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Discovery of wurtzite solid solutions with enhanced piezoelectric response using machine learning
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While many piezoelectric materials are known, there is still great potential to improve on the figures of merit
of existing materials through compositional doping and forming solid solutions. Specifically, it has been shown
that doping and alloying wurtzite-structured materials can improve the piezoelectric response; however, a vast
compositional space has remained unexplored. In this work, we apply a multilevel screening protocol combining
machine learning, chemical intuition, and thermodynamics to systematically discover dopant combinations
in the wurtzite material space that improve the desired piezoelectric response. Through our protocol, we
use computationally inexpensive screening calculations to consider more than 3000 possible ternary wurtzite
solid solutions from nine different wurtzite base systems: AlN, BeO, CdS, CdSe, GaN, ZnO, ZnS, ZnSe, and
AgI. Finally, based on thermodynamic analysis and explicit piezoelectric response calculations, we predict 11
materials with improved piezoelectric response, due to the incorporation of electropositive dopants.
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I. INTRODUCTION

Piezoelectrics are noncentrosymmetric materials that are
capable of interconverting mechanical and electrical energy
for a variety of applications [1]. Piezoelectrics provide the
basis for microelectronic energy harvesting, acoustic wave
devices, actuators, and other devices that are widely used in
research, industry, and military applications [2–4]. The en-
ergy efficiency and power output of these materials increases
with increasing relative piezoelectric response, but decreases
with increasing dielectric constant. Perovskite ferroelectrics
are prototypical piezoelectrics; however, while perovskites
have a very high piezoelectric response, they also possess
high dielectric constants [4]. Furthermore, these materials
often lose their beneficial properties at high temperatures.
An alternate material class is wurtzite; though wurtzites have
smaller piezoelectric constants than their perovskite coun-
terparts, they are known for their low dielectric constants
and high-temperature performance [5–7]. Furthermore, these
materials are highly compatible with complementary metal-
oxide-semiconductor (CMOS) technology, which makes them
highly attractive for use in piezoelectric applications [2,3].
Doping has long been used to improve the electronic proper-
ties of host materials; for example, perovskite lead magnesium
niobate (PMN) is alloyed with lead titanate (PT) to enhance
the temperature stability and magnitude of piezoelectricity.
Adding elements into common wurtzite materials, such as
doping aluminum nitride with scandium or zinc oxide with
magnesium, has been shown to appreciably increase the
piezoelectric response and even induce ferroelectricity, which
is of interest for many additional applications [6,8–14].

With the recent growth of machine learning (ML) applica-
tions in materials science, many methods have been proposed
to speed up materials discovery using ML-based methods
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[15–23]. Feature selection, where one finds which input fea-
tures are most correlated to a target output, is a primary
challenge of current ML applications in big data. Choosing
features is at the heart of this challenge, since it can often
be subjective, and the only way to find meaningful correla-
tions is to have representative and meaningful features. Once
chosen and selected, however, features can be particularly
useful in rational materials design because of their role in
providing an interpretative picture of the underlying physics.
These material features can be applied in active learning and
Bayesian based approaches for accelerated discovery of ma-
terials, and new approaches are actively being developed for
both computation and experiment [24–28]. New approaches
have also been implemented to go beyond just correlation to
find causation in structure property relationships and develop
explainable ML models to be more transferable and inter-
pretable [29,30].

Feature selection approaches have been shown to be suc-
cessful for fields spanning from materials discovery [19,31–
34] to chemical reaction development using homogeneous
[35–38] and heterogeneous [23,39–42] catalysts. Many recent
works have identified a “material gene” to perform advanced
analysis of material structure-property relations, where the
material gene corresponds to the most important feature(s)
that correlate with and therefore influence a target property
[40,43–50]. The features can be broadly classified into two
different types: primitive and calculated. Primitive features, or
primitives, are purely based on summary statistics of atomic
data such as mass, location on the periodic table, electroneg-
ativity, and charges [48]. Calculated features, referred to as
proxies, involve calculations such as ab initio density func-
tional theory calculations, and these include ionic charges,
bond lengths, and bond angles. It is worth noting that, to be
most useful, calculated features of a material should be sim-
pler and less time consuming to calculate than the target prop-
erty of interest. For example, calculation of the lattice parame-
ters requires much less computational time than piezoelectric
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FIG. 1. Multilevel screening workflow to explore the compositional phase space of the nine different wurtzite base materials to maximize
the piezoelectric tensor component e33. The gray, blue, and green boxes represent data sets, methods, and deliverables, respectively.

tensor calculations. Our multilevel screening protocol is based
on the combination of these two types of featurization.

In the current work, we have investigated nine different
base wurtzite materials and their solid solutions with every
relevant metal and metalloid element, over 3000 possible
candidate materials. We narrow down this space to 30 solid
solutions which are predicted to improve the piezoelectric
response. Finally, we perform thermodynamic and cost anal-
ysis to predict the 11 best candidates for future experimental
verification. An overview of this workflow is shown in Fig. 1.
The first level of screening is designed to find one screening
proxy to use in place of expensive piezoelectric calculations.
The second level of the screening serves to reduce the space
of all examined ternary solid solutions to just a few suggested
high-value materials using automated machine learning can-
didate selection.

II. COMPUTATIONAL DETAILS

We consider a 2 × 2 × 1 wurtzite supercell consisting of
eight metal and eight nonmetal sites. For doped materials,
two of the eight cation sites have been replaced [Fig. 2(a)].
The relative positions of the dopants within the unit cell
has been shown to affect the piezoelectric response [6], so
it is kept constant throughout this entire study to compare
elemental doping effects on an equal footing. The calcula-
tions for the e33 component of the piezoelectric tensor are
performed using the Quantum Espresso [51] software package
with optimized, norm-conserving pseudopotentials generated
by OPIUM [52,53]. To do this, the system is strained along
the c axis for five different values (−1.0 to +1.0 percent
strain), and then atomic positions are allowed to relax. The
polarization is then calculated using the Berry’s phase method
[54,55]. The slope of polarization vs strain was calculated and
taken to be the e33 component [56] of the piezoelectric ten-
sor for the calculated material. For doping, all combinations
of metallic elements that would preserve charge neutrality
are considered for each system. For example, combinations
of (+3,+3) or (+2,+4) dopants are considered for AlN,
whereas for ZnO, (+1,+3) or (+2,+2) are screened. Five

different machine learning (ML) methods, linear regression,
least absolute shrinkage and selection operator (LASSO),
ridge, recursive feature elimination (RFE), and random forest
(RF), from python’s sklearn are employed [57]. By training
multiple machine learning algorithms on each round of the
guided sampling, we can ensure faster sampling of a larger
candidate space since the algorithms will select different types
of materials from the limited initial database, and ultimately
we can ensure that if any algorithm finds a candidate to be
viable then it is screened. Additionally, after training these dif-
ferent methods we compare the relative effectiveness of each
in predicting the material proxy from the primary features.

III. PROXY SELECTION

To identify the best screening proxy, we started with a
moderate dataset of additive elements in the most commonly
used wurtzite, aluminium nitride (AlN), to improve the piezo-
electric response (level 1 in Fig. 1). There have been multiple
studies showing the effects of codoping into AlN. Various
material descriptors, especially the lattice c

a ratio, have been
identified as key properties that correlate with the piezoelec-
tric response [6,7,9,58–60]. In total, 53 materials [61] are
included in our initial dataset, and the results for the piezoelec-
tric response are summarized in Table I. Notably, AlN doped
with boron and scandium together shows a slight increase
in the piezoelectric constant relative to AlN with scandium
alone, which is currently attracting great interest [2,3].

TABLE I. Notable piezoelectric response for dopants in AlN,
from among the initial dataset of 53 materials.

Dopants e33

None 1.46
Sc 1.86
Sc,B 1.90
Mg,Hf 1.84
Mg,Ti 1.60
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FIG. 2. Feature selection in the initial dataset of 53 codoped AlN
materials: (a) Example wurtzite structure with dopants. The blue
atoms are the cations, replaced with the green and purple atoms as
dopants, respectively. (b) ML feature selection to identify the most
important material proxy. (c) Scatter plot showing the correlation
between lattice c

a and e33 response.

For each material in the dataset, we used 15 possible can-
didate proxy properties, based on previous work on material
genes and wurtzite characterization [61]. We then used ma-
chine learning feature selection to find the material proxy that
is, on average, most correlated to e33, and the results are shown
in Fig. 2. Note that the feature importance for each feature is

averaged across all of the ML methods for proxy selection.
We find the lattice c

a ratio to be the most important feature
[Fig. 2(b)], which has also been reported in previous literature
for host materials alone and based on manual manipulation of
the lattice parameters for sample systems [7–9]. Therefore, as
a lower lattice c

a ratio for wurtzite solid solutions corresponds
to a higher value of e33 [Fig. 2(c)], in accordance with previ-
ous works [7–9], we use the c

a ratio as a screening proxy for
our automated workflow (Fig. 1).

IV. GUIDED SAMPLING

Based on the lattice c
a ratio proxy, we generated a set

of over 3000 possible candidate solid solutions from nine
different wurtzite base systems: AlN, BeO, CdS, CdSe, GaN,
ZnO, ZnS, ZnSe, and AgI. Starting from the initial 53-material
dataset and base materials, we then used machine learning
predictions to iteratively select candidates from the 3000 pos-
sible combinations to screen. For each atom, uncalculated
descriptors were chosen to reflect the fundamental chemi-
cal characteristics, including atomic number, atomic mass,
elemental melting temperature, charge, column and row on
periodic table, atomic radius [62], electronegativity [63], and
preferred valence. Primitive features were collected by taking
the average, standard deviation, minimum, maximum, and
range of the atomic descriptors for each material (a total of
50 primitives for each material). The key screening steps are
(i) training a ML model using the primitives of the materials
in the database in a specific iteration, (ii) using the trained
ML model to predict which of the unstudied candidates will
have the lowest c

a ratio to screen next, and (iii) adding the
newly screened materials to the database (the iterative ML
screening in Fig. 1). This process was repeated until the best
500 candidates were screened.

During the protocol, it became clear that doped versions of
certain base materials are much more likely to have a lower
lattice ratio than others (specifically for BeO, AlN, ZnO, and
GaN). Therefore, in order to screen the best candidates for
each base material, once solid solutions of a given base ma-
terial are no longer predicted to give significant improvement
to the proxy of the host, the rest of the elemental combina-
tions of that base material were removed from the remaining
guided sampling candidates. This ensures that we suggest new
variants for all nine different base materials, even if some
have a higher propensity toward high c

a ratio than others.
Additionally, some elements are inherently unstable in the
host material and the relaxation calculations fail for a variety
of reasons. In this circumstance, a high value of c

a ratio of 2.0
was assigned to these codopants so that the ML predictions
would avoid similar materials.

V. INSIGHTS AND DISCUSSION

After screening, we performed fivefold cross validation for
each ML model. This is done to ensure that the ML models
are accurately predicting the lattice ratios from the primitive
features so that we can be confident that all viable candidates
are screened correctly; the results are shown in Fig. 3. We find
that the random forest algorithm worked best to predict the
lattice ratios. However, all of the methods used are relatively

055406-3



BEHRENDT, BANERJEE, ZHANG, AND RAPPE PHYSICAL REVIEW MATERIALS 8, 055406 (2024)

FIG. 3. Validation of the predictive power of ML models. The
low root mean square error (RMSE) for multiple models indicates
that all the viable candidates are screened.

accurate at predicting the proxy from primitives, which is
evident from the low RMSE given in Fig. 3. All of the methods
have particular difficulty with materials that are predicted to
have c

a ratios near the average, yet are calculated by DFT to
possess extremely low lattice ratios; this is in part due to the
fact that most of these extreme values represent materials that
become unstable and deviate from the original wurtzite struc-
ture. Furthermore, because the only poor predictions are in
the low c

a regime, we conclude that the unscreened materials
predicted to have high c

a are unlikely to be good candidate
piezoelectrics. At the end of the screening, only about 1/5 of
all the screened solid solutions are found to be insulating and
actually effective at reducing the lattice ratio for the parent
material; these materials are then verified by subsequent e33

calculations in accordance with the workflow in Fig. 1.

FIG. 4. Importance of primary features to predicting lattice c
a

ratio. “At” stands for atomic, “std” for standard deviation, and the
melting temperature is of the material for each element in solid form.
All features involving no calculations are summary statistics for the
constituent elements in each candidate material.

As shown in Fig. 3, the algorithms that reduced the number
of features, namely RFE and LASSO, had slightly worse
predictive power from the primitive features. This indicates
that using many primitives together provides more predictive
power of the ultimate lattice ratios in the material. However,
determination of the most important features still can provide
insight to the structure-property relations, guiding which el-
ements are best to add to each wurtzite system. Since most
of the ML algorithms trained on the primitive material fea-
tures provide reliable prediction of the resulting c

a ratio and
insight into the possible piezoelectric response, we performed
feature selection to see which primaries were most important
(Fig. 4). Two major atomic characteristics stand out as essen-
tial to a low c

a ratio and consequently improved piezoelectric
response: electronegativity and mass. Materials containing
extremely highly electronegative elements as the anion, oxy-
gen, and nitrogen in particular, had characteristically lower
c
a ratios. Additionally, materials with a high standard devia-
tion of electronegativity in constituent elements, containing
extremely electropositive elements as well, tended to have
lower c

a ratios. With the high importance of mean row and
atomic mass, materials with a low average row and atomic
mass also tended to have low c

a ratios. This means that the
addition of small, electropositive elements to AlN, ZnO, and
BeO will reliably lead to a heightened electronic response
in wurtzites. This finding is aligned with recent evidence of
Sc and B enhancing piezoelectricity in AlN, Mg in ZnO,
and even the classic example of adding Mg and Nb to lead
titanate. However, since the LASSO algorithm had relatively
poor predictive power, we posit that these primitives alone
are not enough to predict the c

a ratio, and that all (or almost
all) of the primitives provide enough information for accurate
prediction of the lattice ratio and piezoelectric properties from
elemental descriptors.

During the verification of e33 using Berry’s phase polariza-
tion calculations (DFT response calculations in Fig. 1), we
find that while all good piezoelectrics have low c

a , not all
wurtzite solid solutions with low c

a are good piezoelectrics.
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FIG. 5. Lattice ratios and piezoelectric responses for the final
screened materials. Each color corresponds to a base material and
its respective codopants.

For example, some of the the greatly reduced c
a ratio sys-

tems unphysically distort the base material out of the wurtzite
phase, leading to an unstable system. We observe that BeO in
particular often becomes unstable with the addition of other
elements. Furthermore, we find that the trend of lower c

a ratio
correlating with higher piezoelectric constant is not a single
linear trend for all different wurtzite materials, as suggested
in previous work [7], but instead we find a linear trend for
dopants within each given base material, as shown in Fig. 5.
The resulting 30 materials from this final screening that no-
tably increased the piezoelectric coefficient of their respective
base material are listed in Table II. All of these materials are
predicted to increase the e33 of the parent material. Thermo-
dynamics of the proposed solid solutions were evaluated by
comparing the energy of the proposed system with that of
the component binary wurtzites with the chosen anion. For
reported segregation energies in Table S1, negative values
indicate preference for phase segregation and positive values
that the segregation is unstable. As these solid solutions are
often made by sputtering and ionic migration in the materials
is slow and unfavorable, we believe that all proposed solid
solutions would be stable at low concentrations. However,
combinations with a higher segregation energy are more likely
to be stable at higher concentrations. The price and toxicity of
proposed dopants was also considered in the practical analysis
(Fig. 1). For each material, the best candidate doping combi-
nations after considering such factors are highlighted in bold
in Table II. Notably, our set of suggested materials is void
of transition metal solid solutions. We found that transition
metals with unfilled d orbitals led to complications in the band
structure that led to metallic character, states in the band gap
that can lead to leakage in real materials, and overall reduced
piezoelectric response.

While the proxy c
a ratio helps to drastically reduce the

computational expense for the materials screening, it is
important to further validate ML-based predictions. The low
R2 values in Fig. 5 indicate that there are complicating factors
beyond the c

a ratio that govern the piezoelectric properties,
particularly for zinc-containing materials (Fig. 5). Additional

TABLE II. Notable piezoelectric response for codoped systems.
Base materials are in parentheses and materials written in bold are
of particular interest for increasing the piezoelectric constant of the
base system.

Dopants c/a e33 Improvement Avg. Dopant cost
(Base) (C/m2) (USD/kg)

(AlN) 1.604 1.46
B,Y 1.572 1.64 1.12x 1200
Mg,Hf 1.581 1.84 1.26x 700
Sc 1.575 1.86 1.27x 15 000
Sc,B 1.569 1.90 1.30x 8700
Be,Zr 1.569 2.01 1.37x 860
Be,Hf 1.565 2.12 1.45x 1100
(BeO) 1.612 0.356
Li,Y 1.458 0.791 2.22x 75
Li,Sc 1.376 0.954 2.68x 7560
Ga,Na 1.488 1.01 2.84x 140
Mg 1.435 1.06 2.98x 2
Al,Li 1.563 1.06 2.98x 60
(CdS) 1.625 0.302
B,K 1.452 0.699 2.22x 1200
(CdSe) 1.624 0.082
Na,Sc 1.618 0.264 3.22x 7500
Ca,Mg 1.621 0.353 4.30x 5
(GaN) 1.633 0.629
Mg,Ti 1.614 0.889 1.41x 3
Be,Zr 1.601 0.946 1.50x 850
B,Sc 1.608 1.01 1.61x 8700
Sc 1.613 1.08 1.72x 15 000
B,Y 1.598 1.15 1.83x 1200
(ZnO) 1.610 1.27
B,Na 1.557 1.31 1.03x 1200
Mg 1.598 1.40 1.10x 3
Be,Mg 1.585 1.43 1.13x 420
Be,Ca 1.560 1.64 1.29x 420
(ZnS) 1.642 0.243
Be,Cd 1.629 0.335 1.38x 420
Be,Mg 1.627 0.340 1.40x 420
Be,Ca 1.608 0.522 2.15x 420
(ZnSe) 1.647 0.001
Na,Sc 1.644 0.140 140x 7500
Be,Mg 1.632 0.198 198x 420
(AgI) 1.629 0.098
Li 1.628 0.138 1.41x 120

factors, such as system Born effective charges, are discussed
in the Supplemental Material and will be investigated in the
future [61]. However, we report that as a screening parameter,
the c

a proxy has been effective to find valuable candidate
wurtzite solid solutions which can improve the piezoelectric
response for all nine base materials.

VI. CONCLUSION

Overall, through a multistep screening protocol and high-
throughput study, we identify previously unstudied solid
solution candidates to improve the piezoelectric response of
nine chosen wurtzite base materials. During this process, we
emphasize the fundamental relation of a c

a lattice ratio in
wurtzites to its respective piezoelectric response, and use it
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as a proxy to develop a computationally inexpensive protocol
for piezoelectric material discovery. Furthermore, we are able
to support the idea that primitives can be effectively used in
machine learning methods to predict basic material properties
such as lattice parameters, given a sizable dataset. Finally, we
propose the best set of candidates for further experimental
verification and discuss the qualitative reasons why certain
elements are better for improved response. We hope that the
present work serves as a practical example in the design of
materials with improved material properties through compu-
tationally efficient multistep high-throughput studies.
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