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The prediction of glass forming ability (GFA) and various properties in bulk metallic glasses (BMGs) pose
a challenge due to the unique disordered atomic structure in this type of material. Machine learning shows the
potential ability to find a way out. However, the training set from the experimental data of BMGs faces the
issue of data imbalance, including the distribution of data related to elements, the range of performance data,
and the distribution of sparse and dense data area in each specific system. In this work, the origin of the data
imbalance and its impact on the GFA prediction ability of machine-learning models are analyzed. We propose
the solutions by training the model using the pruned dataset to mitigate the imbalance and by performing an
active experimental iterative learning to compensate for the information loss resulting from data reduction. The
strategy is proved in Zr-Al-Cu system, and the automated workflow has been established. It effectively avoids
the prediction results from trapping into the intensive training-data area or from inducing by the data distribution
of similar element systems. This approach will expedite the development of BMGs compositions, especially for
unexplored systems.
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I. INTRODUCTION

In the era of big data, machine learning has gained tremen-
dous popularity and adoption across various fields, including
but not limited to medicine [1], wireless communication [2],
and materials science [3–6]. Researchers often use machine
learning to analyze and summarize the patterns in large-scale
data due to its exceptional processing speed and data-mining
capabilities. In the realm of materials science, machine learn-
ing has been extensively employed by researchers to facilitate
property prediction, composition design, and mechanism in-
vestigation [7–10]. Especially for materials with demanding
experimental preparation processes, high costs, and intricate
influencing factors, machine learning plays a crucial role in
expediting research progress, facilitating data analysis, and
more [11,12].

Due to the unique disordered structure, metallic glasses
(MGs) have various excellent properties such as high strength
and hardness [13], excellent soft magnetic properties [14],
and distinct catalytic activity [15], compared with crystalline
materials. However, commercial application of MGs is limited
by the low glass forming ability (GFA). The development of
the MG composition with sufficient GFA and desired proper-
ties becomes the key in this field. The GFA can be directly
characterized by the critical cooling rate (Rc) or the critical
casting diameter (Dmax), and the latter is more frequently
taken as the quantity to indicate the GFA because it is easier to
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measure than Rc. Researchers have spent a great deal of time
searching for BMGs with Dmax larger than 1 mm, and many
high-GFA systems have been developed, such as Pd-Cu-Ni-P
[16], Mg-Zn-Ca [17], Ti-Zr-Ni-Be [18], etc. Nevertheless,
this is still a tiny fraction of the large number of potential
systems, and there are still a large number of unknown sys-
tems worth further investigation. At present, the composition
exploration of most bulk metallic glasses (BMGs) primarily
depends on “trial and error” method. The target composition
is verified one by one by the method of rapid melt quench-
ing, significantly diminishing the efficiency of composition
discovery. High-throughput experiments utilizing techniques
such as magnetron sputtering have been employed to improve
the efficiency of experimental verification [19–21]. However,
it is important to note that the information obtained from
thin-film samples produced by magnetron sputtering cannot
be directly extended to bulk samples, because the cooling
rate in magnetron sputtering is on the order of 1012 K/s,
while traditional BMGs prepared through methods like cop-
per mold casting have cooling rates in the range of 103 to
108 K/s [22]. Despite the possibility of obtaining amorphous
thin-film samples through sputtering under the same compo-
sition conditions, crystallization may still occur during the
process of preparing bulk samples due to limitations in cool-
ing rate. In the pursuit of high GFA in BMGs, it becomes
imperative to establish efficient composition search methods
capable of reducing economic costs and time costs simul-
taneously. One of the traditional approaches employed by
researchers relies on empirical principles such as the eutectic
point criterion and Inoue’s three principles, or some empirical
parameters composed of thermodynamic parameters such as
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Trg(Tg/Tm, Tg/Tl) [23], γ [Tx/(Tl + Tg)] [24], and γm[(2Tx −
Tl )/Tg] [25], where Tg denotes glass-transition temperature,
Tx denotes crystallization temperature, and Tl denotes liquidus
temperature. Although these parameters have been validated
in certain systems, their applicability is limited when de-
veloping new materials. On one hand, in order to obtain
characteristic temperature parameters such as Tg, it is nec-
essary to conduct differential thermal analysis or differential
scanning calorimetry experiments, which require the prepa-
ration of amorphous sample; thus, these descriptors cannot
be obtained during the model prediction stage. On the other
hand, the universality of such empirical parameters is also
difficult to confirm [26]. It is of great significance to explore
a more reliable method for predicting the composition-related
properties of MGs, including but not confined to GFA, so as
to facilitate quantitative composition design for BMGs.

On this basis, the machine-learning method has been
adopted to study the different properties of MGs. You et al.
[27] developed an artificial neural network model that aimed
to classify the amorphous (crystalline) phases and correlate
the excess electrical resistivity of the alloys to the full width
at half maximum value of x-ray-diffraction (XRD) patterns.
Ren et al. [28] successfully distinguished the composition
regions capable of forming amorphous films in Co-Ti-Zr and
Co-Fe-Zr systems through the iterative combination of high-
throughput experiments and machine learning. Jeon et al.
[29] established a random forest model to design Ni-based
MGs with ideal thermodynamic properties Tx and Tg. All of
the machine-learning models mentioned in the above works
are trained based on experimental datasets. Because of the
inherent disorder in atomic structures of MGs, no high-
throughput computational data for amorphous materials are
available, making it difficult to utilize simulation data for
model training. Consequently, issues related to data distribu-
tion and sample imbalance within the experimental datasets
become common challenges affecting the quality of model
predictions.

The data imbalance manifests in two aspects: one is the
imbalanced distribution of data related to elements; the other
is the imbalance in the distribution range of performance data
since extremely exceptional performance is generally found
in a minority of systems. In order to provide a more specific
illustration of the data imbalance, we conduct an analysis of
the data distribution within a database of MGs by combining
datasets from published articles [30–32] and experimental
data in our research group [13,33,34]. Taking the values of
Dmax for MGs as an example, first, as shown in Fig. 1(a), most
of the common alloying elements on the periodic table are
covered, among which there are more data of Mg, Al, Fe, Co,
Ni, Cu, and Zr elements. Second, as shown in Fig. 1(b), more
than half of the overall database consists of ribbonlike sam-
ples, while crystal data account for less than one-quarter and
bulk amorphous data are the least, less than one-sixth. There is
a shortage of data on BMGs due to the unclear mechanisms of
GFA as well as the lack of efficient techniques for the design
and preparation of BMGs. Besides, many experiments that
fail to form amorphous structures are not reported, resulting
in a relatively smaller amount of crystal data included. In
Fig. 1(c), the statistical graph of Dmax for BMGs data in
the database indicates that data with Dmax larger than 5 mm

are generally less abundant compared to data with Dmax less
than 5 mm.

The data imbalance also occurs in each specific system,
such as a system with only sparse experiment data points in
the entire chemical space but dense amorphous data points
near a certain composition. Models trained on imbalanced
data in such systems tend to bias prediction results towards the
data-rich amorphous composition region. However, in areas
with no data, the lack of information does not necessarily
indicate the inability to form BMGs. Moreover, it is well
known that systems with similar elemental composition often
show proximate high-GFA regions, which means that the data
imbalance within the similar systems affects the prediction of
target systems as well. Therefore, the currently available ex-
perimental datasets unavoidably suffer from imbalance issues
from the elemental distribution and label-value distribution
within the entire dataset, as well as the nonuniform data dis-
tribution in each specific system. When making predictions
based on the imbalanced dataset, the results tend to be trapped
in some area and the generalization ability is reduced, caus-
ing a missing opportunity to discover new composition with
high GFA.

Optimization attempts have been made in several research
studies to address the issue of imbalanced data of MGs.
On the one hand, data enhancement is a good solution for
imbalanced label distribution [35]. By adjusting the data
sampling method, a uniform distribution of label values can
be achieved. On the other hand, some scholars introduce a
large number of high-throughput experimental data to dilute
the imbalanced feature distribution caused by traditional ex-
perimental data [36,37]. However, current high-throughput
synthesis of metallic glasses mainly focuses on film samples
by magnetron sputtering, which cannot provide the quantita-
tive measure of GFA needed in the regression problem. The
impact of training-dataset selection on the model regression
prediction ability in BMGs is important but there is still no
systematic and comprehensive study of it.

In this work, we focus on the effect of the data imbalance
on the model prediction and attempt to provide solutions to
avoid the results from trapping into the intensive training-data
area or from inducing by the data distribution of systems with
similar composition. Ternary systems are chosen for study
because they offer abundant data and avoid significant increas-
ing complexity in chemical space compared with higher-order
multicomponent systems. A machine-learning regression al-
gorithm that integrates multiple models to achieve predictions
of the Dmax of MGs is established. And, a series of training
subdatasets containing different quantities of similar compo-
sition data for prediction are designed and their results are
tested. By evaluating the prediction results of different sub-
datasets, the strategy to prune the training dataset to model and
predict various systems commencing from a similar informa-
tion base is proved to mitigate the impact of data imbalance.
To compensate the information loss caused by data reduction,
we introduce an experimental iterative approach. Using this
workflow, we validate its effectiveness through identifying the
high-GFA composition in the Zr-Al-Cu system by treating it
as a completely unknown system for prediction. Finally, the
application of this workflow in the field of BMGs and the
existing challenges are discussed.
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FIG. 1. Distribution analysis of GFA datasets (a) Statistics of element occurrence frequencies in the datasets. (b) Pie chart of label value
types. The “Crystal” label represents data that can only be synthesized as crystals, “Ribbon” represents data corresponding to ribbon samples
obtained by melt spin quenching, and “BMG” represents data that can be synthesized as BMGs. (c) Statistical chart of Dmax of BMGs in the
datasets.

II. METHOD

A. General workflow and model training

As shown in Fig. 2, we export five groups of descriptors
using the MATMINER PYTHON library [38] to represent the
physical and chemical properties of each composition. On
this dataset, we initially train a set of models, including Sup-
port Vector Machine(SVM), Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and Light Gradient Boosting
(LightGBM). These models are classical machine-learning
models, which have good prediction ability for MGs and

have certain anti-overfitting ability [39–41]. Based on the
HYPEROPT library, we choose the Tree-Structured Parzen Es-
timator optimization algorithm and stop iterate when there
is no improvement on the test set for 50 consecutive iter-
ations in the fivefold validation [42]. The selection range
of hyperparameters is detailed in Table S1; see the Supple-
mental Material [43]. Afterwards, we perform model fusion
operation by using the four predicted values of submodels
as inputs and optimizing the weights of these four val-
ues as hyperparameters. The final prediction result can be
written as

pred = x1 × ySVM + x2 × yRF + x3 × yXGBoost + x4 × yLightGBM

x1 + x2 + x3 + x4
, (1)

where x is the weight of each submodel prediction result,
which is optimized as a hyperparameter. y represents the pre-
diction result output by each submodel, and pred represents
the result of the final output of the fusion model.

When the whole dataset is chosen for training, compared
to the four individual models, the fusion model shows better
prediction performance, with an R2 value of 0.82 on the test
set under the condition of fivefold cross validation (as shown
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FIG. 2. Machine learning and experimental iteration workflow proposed in this work. Models are trained and optimized using HYPEROPT,
with model fusion improving prediction performance. The top 5% points exhibiting high GFA are selected based on ranked Dmax prediction.
Two candidates are experimentally validated in each iteration process and their results are added to the training set for the next iteration.

in Fig. S1; see the Supplemental Material [43]). For each
ternary system, GFA predictions are conducted by varying
the composition with a 1% atomic ratio change, resulting
a total of 4851 composition predicted for each system. We
normalize the predicted Dmax values to the range of [0,1],
where a value closer to 1 indicates a higher Dmax prediction
value in this system, while a value closer to 0 indicates a lower
Dmax prediction value. The points corresponding to the top 5%
highest predicted Dmax values of each system are selected as
candidate composition and illustrated in the phase diagram.
In the largest candidate area, we choose two candidates to
synthesize in each experimental iteration for validation: one
is the point with the highest predicted value and the other has
the largest predicted value in a group of six points surrounding
the first one. We prepare ribbon samples by melt spinning,
and prepare cylindrical BMG samples of different sizes by
copper mold casting in molds of different diameters, starting
from 1 mm diameter and increasing by 0.5 mm each time until
the sample exhibits diffraction patterns containing crystalline
structures in XRD testing. The obtained experimental results
are subsequently incorporated as training data into the dataset
for the next iteration.

B. Training-data processing

The Dmax of the composition that can be prepared as BMGs
is taken as the original reported or experimental value; the
Dmax of the composition that can be prepared as ribbon amor-
phous samples is taken as 0.2 mm [44], and the corresponding

label value of the composition that cannot be obtained as
amorphous samples is taken as 0 mm. Different reported val-
ues of the same composition are averaged and included in the
database. Afterwards, the entire dataset will be pruned step
by step by removing part of data that contributes to different
forms of data imbalance, to test how to minimize the impact
of data imbalance on the model’s prediction ability.

C. Descriptor selection

For feature selection, we utilize the MATMINER PYTHON

library [38] to derive descriptors based on material compo-
sition. We incorporate descriptors from “ElementProperty”
database and “ValenceOrbital” database to calculate the
physical and chemical properties of each element, such as
electronegativity, atomic radius, thermal conductivity, elec-
tron distribution, and so on. Additionally, we also consider
other characteristics that may be related to GFA. Laws et al.
[45] investigated the correlation between mean packing ef-
ficiency and GFA in their study, revealing that ideal atomic
packing efficiency is likely to be one of the necessary con-
ditions for high GFA. Therefore, based on their studies, we
derive descriptors in this group to describe the atomic packing
efficiency according to alloy compositions. We also derive
solid-solution phase-stability descriptors based on Yang’s
work [46], in which multicomponent BMGs are concentrated
in the range of � (the entropy of mixing timing the aver-
age melting temperature of the elements over the enthalpy
of mixing) less than 1.1 and γ (the mean-square deviation
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FIG. 3. The impact of varying degrees of data imbalance on the model prediction: (a) diagram depicting the data-type division in a ternary
system; (b) diagrams illustrating the data range of the subdatasets; (c)–(g) prediction results of La-Al-C, Co-Ta-B, Ir-Ni-Ta, Mg-Zn-Ca,
Zr-Al-Cu, system [(x − 1) ∼ (x − 5) represent the prediction results in the cases of (1) to (5) subdatasets in turn and (x − 6) represents the
true value of the experimental reports, where x = b, c, d, e, and f ]; (h) effect of pruning relevant data on the error of model prediction results
(the labeled numbers indicate the data entries reduced from the previous dataset).

of the atomic size of elements) less than 5%, so we derive
these two descriptors based on this paper. Finally, we de-
rive three descriptors based on the energy difference between
crystalline and amorphous states using the semiempirical
model of Miedema et al. [47]. A total of 86 descriptors are
exported. Among them, 39 descriptors from the Element-
Property database are excluded due to their lack of variation
with changes in elemental composition ratios within the same
system. In addition, 6 descriptors with missing values are
removed, and 12 descriptors are further removed due to strong
linear correlations. Consequently, a refined dataset consisting
of 29 descriptors (as shown in Table S2; see the Supplemental
Material [43]) is obtained through these filtration steps. The
absolute value of the linear correlation between all pairwise
descriptors is less than 0.8 (as shown in Fig. S2; see the
Supplemental Material [43]), which means that there is no
significant interdependence between this set of descriptors
and they can be used for the prediction of Dmax.

III. RESULTS AND DISCUSSION

A. Effect of imbalanced training datasets on prediction

Although, as most of the reported machine-learning mod-
els of BMGs, our optimized fusion model trained on the
entire experimental dataset demonstrates prediction ability on

the test set under the condition of fivefold cross validation,
its ability in systems which have not been experimentally
investigated or in the composition areas which have sparse
data is still questionable. Therefore, based on the aforemen-
tioned dataset, we design a series of subdatasets to emulate
the varying degrees of data loss and to explore the influence
of data imbalance on the predictive ability of the model.
Subdatasets for the prediction target of A-B-C system (where
A, B, and C represent different elements) are designed and
their prediction results are evaluated in Fig. 3. As shown in
Fig. 3(a), we classify the data containing varying degrees of
information on the composition of A-B-C system into five
categories as follows: (i) data for composition containing only
one of the three elements, denoted as AD-, BD-, and CD-
(“D” represents elements other than A,B, and C, and “D-” can
represent more than one element); (ii) binary data containing
two of the three elements, namely AB, BC, and AC; (iii) data
for alloys of three or more elements containing two of the
three elements, namely ABD-, BCD-, and ACD-; (iv) data
for alloys of four or more elements containing these three
elements, i.e., ABCD-; and (v) data representing the ternary
alloy system itself, namely ABC. For example, in the case of
the Zr-Al-Cu system as the target, Ti45Zr20Be35, Zr50Cu50,
Zr40Al20Zn40, Zr40Al25Cu25Co10, and Zr60Al10Cu30 belong
to the data category (i), (ii), (iii), (iv), and (v), respectively.
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From categories (i) to (v), the data exhibit an increasing
association with the target system. To explore their effect
on the model prediction, five subdatasets with varying de-
grees of missing relevant data are designed by reducing the
data in category from (v) to (i) step by step, as shown in
Fig. 3(b). In this way, the imbalance decreases from left to
right for the datasets presented in Fig. 3(b). Five ternary
systems, La-Al-C [34], Co-Ta-B [33,48,49], Ir-Ni-Ta [50],
Mg-Zn-Ca [51], and Zr-Al-Cu [52–55] are trained based on
the above five-category subdatasets. The model’s prediction
ability is compared among them and the results are shown
in Figs. 3(c)–3(g). To accurately assess the impact of data
imbalance, we normalize the collected experimental data in
each prediction to [0, 1]. The prediction ability is quantified
through the relative mean-squared error (RMSE), as presented
in Fig. 3(h).

It is evident that the model’s predicted results in subdataset
(1) show a significant overlap with the high-GFA region re-
ported in collected experimental data. In Fig. 3(h), predicted
results in subdatasets (1) generally have the smallest RMSE.
This is mainly because the ABCD-type data present in sub-
datasets (1) are generally developed from the ABC amorphous
composition; thus, they have a strong similarity to the tar-
get system. In the La-Al-C system, a significant increase of
the RMSE is observed with the deletion of only one data
point, as shown in Figs. 3(c-1) and 3(c-2). The composition
corresponding to this data point is La60Al26Ga4C10, where
the Ga element is adjacent to Al in the periodic table and
this data point is therefore close to La60Al30C10 in feature
space, playing a strong guiding impact to trap the predicted
high-Dmax value near to this composition. In the subsequent
data gradient change, the regions of high-GFA composition
in the predicted results of La-Al-C and Co-Ta-B systems
are almost unchanged, as shown in Figs. 3(c) and 3(d). For
Ir-Ni-Ta system, as shown in Fig. 3(e), the variation of high-
GFA regions is insignificant in several cases. Nevertheless,
for the Mg-Zn-Ca and Zr-Al-Cu systems the impact of data
imbalance become notable starting from subdataset (4), where
the RMSE increases obviously as shown in Fig. 3(h). The
inclusion of category (iii) data in the training set causes the
predicted high-GFA regions aggregating to the experiment
reported high-GFA regions, resulting in the prediction results
being biased towards the data-intensive regions in the train-
ing dataset. The bias caused by the data imbalance poses
challenges for the discovery of BMG compositions. For ex-
ample, in the Mg-Zn-Ca system, there are two high-GFA
compositions with significant differences in composition. To
be specific, both Mg20Zn20Ca60 in the low-Mg region and
Mg70Ca5Zn25 in the high-Mg region have the same Dmax

value. However, in Fig. 3(g-2), only one high-Dmax region can
be observed, and it is only after removing category (iii) data
that a second high-Dmax prediction region can be observed in
Fig. 3(f-3). This imbalance in the data is likely to result in the
overlooking of potential high-GFA regions, thus significantly
compromising the effectiveness of machine learning on look-
ing for new composition with candidate properties.

To mitigate the undesirable influence of a large amount
of relevant experimental data on the prediction results, we
choose the training-set selection strategy of subdataset (3) for
further discussion. In this final selected subdataset, there are

no data that are highly similar to the element composition
of the ternary system to be predicted. Taking the Zr-Al-Cu
system as an example, the subdataset used at this time does
not contain the ternary data containing two of the three el-
ements of Zr, Al, and Cu, which reflects the unbiasedness.
This selection criterion serves a dual purpose. On one hand,
it helps reduce the adverse guiding effect arising from similar
composition data. On the other hand, it enables us to model
composition exploration in unfamiliar systems, where data
category (iii) to (iv) for the target system are unavailable.
Thus, each system is predicted as an unexplored system. To
compensate for the information loss resulting from data reduc-
tion, we next conduct a small number of experiments based
on the prediction results and iterate the experimental data into
the machine-learning model for another round of predictions,
aiming to identify the high-GFA area in the target system even
if it is regarded as an entirely unexplored system [28,56].

B. Experimental iteration

We choose Zr-Al-Cu system to validate the iteration
scheme between experiments and machine-learning models,
due to its relatively simple preparation process, low cost, as
well as abundant experimental data available for comparison.
As shown in Fig. 4(a), the circled pentagrams correspond to
the data points that are experimentally validated and used
for each iteration. Figure 4(b-1) shows the top-5% region of
the Dmax in the initial model prediction without any itera-
tion, where the color represents the relative predicted value.
Figures 4(b-2)–4(b-4) display the prediction results after
the first, second, and third iterations, respectively. Accord-
ing to the prediction results in Fig. 4(b-1), two candidates,
Zr20Al20Cu60 and Zr20Al25Cu55 with a difference of 5 at. %
in composition are chosen for experimental verification and
iteration. We explore the Dmax of candidates by copper
casting and melt-spin quenching. The experimental results
(see Fig. S3, the Supplemental Material [43]) indicate that
Zr20Al20Cu60 and Zr20Al25Cu55 cannot be prepared as amor-
phous samples, and the XRD patterns of the ribbon samples
obtained through melt-spin quenching exhibit obvious crys-
talline structures. The two experimental data are added into
the training set and another model is obtained. Using this
model, the high-GFA area moves to regions with higher
Zr concentration as shown in Fig. 4(b-2). In the second
iteration, Zr40Al20Cu40 and Zr45Al20Cu35 are chosen for ex-
perimental validation, and ribbon amorphous samples are
successfully yielded for them. Furthermore, Fig. 4(b-3) is the
result predicted by the next trained model with two more
experimental data added. The third iteration data, Zr50Al5Cu45

and Zr55Al5Cu40, can obtain cylindrical amorphous samples
with diameters of 2.5 and 1.5 mm, respectively. As depicted
in Fig. 4(b-4), the highest point of the predicted result coin-
cides with the experimental iteration point, and is close to the
experimental reported highest Dmax at composition within the
distance of 10 at.%. It can be observed that as we add ex-
perimental data, the prediction results gradually approach the
amorphous area. During the experimental process, the GFA
corresponding to the selected iteration data becomes higher
and higher, confirming that iteration can indeed improve the
prediction effectiveness of the model.
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FIG. 4. Iterative prediction empowered by adding experimental data step by step. (a) reported Dmax for Zr-Al-Cu system, where pentagrams
correspond to the iteration data points; (b) top 5% iterative prediction results for the Zr-Al-Cu system, showing initial results without iteration
(b-1) and after the first (b-2), second (b-3), and third (b-4) iterations.

Additionally, we examine the high-GFA region centered
around Zr50Al5Cu45 in Fig. 4(b-4). We proceed to select
boundary points with equal Zr content, equal Al content, and
equal Cu content, respectively, using increments of five atomic
ratios to conduct experiments in order to verify the potential
formation of BMGs in this area. As shown in Fig. S3 (see
Fig. S3, the Supplemental Material [43]), the 1 mm diameter
rodlike samples of Zr45Al10Cu45 and Zr35Al5Cu60 prove to
be amorphous; the other two candidates can be prepared into
ribbon amorphous samples. This indicates that the pruned
dataset effectively mitigates the data imbalance issue and iter-
ation scheme with a small amount of experiment exploration
that help to identify a relatively high-GFA region in Zr-Al-
Cu systems, even if there are no data of the ternary system
provided beforehand. Training and predicting each system as
an unexplored one by reducing the strong related data from
the dataset decrease the chance to be trapped into the known
data-intensive area and will benefit to find more composition
with high GFA.

IV. CONCLUSION

In this work, we analyze the origin and effect of data imbal-
ance in the datasets of BMGs. The way to mitigate the effect
of this imbalance is proposed by testing the model prediction
ability using varying pruned degrees of the datasets. And, the
subdataset without ABC-related information is chosen since
it avoids the results trapped at the data-intensive area. By
combining the machine learning and experimental iteration,
we mitigate the negative impact of data imbalance and accel-
erate the search for high-GFA regions, especially suitable for
discovery of composition in unexplored system and beyond
experimental intensive data area in known systems.

The main conclusions are as follows:

(1) By designing multiple subdatasets with gradients of
similarity to the elements of the target system, we demonstrate
that imbalanced data distribution can introduce bias, which
has a strong guiding impact on the predictive results of the
model. An imbalanced dataset can result in biased predic-
tions in densely populated areas, reducing the applicability
of the model. By restricting the training sets to exclude the
ABC-related experimental data, all the target system can be
predicted at almost the same level, no matter how many parts
of the specific chemical space have not been studied yet. It is
important to note that this does not negate the effectiveness of
adding data in an even manner, as doing so can improve the
prediction accuracy of the model to some extent. It is suitable
for integration with high-throughput BMGs preparation meth-
ods such as laser melting [57–59] to speed up the high-quality
data production in BMGs exploration.

(2) We propose a workflow that involves a small num-
ber of experiments and iterative model training to identify
high-GFA regions in a specified system. This combination
of machine learning and experiment methods can help re-
searchers to identify regions with relatively higher GFA in the
Zr-Al-Cu system. Additionally, this method can be expanded
to predict other properties of amorphous alloys, effectively
mitigating the impact of data imbalance and reducing the
time required for experimentation. By simply substituting
the labels in the dataset, we can extend the predictive target
to other properties of interest in the field of MGs, such as
glass transition temperature or elastic modulus. The success
of the above strategy lies in two aspects. First, by excluding
the ABC-related data from the training dataset, the predic-
tion values are prevented from being biased towards the
dense region of training data, which mostly only contains
amorphous cases. Second, the data iteratively added through
experiments include both crystalline and amorphous results,

055602-7



GONG, BI, LIU, LI, XIAO, ZHANG, AND LI PHYSICAL REVIEW MATERIALS 8, 055602 (2024)

continuously improving the prediction across the whole chem-
ical space.

Theoretically, the computational and experimental costs
increase when targeting a quaternary or higher system. The
composition space to be explored becomes more intricate,
leading to a broader range of iteration choices. Nevertheless,
when compared with the conventional trial and error approach
for exploring compositions, the method outlined in this paper
demonstrates notable efficiency advantages within the
constraints of comparable complexity. This approach will
expedite the development of BMG compositions, especially
for unexplored systems.

All the data and codes for the fusion model can be accessed
via GitHub [60].
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