modes in k space on a larger and
distorted Debye surface [Fig. 1(b)]. As a consequence, at
low temperature the density of vibrational modes available to
efficiently store heat as internal energy is lower, which thus
decreases the heat capacity of the material upon decreasing
the film thickness.

V. CONCLUSIONS

In summary, we have derived an analytical formula for
the heat capacity of thin films based on a quantum confine-
ment model for vibrational modes. Due to the nanometric
confinement along one spatial direction, there exist spherical
hole pockets inside the Debye sphere [Fig. 1(b)], which are
associated with suppressed modes in the acoustic to THz
regime of the vibrational spectrum. This, in turn, gives rise to
a redistribution of modes on the distorted Debye surface, with
a modified ∼ω3 density of states that increases more steeply
compared to the Debye ω2 density of states. This, in turn,
gives rise to a T 4 law for the heat capacity (in lieu of the T 3

Debye law), which we have verified here in comparison with
recent experimental data on NbTiN thin films from the liter-
ature. This law also predicts that the heat capacity increases
linearly with the film thickness L, which is again in agreement
with the experimentally observed behavior.

In future work, this theory can be extended in several di-
rections such as the inclusion of phonon transmission factors
between the thin film and the substrates, and the computation
of quantum yields for single-photon detection of supercon-
ducting thin films. The theory can be extended to account for
the effect of structural disorder, by including the boson peak
effect [22]. Also, it will be interesting to apply the theory
to more exotic materials such as few-layer quasi-2D van der
Waals materials, e.g., graphene, BN, MoS2, and amorphous
and crystalline membranes. In this perspective, it will be
important to start from a theory of layered materials for the
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VDOS and then apply the confinement concept to arrive at a
description of few-layer materials.
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