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Sequences of dislocation reactions and helicity transformations in tubular crystals
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Freestanding tubular crystals offer a general description of crystalline order on deformable surfaces with
cylindrical topology, such as single-walled carbon nanotubes, microtubules, and recently reported colloidal
assemblies. These systems exhibit a rich interplay between the crystal’s helicity (the chiral angle) on its periodic
surface, the deformable geometry of that surface, and the motions of topological defects within the crystal.
Previously, in simulations of tubular crystals as elastic networks, we found that dislocations in nontrivial patterns
can costabilize with kinks in the tube shape, producing mechanical multistability. Here, we extend that work
with detailed Langevin dynamics simulations in order to explore defect dynamics efficiently and without the
constraints imposed by elastic network models. Along with the predicted multistability of dislocation glide,
we find a variety of irreversible defect transformations, including vacancy formation, particle extrusions, and
“reactions” that reorient dislocation pairs. Moreover, we report spontaneous sequences of several such defect
transformations, which are unique to tubular crystals. We demonstrate a simple method for controlling these
sequences through a time-varying external force.
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I. INTRODUCTION

Freestanding tubular crystals represent a distinctive form
of crystal structure found in both natural and technological
settings. Characterized by their hollow, tubelike morphology,
tubular crystals consist of atoms or molecules arranged in
a two-dimensional (2D) lattice structure closed along one
direction into the topology of a cylinder. Unlike a 2D crys-
tal attached to a cylindrical substrate [1–5], tubular crystals
define their own tubular surface, allowing them to freely de-
form by distorting out of the tangent plane [6,7]. Examples
of freestanding tubular crystals include single-walled carbon
nanotubes (SWCNTs) [8,9], capsids of filamentous viruses
[10], microtubules [11], and self-assemblies of DNA origami
colloids [12]. The emergence of such crystals has sparked
significant interest due to their exceptional mechanical, elec-
trical, and optical properties and their potential applications in
nanoscience [8,9], functional materials [13,14], and biotech-
nology [15,16].

Similar to other crystals, tubular crystals can contain lat-
tice defects, such as grain boundaries and dislocations. These
imperfections naturally arise due to various factors includ-
ing crystal growth kinetics, lattice mismatch with supporting
substrates, or external influences, and they play a significant
role in determining the tubular crystal’s response properties
[17,18]. Controlling the number of defects and their dynamics
is not only important for predicting crystal properties and
tailoring them for applications, but it also provides pathways
for synthesizing programmable structures [19]. In particular,
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the movement of dislocations alters the helicity of the tubular
crystal, which in turn affects properties such as electrical
conductivity [6] and growth kinetics [4,20,21].

In prior work [19], we investigated the mechanics of dis-
locations in flexible, freestanding tubular crystals using a
zero-temperature elastic network model. In that setting, dis-
location test moves occurred through discrete, imposed bond
flips in a network of harmonic springs, and the system evolved
to minimize its total energy. This model predicted that disloca-
tions could costabilize with kinks in the tube axis, introducing
mechanical multistability in tube shape, such that certain im-
posed dislocation patterns allowed for programmable tube
conformations and tunable mechanical response.

However, the assumptions of the elastic network model
exclude some phenomena likely to be of interest in col-
loidal crystals [22,23]. Because the model probes dislocation
motions by imposed bond flips, one defect at a time, it is
challenging to investigate other types of possible particle
rearrangements such as vacancy formation, extrusion of par-
ticles from the crystal surface, and the interaction of existing
dislocations with spontaneously nucleated defect pairs in dis-
location “reactions.”

Here, we use Langevin dynamics simulations to investigate
the spontaneous evolution of tubular crystals with thermal
fluctuations and without constraints on the particles’ contact
network. Our simulated particles interact through a model
anisotropic interaction potential that stabilizes sheetlike as-
semblies. Such particles with designed surface patterns can
be precisely engineered, for example by colloidal fusion [24]
or DNA-coating of colloids [25,26], and they have demon-
strated promise in the directed self-assembly of 2D and 3D
structures using these particles as building blocks [27–30]. We
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FIG. 1. Construction of freestanding tubular crystals. Tubular
crystals (examples shown at right) are made up of patchy particles
(upper left panel), each composed of a primary, sterically repulsive
sphere and several attractive spheres. In the tube’s local tangent
plane, the particles form a close-packed hexagonal lattice, with
primitive lattice directions ±a1, ±a2, ±a3. The crystal’s helicity is
characterized by the chiral angle φ between the tube axis x and the
steepest left-handed helical lattice direction or parastichy, labeled a2

(upper right panel). Example tubular crystals shown are the achiral
types: “zigzag,” with φ = 30◦, and “armchair,” with φ = 0◦. The
number of distinct parastichies along ±a1 (the steepest right-handed
helices) and along ±a2 give the parastichy numbers (m, n). Particles
are colored (and in some instances labeled) by coordination number,
with gray identifying the sixfold-coordinated particles of a pristine
hexagonal packing. A pair of fivefold- and sevenfold-coordinated
particles forms a dislocation (bottom left panel), and their separation
vector is perpendicular in the local tangent plane to the dislocation’s
Burgers vector b.

initialize our systems with various tubular crystal configura-
tions, including both chiral and achiral states.

Although the elastic network model’s predictions are often
corroborated here, we additionally observe a wealth of more
complex behaviors when dislocations pass near each other,
including vacancy formation and particle extrusion. Most in-
terestingly, we report novel dislocation reaction sequences
that are unique to the tubular crystal setting, arising from the
fact that distances between gliding dislocations change non-
monotonically due to the surface’s periodicity. We show that
the interplay between dislocations, the helical symmetry of
tubular crystals, and out-of-tangent-plane deformations leads
to a rich variety of transformations in crystal structure, includ-
ing metastable dislocation patterns, dislocation reactions, and
helicity transformations.

II. METHODS: PARTICLES AND TUBULAR ASSEMBLIES

We construct simulated tubular crystals using collections
of identical, spherical, patchy particles. The patchy particles
exhibit short-range attraction only along a narrow equatorial
band on their surfaces, and otherwise interact only through
steric repulsion. These anisotropic surface interactions are
chosen to stabilize sheetlike assemblies. We construct each
patchy particle from one purely repulsive sphere of effective
radius a and, centered at the same point, an attractive patch
comprising a circular arrangement of small spheres, whose
centers sit at a radius a − δ that places them just inside the
repulsive sphere (Fig. 1). (More general interactions can be

engineered using other arrangements of attractive spheres,
such as sinusoidal paths [27].) The large, repulsive sphere and
smaller, attractive spheres making up a given patchy particle
move together as a rigid body.

Repulsion between the large spheres of different patchy
particles separated by center-to-center distance r is deter-
mined by the Weeks-Chandler-Andersen (WCA) potential
[31], a truncated and shifted Lennard-Jones (LJ) potential [32]
given by

Er (r) =
{

4εr

[(
σ
r

)12 − (
σ
r

)6
]

+ εr if r � 21/6σ,

0 otherwise.
(1)

Here, εr is the interaction strength and σ = 2a/21/6 sets the
truncation distance to r = 2a, equal to the minimum of the LJ
potential, so that Er (r) is purely repulsive and has a slope that
goes to zero at the truncation distance.

The pair interactions between attractive spheres on differ-
ent patchy particles are defined by the soft potential

Ea(r) =
{−εa[1 + cos(πr/ra)] if r � ra,

0 otherwise (2)

with strength εa and range ra. The repulsive and attractive
spheres have no direct interactions.

We note that the choice of Eqs. (1) and (2) as model
potentials is not unique, and we have confirmed that some
alternative models, such as Morse and Coulomb potentials,
lead to behaviors in qualitative agreement with the results
reported below. While the Lennard-Jones potential serves as
a simplified phenomenological representation of atomic-scale
interactions, it is also widely used for simulated interactions
between larger-scale objects such as proteins and colloids with
successful comparison to experimental observations [33–35].

We explore Langevin dynamics with these pair interac-
tions by performing molecular dynamics (MD) simulations
in LAMMPS [36]. We use scaled Lennard-Jones units: each
patchy particle has unit mass (mp = 1), damping (γ = 1),
and steric repulsion strength (εr = 1). The temperature is held
fixed at kBT = 0.1 using a Nosé-Hoover thermostat. Because
each patchy particle is treated as a rigid body, the translation
and rotation of its constituent large and small spheres are
calculated according to the net force and torque acting upon
them collectively.

The anisotropy of patchy particles allows for their as-
sembly into sheets [27], and then into higher-energy tubular
structures when a sheet is rolled up in one direction. In
this work, we do not consider the self-assembly process; in-
stead, we construct initial conditions consisting of single-layer
tubular crystals of given geometry, helicity, and preexisting
defects. In particular, we set the initial center positions of
the patchy particles to be the node locations of a tubular
hexagonal lattice containing a pair of separated dislocations,
obtained using the elastic network simulations reported in
Ref. [19]. Each patchy particle is oriented so that its equatorial
attractive band lies in the tube’s local tangent plane. The
initial center-to-center separation 2r of neighboring patchy
particles is close to the patchy particle diameter 2a, so the
patchy particles begin in contact and stick together laterally.
However, the imposed initial configuration is not necessarily
a mechanical equilibrium state for the patchy particles; in
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particular, initial dislocation positions may be unstable. In
many cases, we observe large-scale deformations in the tube
shape accompanied by the motion of preexisting dislocations.

The tubular arrangement of particles can be conveniently
described using the parastichy numbers, a pair of integers
(m, n) defining the number of distinct helices of particles in
the steepest right-handed and steepest left-handed directions
[37]. In the family of helices there are three principal di-
rections along unit vectors ±ai, i = 1, 2, 3. To describe the
helicity of a tubular crystal, we use the chiral angle φ between
the steepest left-handed helix along the a2 direction and the
tube axis (Fig. 1, upper right panel). Each elementary dislo-
cation in the lattice is composed of a positive disclination at
a fivefold-coordinated particle and a negative disclination at
a sevenfold-coordinated particle. It can be characterized by a
Burgers vector b of length a orthogonal to the line connecting
the five–seven disclination pair (Fig. 1, bottom left panel).

To keep the parameter space tractable, we specialize to
tubes with an armchair and near-armchair crystal configura-
tion, i.e., having one lattice direction approximately parallel
to the tube axis, and thus φ near 0◦ or 60◦. These helicities
are the most commonly observed type in carbon nanotubes
(CNTs) [20,38]. When subjected to applied torsion, which
we explore below, armchair tubular crystals exhibit large de-
formations and dislocation pair nucleation [39]. In contrast,
zigzag tubular crystals (the other achiral type, with φ = 30◦)
have one lattice direction oriented circumferentially, and thus
they can more easily accommodate the shear stress caused
by torsion via circumferential slip. Chiral tubes of general
helicity include intermediate configurations between the two
achiral cases, separated by discrete changes in the chiral angle
�φ = 30◦/m.

The constructed tubular crystals are free-standing, mean-
ing that the tube’s radius can change locally to reduce the
energy associated with interparticle attraction and repulsion.
For our patchy particles with equatorial attractive bands,
the minimum-energy configuration is a flat monolayer with
regular hexagonal close packing. In tubular assemblies, ev-
ery configuration has nonvanishing potential energy due to
the curvature of the monolayer. The preference for a flat
sheet morphology introduces a bending energy, given approx-
imately by Fbend ≈ πκL/R, for a tube of length L, radius R,
and effective bending stiffness κ . Whereas κ was imposed as
a mean curvature modulus in our previous elastic network
model [7,19], here the bending rigidity emerges from the
anisotropic interactions and depends on the strength of attrac-
tive and repulsive potentials (εa, εr), as well as the tube chiral
angle φ. Prior studies have shown that the effective bending
rigidity of zigzag tubes is higher than in their armchair coun-
terparts because the former have a larger number of bonds
oriented in the bending plane [40,41].

In our simulations, we choose attractive potentials strong
enough (εa = 0.1) to prevent disintegration of the structure
due to the thermal fluctuations. On the other hand, we also
avoid making the potentials so strong that the tube develops
capping [42] at the free ends (observed at εa � 0.2, εr =
1) or becomes faceted into planar regions joined at creases
(at εa � 0.5, εr = 1). At sufficiently large effective bending
stiffness, this faceting reduces the bending energy by local-
izing it at the creases [43–46]. Although a comprehensive

exploration of the (εa, εr ) parameter space is outside the scope
of this work, we expect that increasing the attraction strength
εa will stabilize the tubular crystal against thermal fluctuations
by strengthening the interparticle forces, and that the effec-
tive bending rigidity will increase with increasing repulsion
strength εr .

The ends of our simulated tubes are free, facilitating the
absorption of dislocations into the boundaries and simplifying
the construction of tubes with spatially varying parastichy
numbers, i.e., with different chiral angle at opposite ends.
To reduce the influence of free boundaries on the dislocation
interactions of interest, we construct the tubes to be relatively
long, typically more than 25 times larger than the tube radius.
The undercoordinated (dangling) patchy particles at the tube
ends, depicted as colored spheres in the right-hand panels of
Fig. 1, localize the energy that effectively represents boundary
tension. We keep temperature low enough to prevent this ten-
sion from causing shrinkage and crumpling of the tube edges
[47,48], due to the tendency of undercoordinated particles to
establish new bonds. We note that in an alternative scenario
with periodic boundaries along the tube axis direction, there
would be no means by which dislocation pairs with nonzero
climb separation could be removed from the crystal through
glide moves, introducing additional complexity to the land-
scape of metastable defect configurations.

III. RESULTS

A. Dislocations spontaneously react in a freestanding
tubular crystal

First, we explore the stability of a freestanding tubu-
lar crystal with an armchair (m, n) = (7, 14) arrangement
of particles and containing two oppositely oriented, isolated
dislocations with Burgers vectors ±b (Fig. 2). This configu-
ration, while containing a net-zero Burgers vector “charge,”
requires a phyllotactic transition in which (m, n) differs in the
region between the dislocations compared to outside them, by
an amount depending on the orientation of b.

In Fig. 2, we plot a stability map describing the evolution
of two dislocations with Burgers vectors along (or opposite
to) the axial direction, depending on the axial component
g×a and azimuthal component c×a of separation between
the defects, where g and c are integer numbers of glide and
climb steps, respectively. When dislocations move, they do so
exclusively in glide motions along their Burgers vectors, as
this is energetically cheaper than climb motion along other
directions and requires no change in the total number of par-
ticles. As the Burgers vectors lie along the tube axis in this
example, the defect motions recorded in Fig. 2 are only along
the axial direction; the azimuthal separation remains fixed. For
larger azimuthal separations, the dislocations glide to decrease
their axial separation to zero.

Even though the middle region of the tube has a larger ra-
dius with lower bending energy, the dislocations are attracted
to a state with minimum axial separation at most possible az-
imuthal separations. The resulting tube conformation contains
a kink in the tube axis, as observed in the elastic network
model [19]. This interaction is observed for axial separations
close to πR when the azimuthal separation is around πR,

055601-3



ANDREI ZAKHAROV AND DANIEL A. BELLER PHYSICAL REVIEW MATERIALS 8, 055601 (2024)

FIG. 2. A stability map (left) for two interacting dislocations
oriented along the tube axis (±a2 parastichies) in an armchair tube
[(m, n) = (7, 14), φ = 0] at different values of azimuthal (climb)
separation. The region of the tube between the dislocations has a
different tessellation, (m, n) = (6,14) or (8,14). Unstable states are
indicated by wide arrows, colored according to the type of metastable
state toward which they evolve (circles), if any. If the axial sep-
aration is larger than πR (outside the plotted region), dislocations
repel weakly and glide toward the tube ends. Labels for metastable
state types correspond to representative tube configurations de-
picted at right, which show only portions of the tubes containing
the defects. Green, magenta, and blue particles are, respectively,
fivefold-coordinated, sevenfold-coordinated, and extruded.

but the interaction range decreases as azimuthal separation
decreases.

The outcome changes significantly if the azimuthal (climb)
separation is small, |c| � 3. We can divide this regime into
two parts, one with c > 0 where the fivefold-coordinated par-
ticles are closer to the other dislocation (“fives inside”), and
one with c < 0 where the sevenfold-coordinated particles are
closer (“sevens inside”). For the fives inside case, the two
dislocations attract to zero axial separation and then disappear
through an extrusion event, in which one or more particles
are expelled from the surface of the tubular crystal and forced
to sit on top of it, at larger radius. For c = 1, a single par-
ticle is extruded, becoming a threefold-coordinated particle
(colored blue in the “extrusion” panel of Fig. 2) adjacent to
three sevenfold-coordinated particles under it (colored gray to
show pristine arrangement in the tube tangent plane). The total
number of bonds is conserved in this extrusion. Dislocations
separated by c = 2 climb steps cause an extrusion of two
particles at small axial separation.

An opposite azimuthal separation, with c = −1 and “sev-
ens inside,” leads instead to the formation of a vacancy.
The total number of bonds decreases, leaving six fivefold-
coordinated particles that become a nucleation site for plastic
deformations when an external force is applied. For exam-
ple, applied torsion can destabilize this metastable vacancy,
replacing it with two dislocations oriented along a lattice
direction that depends on the sign of the torsion: Simulations
show that unlike a pristine tube under torsion, in which un-
binding dislocations have Burgers vectors ±a2, the preferable
path for nucleation in a tube with a vacancy is along ±a1

when the torsion is applied in the clockwise direction, and
along ±a3 when torsion is in the counterclockwise direction
(Supplemental Material videos 1-2 [49]).

FIG. 3. Left: A stability map for two interacting dislocations
spontaneously gliding along helical trajectories (±a1 parastichies)
in a near-armchair tube with (m, n) = (7,13), φ ≈ 2.5◦, at various
values of climb separation c. If the dislocations are initially at nega-
tive axial separation, then the central region of the tube has (m, n) =
(7, 12) and decreased radius, and the dislocations are attracted (col-
ored arrows) to one or more metastable states (colored circles) at
small axial separation. The exception to this rule is a single path at
c = −3 (dashed red line). Right: portions of the tubes containing the
defects are shown at representative defect transformation events.

While the vacancy formation at c = −1 is intuitively op-
posite to the extrusion at c = +1, we find an altogether new
behavior for c = −2 or −3: When the gliding dislocations
reach points that sit on the same ±a3 parastichy, their Burgers
vectors appear to suddenly change from ±a2 to ±a1. This is
a dislocation reaction event [50–52]. As explored in detail
below, we can understand this process as resulting from the
nucleation of a new dislocation pair with Burgers vectors ±a3.
The new dislocations glide apart along the ±a3 parastichy
until each new dislocation reacts with one of the original
dislocations, leaving behind two dislocations with resultant
Burgers vectors ±a2 + (±a3) = ±a1. After the reaction, the
±a1 dislocations glide only a few steps before coming to
rest in a metastable state. The mirror-image process is also
observed, with dislocations of initial Burgers vector ±a2 and
separation along a ±a1 parastichy reacting to become disloca-
tions with Burgers vectors ±a3.

In this tube with (m, n) = (7, 14), there is only a sin-
gle azimuthal separation, at c = 4 climb steps, at which the
dislocations are always repulsive and do not react. At zero
azimuthal separation and axial separation less than πR, dislo-
cations are attractive and annihilate, forming a pristine tube.

More generally, the glide paths of dislocations in tubular
crystals are helices rather than straight lines, a distinction that
we find has important consequences for defect interactions.
In Fig. 3 we show a stability map for a near-armchair tubular
crystal, (m, n) = (17, 13), with two dislocations whose Burg-
ers vectors (b1,2 = ±a1) make the glide paths helical. At large
positive or negative axial separation �x, the dominant trend
is simply for �x to steadily increase. Unlike the previous
example with dislocations along the tube axis (±a2), here the
helicity transition (�m,�n) induced by these defects’ relative
glide motion causes regions of larger radius to grow, at the
expense of regions of smaller radius, as �x increases, due to
the bending energy.
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However, once dislocations reach smaller axial separation,
they usually interact in a more complex way that stabi-
lizes their relative positions. We find two groups of these
metastable states at small �x. In the first group, dislocation
pairs come to rest at maximum azimuthal separation �y (i.e.,
opposite sides of the tube), giving the tube a kinked conforma-
tion. The other group, at small azimuthal separation, results
in more dramatic changes to the defects, strongly depending
on the climb separation c between the two glide paths. For
c = 0, the dislocations annihilate, just as in the previously
examined case of b parallel to the tube axis. For |c| = 1, the
final state has no dislocations but contains either a vacancy
(c = −1, sevens inside) or a single extruded particle (c = +1,
fives inside).

Examining the |c| = 2 paths, we find that dislocation re-
actions may occur for both sevens-inside and fives-inside
configurations, in contrast to the previous example with Burg-
ers vectors parallel to the tube axis. The reactions in this case
replace the ±a1 Burgers vectors with new ones along ±a3.
For c = +2, there are two different metastable states along
the same glide path: the “reacted” state with two nearby ±a3

dislocations in an approximately straight tube, and a “kinked”
state with diametrically opposed ±a1 dislocations.

For this particular choice of initial parastichy numbers
(m, n) = (7, 13), there is only one climb separation c = −3
(highlighted with a dashed red line along the helical path in the
stability map in Fig. 3) that allows two dislocations to “miss”
each other, gliding past �x = 0 to �x → +∞ without any
metastable state. We expect that the number of such free paths
will be greater for tubes with larger (m, n).

B. Applied torsion causes sequences
of defect-mediated transformations

To better understand how helicity transitions in tubular
crystals may be controlled, we next examine the effects of
externally imposed torsion applied to the tube. For that pur-
pose, in our MD simulations two rings of particles located
far enough from the existing defects are grouped, and torque
is applied on each group around its center of mass using the
standard addtorque command in LAMMPS. Just as an applied
shear stress provides control over an isolated dislocation’s
motion in a planar crystal [52], here torsion imposed at the
tube ends produces shear stress in the tube’s tangent plane and
thus a Peach-Koehler force on the dislocations [53]. Because
we are particularly interested in switching between mechan-
ically metastable states, we study in detail the multistable
glide path identified above in the (m, n) = (7, 13) tube, with
c = +4 climb separation. We find that we can switch between
the reacted and kinked metastable states by means of this
applied torsion. Moreover, the transition is reversible through
reversal of the torsion direction. While the kinked state has
higher energy than the reacted state, we can impose a torsion
sufficiently strong that the “reacted” dislocations undergo a
reverse reaction from their ±a3 Burgers vectors back to their
original ±a1 orientations and then glide to the metastable
kinked state.

To quantitatively analyze this mechanical reconfigurability,
we plot in Fig. 4 the change in the tube’s total potential
energy as the applied torsion is increased monotonically with

FIG. 4. Evolution of the potential energy during a sequence
of spontaneous dislocation glide, reaction, extrusion, and pair-
unbinding events in a near-armchair tube under applied torsional
force T . The initial state 0 is metastable, containing two dislocations
with Burgers vectors oriented at angle θ ≈ −π/3 with respect to the
tube axis. Applied torsion linearly increases with time. The final state
has two extruded particles (blue), an altered helicity (m, n) = (6, 13)
throughout the tube, and no dislocations once those in state 8 glide
apart to the ends of the tube. Insets depict only the region of interest
within a longer tube, at each labeled time; the view is rotated 180◦

between states 3 and 4, and is otherwise held fixed.

time. We take the c = +4 metastable kink state of Fig. 3
as the initial configuration and apply torsion to the tube as
illustrated in the state 0 panel of Fig. 4. The magnitude T of
imposed torsion linearly increases with simulation time t as
T = 250 + 0.25t (LJ units). As simulation time progresses,
we find not only an escape from the metastable kink state
into the reacted state, but also a series of subsequent events
including extrusion and other reactions. Representative states
from this sequence of transitions are shown as inset panels in
Fig. 4.

At first, applied torsion leads to an increasing poten-
tial energy and destroys the metastable state, inducing glide
(at t = 15), which reduces the positive rate of change of the
energy. As the dislocations glide apart along helical trajecto-
ries, they increase their axial separation but eventually bring
their azimuthal separation to near zero (state 1 at t = 50,
Supplemental Material video 3 [49]). At that time, with the
dislocations located on the same ±a2 parastichy, a disloca-
tion reaction event occurs rapidly. The reaction changes the
two Burgers vectors from ±a1 to ±a3 and thus changes the
parastichy numbers describing the middle region of the tube
from (7,12) to (6,12) (state 2 at t = 55). The potential energy
drops sharply with this reaction event. Subsequently, with
their new helical ±a3 glide paths, the dislocations continue to
glide with the azimuthal components favored by the applied
torsion while also decreasing their axial separation, which
allows a reduction in the size of the tube’s narrower central
region and thus a reduction in bending energy. Eventually, the
dislocations approach each other again on the opposite side of
the tube (state 4 at t = 70), where they react a second time
and obtain Burgers vectors ±a1 (state 6 at t = 80). In this
state, the two positive disclinations are in contact, creating a
large compressive force that obstructs further motions of the
dislocations for some time. Continuing increase in the applied
torsion causes a gradual increase in potential energy and,
eventually, an extrusion of two particles takes place (state 7 at
t = 120). Finally, the extruded particles become a nucleation
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point for a pair of dislocations along the ±a2 directions (state
8 at t = 130).

This example demonstrates that dislocation reactions
decrease the elastic energy in a tubular crystal through re-
orientation of existing dislocations when torsion is applied.
Although the hexagonal crystal structure imposes limitations
on the available glide motion and reaction directions, specif-
ically along the three lattice directions ±a1,2,3, the tube’s
periodicity enables a sequence of reactions. In planar crystals,
the spatial separation between a pair of dislocations varies
monotonically with their glide motion. In contrast, the tube’s
periodicity facilitates multiple reaction events: After the initial
reaction, dislocations glide apart along helical paths but even-
tually become closer again on the opposite side of the tube,
leading to further reactions.

C. Analytical energy approximation explains dislocation
movements and reactions

To better understand why we observe some possible re-
actions and not others in MD simulations, we examine an
analytical approximation for the dislocation pair interaction
energy Fint on a cylinder of fixed radius R, calculated in
[54] under the assumptions of isotropic continuum elasticity.
The pair interaction energy was calculated by integration of
the Peach-Koehler force Fi = bkσ jkεi jz (summing over j, k =
x, y) for a dislocation of Burgers vector b experiencing a stress
tensor σ . This stress tensor was in turn calculated by summing
the stresses sourced by the other dislocation along with its
infinite periodic images in the cylindrical space, by means
of a Sommerfeld-Watson transformation. For two antiparallel
dislocations with axial separation x and azimuthal separation
y on a tube of radius R, the predicted interaction energy takes
a general form [7]

Fint (x̃, ỹ, θ ) = Ya2

2π

{
ln[cosh x̃ − cos ỹ]

+ x̃

[
sinh x̃ cos(2θ ) + sin ỹ sin(2θ )

cos ỹ − cosh x̃

]

+ R

a
[σ̃xy(ỹ sin θ − x̃ cos θ )]

}
, (3)

where x̃ = x/R, ỹ = y/R, θ is the angle between either
dislocation’s Burgers vector and the tube axis, Y is the two-
dimensional Young’s modulus, a is one-half of the lattice
spacing, and σ̃xy = (4π/Y )σxy is the constant, nondimension-
alized applied shear stress. The calculation omits the Peierls
barrier to glide steps [53] and assumes that the crystal is
wrapped around a rigid cylindrical surface, in contrast to the
freestanding tubular crystals in our study. Additionally, the
bending energy favoring larger tube radius plays no role in
the rigid-cylinder calculation. Nonetheless, the comparison is
qualitatively illuminating when we examine one-dimensional
cuts, representing parastichies, through the predicted two-
dimensional interaction energy landscapes.

To illustrate the usefulness of the analytical approximation,
in Fig. 5(a) we present interaction energy landscapes predicted
by Eq. (3) for two dislocations of unit Burgers vectors at con-
stant angles to the tube axis θ = −π/3, 2π/3 (corresponding
to gliding along the principal orientations ±a1 in an armchair

FIG. 5. Analytical approximations for interaction energies of a
reacting dislocation pair on an armchair tubular crystal. (a) Cal-
culated interaction energy landscape, Fint , overlayed with paths of
relative glide. During the reaction, the dislocations’ Burgers vectors
change from ±a1 to ±a3, without changing their climb separation
c = 4. Without applied torsion (σxy = 0, left panel), the dislocations
are attracted to a stable state at zero axial separation. That state is
destabilized by a shear stress σxy = −0.15 due to torsion, which
causes the dislocations to glide apart and eventually react at zero
azimuthal separation (center panel). Subsequently, the rotated defects
glide in a different direction (right panel). (b) Interaction energy
along the glide paths depicted in (a). The metastable state (white
circle) in the zero-torsion path (cyan dotted curve) becomes unstable
when torsion is applied, and the dislocations glide (cyan solid curve)
from state 0 to state 1, where they react into a new state 2 and
then glide along another glide path (red solid line). Possible but
energetically unfavorable glide paths and reactions are shown by
dashed curves and a dashed arrow, respectively. (c) A schematic
diagram and representative states for the reaction event. In a tube
under torsion, an extra pair of dislocations spontaneously nucleates
and quickly unbinds between two existing dislocations, gliding to-
ward and eventually reacting with them. After the reaction, the tube
contains one pair of dislocations but with altered Burgers vector
orientations, and the helicity of the region between the dislocations
is altered.

tube lattice), before and after application of an external shear
stress σxy. Without shear stress [Fig. 5(a), left panel], disloca-
tions at any position along the glide path will glide (arrows)
to a stable state with minimal axial separation to minimize
the bending energy. Although the analytical theory [7,54]
accounts only for the in-plane stresses, it correctly predicts
the direction of dislocation glide that leads to the family of
states at smaller axial separation.

Applied shear stress changes the analytical energy land-
scape, destabilizing the states at small axial separation, and
predicting glide motion that increases the axial separation
[cyan arrows in Fig. 5(a), middle panel)], as we see in MD
simulations. As a result, the dislocations glide along ±a1 until
reaching a common ±a2 parastichy with minimal azimuthal
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separation, and then they react along the a2 direction. This
reaction rotates the Burger vectors by π/3 to a new pair of
directions ±a3. The calculation of Ref. [54] then predicts a
different interaction energy landscape, which we show along
with the new glide path (marked by red arrows) in the right
panel of Fig. 5(a). As predicted analytically, the postreaction
dislocations glide toward smaller axial separation under the
same sign of applied torsion that pulled the original disloca-
tion pair apart.

The energetic reasons for the observed dislocation glide
and reaction behaviors become more apparent when we take
one-dimensional cuts of the energy along the relevant paras-
tichy paths. In Fig. 5(b) we plot the analytically predicted
interaction energy along the glide paths before (cyan dotted
curve) and after (cyan and red solid curves) applying an ex-
ternal torsion. Whereas an azimuthal separation of −πR is
metastable without applied torsion (open circle), the applied
torsion creates a slope in the interaction energy that causes the
dislocations to glide from state 0 to state 1 (cyan solid curve),
corresponding to the glide motion along helical trajectories
observed in our MD simulations (Fig. 4 state 0 to state 1).
Prior to the observed reaction along a common a2 parastichy
[blue arrows in Figs. 5(a) and 5(b)], the dislocations’ ±a1

glide parastichy brings them through a configuration with a
common a3 parastichy at which they could react, but do not
[red dashed line in Fig. 5(a), center panel)]. Although this
possible reaction would substantially decrease the predicted
interaction energy [red dashed arrow in Fig. 5(b)], the sys-
tem does not overcome the energy barrier associated with
unbinding the reaction-mediating dislocation pair (explained
in the next section) with b = ±a3 required to accomplish the
reaction. Instead, the first reaction observed is at the common
a2 parastichy. This observation is consistent with a prediction
given in Ref. [7] for the Burgers vectors of dislocation pairs
expected to spontaneously unbind in the presence of external
torsion. In particular, for a tube with chiral angle φ = 0 as in
Fig. 5, the ±a2 direction (blue arrows) is predicted to be more
favorable for unbinding than the ±a3 direction (cyan dashed
line).

The reaction along the a2 direction reorients the Burgers
vectors from θ = −π/3 to θ = −2π/3 + �, where � is a
small angle due to the helicity transition. This reorientation
of Burgers vectors accompanies a decrease in the interaction
energy [red solid curve in Fig. 5(b)] and a more negative
slope of the energy with respect to glide (which now decreases
rather than increases the axial separation). For comparison, we
also plot the higher predicted interaction energy for the hypo-
thetical situation in which the dislocations continue along ±a1

without reacting [dashed cyan curve in Fig. 5(b)].

D. Spontaneous defect unbinding mediates dislocation reactions

To examine dislocation reactions in tubular crystals in
greater detail, we increase the climb separation between the
initial dislocations of Figs. 5(a) and 5(b) and apply external
torsion to move the dislocations to a configuration where they
undergo a reaction. This allows us to observe the mecha-
nism of the reaction, and resulting changes in lattice helicity,
over a larger region. In Fig. 5(c) we show simulated con-
figurations and schematic representations of the dislocations

before, during, and after the reaction. Due to applied tor-
sion, the dislocations with initial Burgers vectors ±a1 glide
apart until reaching a common ±a2 parastichy. Then, we
observe that a new, “reaction-mediating” dislocation pair with
Burgers vectors ±a2 nucleates midway along the common
parastichy, with the net Burgers vector remaining zero, as it
must. While the original dislocations remain stationary, the
newly nucleated dislocations unbind analogously to Stone-
Wales defect nucleation in graphene lattices [55] and glide
toward the original defects until eventually combining with
them. The reaction ends with a new configuration containing
two dislocations with opposite Burgers vectors ±a3 direction.
This reoriented dislocation pair is not necessarily stable at its
current separation, so the defects may next glide along their
new ±a3 helical glide paths to decrease the total energy.

We never observe dislocations with |b| > a in our simula-
tions; all of the dislocations are elementary. A consequence
of excluding larger Burgers vectors is that reactions by the
mechanism we describe can never occur along the b direc-
tion, even if the dislocations sit on the same glide parastichy
(c = 0), because a nucleated dislocation pair could only glide
along such a path if its Burgers vectors were parallel to
those of the original dislocation pair; the reaction would
then produce nonelementary dislocations. (Geometrically, a
reaction could occur that annihilates all dislocations, but this
seems energetically implausible compared to the original dis-
locations simply gliding to zero separation and annihilating
there.)

The final Burgers vectors are determined by the initial
defects’ orientations and the reaction-nucleated dislocations.
For two oppositely oriented dislocations along ±a1, a dislo-
cation pair unbinding is possible along the other two primitive
lattice directions ±a2,3. The favorable direction for unbinding
dislocations under torsional stress depends on the chiral angle
φ [7]. For dislocations initially along a1, reactions will trans-
form a1 + a2 → a3 or a1 + a3 → a2 (omitting the signs),
where the energy barrier associated with unbinding along the
a3 direction is larger than along a2, and thus is not favorable,
as predicted in Ref. [7].

E. Alternating torsion allows manipulation of the chiral angle
through dislocation reactions

Having demonstrated that externally imposed torsion can
move dislocations into configurations where they react, we
further demonstrate here that time-dependent torsion of alter-
nating sign can be used to change the helicity of the tubular
crystal. Such helicity changes hold significant practical impli-
cations, particularly in the field of carbon nanotubes (CNTs)
to control their electrical conductivity [56,57]. Here we start
with an achiral configuration with an armchair (7,14) tube
containing two oppositely oriented dislocations along ±a2,
initially separated by c = 3 lattice spacings in the azimuthal
direction (Fig. 6, state 1). As shown in Fig. 2, this state is
unstable and the dislocations spontaneously glide apart to a
state where they react along a ±a1 parastichy, changing their
orientation to ±a3. However, by applying shear stress through
torsion on the tube, we can prevent the reaction and instead
force the defects to move in the opposite direction to a state
(Fig. 6, state 2) that makes possible a reaction along a ±a3
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FIG. 6. Transitions in dislocation orientation and crystal helicity
through a sequence of reactions controlled by time-varying external
torsion. Applying torsion in the clockwise direction (as viewed from
outside the tube at either end) to the initial configuration with two
dislocations along ±a2 parastichy (state 1) leads to dislocation glide
(state 2) and a reaction along the ±a3 direction. Switching the direc-
tion of applied torsion (state 3) moves the dislocations closer to each
other again (state 4), eventually leading to a reaction along the ±a2

parastichy and a change of Burgers vectors to the ±a3 direction (state
5). Finally, the dislocations glide to a metastable state at maximum
azimuthal separation (state 6). Particles subject to applied torsion in
the clockwise or counterclockwise direction are colored in orange
and green, respectively; particles outside of these are not shown.

parastichy. If the applied torsion is removed immediately after
this reaction, the dislocations will remain in this orientation
and move apart to a state with maximum azimuthal separation.
By reversing the direction of torsion (state 3), we then cause
dislocations to glide toward a configuration in which they
can react along a ±a2 parastichy (state 4) and change their
orientation once again, this time to the third possible direction
±a3 (state 5). Finally, upon removal of the applied torsion,
the dislocations glide to maximize their azimuthal separation
and reach a metastable state (state 6, Supplemental Material
video 4 [49]).

IV. CONCLUSION

To elucidate the complex interplay between topological
defects, lattice chirality, and surface geometry in freestanding
tubular crystals, we have employed MD simulations to inves-
tigate the behavior of patchy particles, organized into tubular
structures with pre-existing defects. In agreement with predic-
tions made using elastic network simulations [19], our study
finds the emergence of stable dislocation patterns, a behavior
specific to tubular crystals, causing significant deformations

in the macroscopic shape of the crystal. Beyond the scope of
the previous elastic network approach, our MD simulations
here also reveal novel sequences of dislocation reaction events
that are distinctive to tubular crystals. Even when the exist-
ing defects are positioned several lattice spacings apart, they
exhibit reactions “at a distance,” through nucleation and glide-
separation of reaction-mediating dislocation pairs, that lead to
changes in their orientations. Consequently, this alteration in
the orientation of dislocations induces transformations in the
helicity of the lattice. In addition, the vacancy formation and
particle extrusion events observed in our molecular-dynamics
simulations represent a class of irreversible rearrangements,
not accessible to the elastic network model or to continuum
elasticity calculations, and they could provide target sites for
hierarchical assembly bonds or nucleation sites for secondary
crystalline layers.

In contrast to continuum elastic models for tubular struc-
tures, including those with anisotropic elasticity and localized
stresses associated with the presence of defects, our coarse-
grained model inherently incorporates the discreteness of
lattice orientation distinctive to tubular crystals. Unbinding
and motion of dislocations in a crystalline lattice usually
take place along the primitive lattice directions, which in a
tubular crystal depend on the lattice helicity. The resulting
paths of dislocation motion do not always follow the direction
of largest stress. Our model predicts that in armchair tubes
under torsion, dislocations unbind and glide along the tube
axis, even when this direction is farther from the direction
of maximum stress compared to other primitive lattice direc-
tions. While continuum elasticity calculations provide useful
insights into dislocation glide motion (as in Fig. 5), our MD
simulations indicate that tubular crystals can exhibit a wealth
of higher-order defect transformations that require discrete-
particle models to simulate.

Our investigation establishes externally applied torsion as
a promising means to effectively regulate the dislocation
motion. We show that time-varying manipulation of the di-
rection and magnitude of these forces can be used to initiate
a sequence of elementary reactions that result in a desired
dislocation reorientation, defect pattern, and change in crys-
tal helicity. This controllable design of dislocation dynamics
holds the potential to engineer colloidal crystal assemblies
with in situ–tunable mechanical and electro-optic proper-
ties. Despite the strong assumptions underlying the analytical
theory of Ref. [54], we found that it generated useful predic-
tions for dislocation glide both before and after a dislocation
reaction. Our findings indicate a need for an extension to
this theory that can systematically predict which geomet-
rically possible dislocation reactions will be energetically
favorable.

Our results suggest that it would be fruitful in future work
to examine dislocation reaction sequences on 2D crystals of
other periodic topologies, such as spherical [58], toroidal [59],
or conical [60], and on tubular crystals with helicities other
than the (near-)armchair configurations that we have studied
here. How these dislocation reaction sequences may influence
the kinetics of tubular crystal self-assembly remains an open
question. Slight variations to our patchy particle construction
could offer future simulations a minimal model of tubular
crystals with spontaneous curvature, preferred helicity, and/or
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crystal symmetries other than hexagonal, e.g., modeling the
rhombic lattices of tubulin that make up microtubules [61] or
potential colloidal analogs [62,63].

Altogether, our findings not only offer insights into the
rich interplay between topological defects, lattice helicity, and
surface geometry at play in freestanding tubular crystals, but
they also advance our understanding of dislocation behavior
in flexible 2D crystals and the variety of ways in which they
can interact.
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