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Low-dimensional materials, in which the electronic and transport properties are drastically modified in
comparison to those of three-dimensional bulk materials, yield a key class of thermoelectric materials with
high conversion efficiency. Among such materials, the organic compounds may serve peculiar properties
owing to their unique molecular-based low-dimensional structures with highly anisotropic molecular orbitals.
Here we present the thermoelectric transport properties of the quasi-one-dimensional dimer-Mott insulator
B’ -(BEDT-TTF),ICl,, where BEDT-TTF stands for bis(ethylenedithio)-tetrathiafulvalene. We find that the
thermopower exhibits typical activation-type temperature variation expected for insulators but its absolute value
is anomalously large compared to the expected value from the activation-type temperature dependence of the
electrical resistivity. Successively, the Jonker-plot analysis, in which the thermopower is usually scaled by the
logarithm of the resistivity, shows an unusual relation among such transport quantities. We discuss a role of the
low dimensionality for the enhanced thermopower along with recent observations of such a large thermopower

in several low-dimensional materials.
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I. INTRODUCTION

The thermoelectric effect is a mutual conversion between
electrical and heat flows, which serves an environmentally
friendly energy harvesting technology that enables to utilize
a large amount of waste heat [1-4]. The low dimensionality
is one of the key concepts in enhancing the thermoelectric
conversion efficiency [5] as is examined in various forms of
materials such as one-dimensional (1D) nanowires [6,7] and
two-dimensional (2D) thin films of superlattices [8—10]. In-
deed, the low dimensionality significantly affects the transport
properties; the electronic density of states (DOS) strongly
depends on the dimensionality of the systems, and as a conse-
quence, the thermopower, a measure of the energy derivative
of the DOS [11], is greatly enhanced. Also, the phonon
thermal conductivity is drastically suppressed by introducing
low-dimensional structures [12].

The organic compounds may serve a unique class of low-
dimensional thermoelectrics because they are composed of
various organic molecules with highly anisotropic molecular
orbitals [13,14]. The electronic band structure and the re-
sultant Fermi surfaces of such organic materials are indeed
low dimensional, as is investigated experimentally and the-
oretically [15-20]. Interestingly, the low-dimensional nature
is significant not only in the metallic state but also in the

insulating phase such as charge-ordered insulators. This fea-
ture is different from other low-dimensional systems with an
insulating nature; for example, in the 2D oxide Mott insula-
tors such as cuprates [21] and ruthenates [22], the transport
anisotropy defined as y = pPout/Pin, Where pin (Oout) is the
in-plane (out-of-plane) resistivity, is not so large compared to
that of two-dimensional metal with cylindrical Fermi surfaces.
On the contrary, the resistivity anisotropy of the 2D organic
compounds with the charge-ordered or charge-glass insulating
phase is unexpectedly large as y ~ 10 [23], indicating that
the low dimensionality is significant in such organic systems,
probably owing to the anisotropically extended molecular
orbitals.

Such a large transport anisotropy in the organic materials
thus poses the question how such a low dimensionality af-
fects the thermoelectric effect. Indeed, the anomalously large
thermopower has been observed in several low-dimensional
organic systems. In the low-dimensional organic molecu-
lar conductor B’-(BEDT-TTF),AuCl, [BEDT-TTF (ET) =
bis(ethylenedithio)-tetrathiafulvalene], the resistivity exhibits
a typical insulating temperature dependence of p(T')
exp(E,/2kgT), where kg, E;, and T are the Boltzmann
constant, the band-gap energy, and the temperature, respec-
tively, and E; is estimated as E; ~ 230 meV [24]. According
to the conventional formula of the thermopower for insu-
lators, the value of the thermopower is roughly estimated
as S =E;/2¢T ~ 580 uV/K at T =200K (e being the
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FIG. 1. (a) The crystal structure of B’-(ET),ICl, drawn by
VESTA [41]. Hydrogen atoms are not drawn for clarity. (b) The
highest occupied molecular orbital of the dimerized ET molecules
in B'-(ET),ICL,. (c) ET molecule arrangement viewed along the
long axis of ET molecules. The dotted ovals represent dimerized ET
molecules. (d) Photograph of the 8'-(ET),ICl, single crystal for the
transport measurement.

the thermopower beyond the conventional thermopower
formula.

In the present study, we focus on the related quasi-
one-dimensional (g-1D) dimer-Mott insulator B'-(ET),ICI,
[27,28], the crystal structure of which is composed of ICl, and
ET layers stacked alternately along the a* axis [Fig. 1(a)]. The
ET molecules are strongly dimerized [Fig. 1(b)] and stacked
along the b axis to form a conducting square lattice in the bc
plane [Fig. 1(c)]. The optical property is g-1D [29,30] while
the 2D transport behavior has also been reported [31]. The
insulating layer consists of the monovalent anion ICL;, and
the hole transferred to the ET plane is localized on the dimer
to act as a Mott insulator (the dimer Mott insulator). Indeed,
the degree of freedom in the dimerized molecules shows
interesting electronic and magnetic phenomena [32-35]. We
measured the resistivity and the thermopower of g'-(ET),ICl,
and find that the thermopower of this compound also becomes
large as compared to the activation energy estimated from
the temperature dependence of the resistivity. Through the
Jonker-plot analysis in various low-dimensional systems [36],
we suggest that the reduced dimensionality may be crucial for
such enhanced thermopower.

II. METHODS

Single-crystalline samples were grown using an elec-
trochemical method [37,38]. We determined the crystal
orientation by using the polarized infrared reflectivity
spectra measured by using a Fourier-transform infrared
(FTIR) spectrometer [29,30]. The resistivity and the ther-
mopower were simultaneously measured using a conventional
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FIG. 2. (a) Temperature dependence of the resistivity of B'-
(ET),ICl, single crystals. The inset shows the temperature depen-
dence of the resistivity normalized by the value at 7 = 300 K.
(b) Arrhenius plot for the resistivity. (c), (d) 1D and 2D VRH plots
for the resistivity.

four-probe method and a steady-state method, respectively
[39,40] [Fig. 1(d)]. The direction of the electrical and heat
currents is along the ¢ axis. A manganin-constantan differ-
ential thermocouple was attached to the sample by using a
carbon paste to measure the thermopower. The temperature
gradient (|VT'| ~ 0.5 K/mm) was applied by using a resistive
heater and the thermoelectric voltage from the wire leads was
subtracted.

We also performed first-principles calculations based on
density functional theory (DFT) using QUANTUM ESPRESSO
[42-44] to obtain the molecular orbitals. We used the
projector-augmented-wave pseudopotentials with the Perdew-
Burke-Ernzerhof generalized-gradient-approximation (PBE-
GGA) exchange-correlation functional. The cutoff energies
for plane waves and charge densities were set to 70 and 560
Ry, respectively, and the k-point mesh was set to a 10 x 10 x
10 uniform grid to ensure the convergence.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the temperature dependence of the elec-
trical resistivity of 8’-(ET),ICl, single crystals. We measured
the transport properties of seven single crystals to examine
the sample dependence. Although all of the crystals exhibit
an insulating temperature dependence, the absolute values are
slightly different among the measured samples. As shown
in the inset of Fig. 2(a), the normalized resistivity data are
also different from each other, indicating an intrinsic sample
dependence, while the observed sample-dependent resistivity
also comes from the uncertainty of the measured sample size
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and the length between the voltage contacts. The observed
sample dependence will be discussed later along with the
results of the thermopower experiments. Figure 2(b) depicts
the Arrhenius plot for the resistivity. The data slightly deviate
from the 1/7 dependence probably due to the variable-
range-hopping (VRH) conduction at low temperatures. In
the VRH model, the resistivity is predicted to follow p
exp(Ty/T)V@*+D where Ty is a constant and d is the dimen-
sionality of the system [45,46]. Figures 2(c) and 2(d) depict
the 1D and 2D VRH models for the resistivity, respectively.
Because of the comparable fitting quality of these models, it
is difficult to conclude whether 1D or 2D VRH is a better fit
for the experimental data. This point is also discussed in the
following section.

We then discuss the thermopower of 8'-(ET),ICl, single
crystals. Figure 3(a) depicts the thermopower as a function
of temperature, in which a sample dependence is clearly ob-
served. Near room temperature, the thermopower increases
with cooling as seen in semiconducting materials. On the
other hand, the sample dependence on the temperature varia-
tion of the thermopower at lower temperature below 200 K is
significant. Note that the low-temperature thermopower data
are scattered owing to the high resistance of the measured
samples. At the present stage the details are not clear but we
infer that the observed sample dependence may originate from
the VRH conduction at low temperatures, because the VRH
thermopower exhibits an increasing function of temperature
as § o¢ T@=D/@+D ip the d-dimensional VRH system, while
the thermopower shows a decreasing function as S o« 1/T
in semiconductors [47-52]. In the present case, the amount
of intrinsic defects and/or crystalline imperfections may be
slightly different among the samples, and consequently, the
temperature dependence of the low-temperature thermopower
may vary depending on the sample. In the related ET salts
[53], such a crystalline imperfection or disorder is related to
the anion layers and strongly affects the transport properties.
In addition, a previous x-ray topograph experiment reveals
good crystallinity of 8'-(ET),ICl; single crystals [38] but also
shows weak streaklike patterns, indicating a slight distortion
in the lattice planes.

In contrast to the strongly sample-dependent thermopower
below 200 K, the thermopower data show rather similar semi-
conducting behavior near room temperature, as is also seen
in the S vs. 1/T plot in Fig. 3(b). Based on a thermopower

formula of
ke[ Ag 5
S=— -1, 1
q |:2kBT * <r+ 2” M

where ¢ is the carrier charge [54], we then evaluate the ac-
tivation energy Ag/2 from the slope in the linear fitting for
the S vs. 1/T plot. In Eq. (1), r is defined as the exponent in
the energy dependence of the scattering time 7(g) o ¢, and
r = —1/2 (3/2) corresponds to the electron-phonon (ionized
impurity) scattering. It should be noted that the scattering
mechanism and the value of r remain an open question in
B’-(ET),ICl, [31], and we then focus on the slope value in
the linear fitting for the S vs. 1/T plot.

The obtained activation energy Ag/2 is plotted in Fig. 3(c)
as a function of the activation energy A, /2 estimated from the
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FIG. 3. (a) Temperature dependence of the thermopower.
(b) Thermopower as a function of the inverse temperature. (c) Com-
parison of the activation energies, Ag/2 and A, /2.

resistivity data near room temperature by using

A
P = po exp <—2 kB”T)- 2)
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Note that we used the same fitting range between 7 = 280 K
and 330 K for these quantities. Interestingly, the thermopower
activation energy Ag/2 well exceeds the resistivity one,
whereas these activation energies Ag/2 and A,/2 are iden-
tical in an ideal case. It should be noted that the optical gap in
B’-(ET),ICl, is about 2000 cm ™" (250 meV) [29,30], which
is close to the resistivity band-gap energy A, indicating that
the thermopower is anomalously enhanced in 8'-(ET),ICl,.
In Fig. 3(c), we also plot the relation between these two
activation energies of the related dimer-Mott insulator B’-
(ET),AuCl, [24,25]. The thermopower of B'-(ET),AuCl, is
also significantly large and difficult to be explained by using
the activation energy estimated from the resistivity.

We then consider the Jonker-plot analysis. Based on the
temperature dependence of the carrier concentration n in the
activation regime of

E
0= ngexp (_ szgT>’ 3)

where n is a proportional coefficient, the activation-type ther-
mopower is given as

st B ()0
= — r -
kg 5
=——|lnn—Inny—(r+=)|. “4)
q 2

This relationship is known as a universal relation, and the
slope between S and Inn is given by the universal constant
of kg/e >~ 86 uV/K. (In the common logarithm plot, the slope
is kg In 10/e >~ 200 uV/K.) It should be noted that this slope
value of 200 uV /K is the maximum value in the conventional
semiconducting picture, because bipolar electron-hole contri-
butions usually reduce the absolute value of the thermopower.

The Jonker relation is often referred as the relation between
S and the conductivity 0 = p~! = enu when the mobility
w exhibits relatively weak temperature dependence. In f’-
(ET),ICl,, however, the carrier mobility shows an unusual
temperature dependence of u(T) oc T3, the exponent of
which is distinct from that of conventional one expected from
the impurity and/or the phonon scattering [31]. The activated
population in Eq. (3) is then given as

ox _Eg _n_ o _0T3 )
P 2kgT ) no euny A’

where A is a constant. Here, in addition to the above 73
dependence of the mobility, we also consider the weak tem-
perature dependence of ngy o 795 for the 1D case [55], since
the optical conductivity shows the 1D characteristic [29,30].
Note that the results are almost the same qualitatively when
we use the temperature dependence of ny o T for the 2D case.
Therefore, the Jonker relation yields

S = —k—B|:ln(oT3)—lnA— <r+§)}. (6)
q 2

Figure 4 shows the thermopower as a function of oT? for
the measured 8'-(ET),ICl, single crystals, which is the above
Jonker-plot analysis considering the temperature-dependent
mobility. Here the slope near room temperature is essential
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FIG. 4. The Jonker plot for the measured samples of f'-
(ET),ICl,. The thermopower is plotted as a function of o T3 to adapt
the temperature-dependent mobility.

because the Jonker analysis [Eq. (6)] is based on the transport
properties in semiconductors as described by Egs. (1)-(3). Al-
though the data are sample dependent as mentioned before and
the slope is not constant, the maximum slope values in several
samples well exceed the universal constant of 200 uV/K in
magnitude, implying an unusual mechanism to enhance the
thermopower in this system. The sample dependence on the
slope value of the present Jonker plot will be mentioned later.

To examine the anomalous Jonker relation in more detail,
we compare the present data to other low-dimensional sys-
tems. In Fig. 5, we represent the thermopower of 8’-(ET),ICl,
as a function of normalized o T3, in which the normalization
factor was determined as the horizontal intersection of the
extrapolated slope line for each sample. We also plot the data
of the organic materials 8'-(ET), AuCl, [24,25] and a-(ET),13
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FIG. 5. The Jonker plot for various low-dimensional materials.
In B’-(ET),ICl,, the thermopower is shown as a function of the
normalized o T3. For B'-(ET),AuCl, [24,25], a-(ET),I; [26], and
Sr,IrO, [56], the horizontal axis represents the normalized conduc-
tivity o /oy. For the cuprate superconductors [57], Ca,RuO, [58], and
ZnO [59], the horizontal axis represents the normalized carrier con-
centration n/ny. The normalization factor is the horizontal intersect
of the extrapolated slope line for each material.
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[26], as well as the data set of the two-dimensional oxide
materials such as the cuprates [57], the ruthenate Cay;RuOy4
[58], and the spin-orbit Mott insulator Sr,IrO4 [56]. The data
of the three-dimensional material ZnO [59] is also plotted
as a reference. The horizontal axis represents the normalized
carrier concentration n/ny for the cuprates, Ca,RuQy4, and
Zn0O. On the other hand, for B’-(ET),AuCl,, a-(ET),I3, and
Sr,1rOy, the horizontal axis shows the normalized conductiv-
ity o /oy owing to the limited data, and thus the contributions
from the temperature dependence of the mobility should be
included. Nevertheless, the observed magnitudes of the slope
[430uV/K in B'-(ET),ICl,, 1400uV/K in '-(ET),AuCl,,
and 700 uV/K in a-(ET),I3] are indeed unusual, in sharp
contrast to the conventional slope value of 200 uV /K observed
in the other materials including the 2D layered oxides. Note
that, although a scaling relation of S oc o~!/4 has been pro-
posed for the conducting polymer thermoelectrics [60-62],
here we adapt the Jonker analysis to discuss the thermopower
of materials with low-dimensional crystal structures.

The origin of the enhanced thermopower in low-
dimensional organic systems is still unclear, but we speculate
that the highly anisotropic molecular orbitals in the organic
compounds may be important [63,64]; in contrast to the low-
dimensional oxide materials, the low dimensionality may be
significant in such organic systems owing to the m-stacked
molecular orbitals elongated along the conduction plane or
axis directions as depicted in Fig. 1(b). Although the con-
ventional band picture is not appropriate in the present dimer
Mott system with strong on-site Coulomb repulsion, we infer
that the edge of the density of states where the carriers are
thermally excited may show a steep change as a function
of energy owing to the low dimensionality [11], resulting
in the anomalously large slope in the Jonker plot. The en-
hanced thermopower as well as the anomalously large slope
value in the Jonker plot due to low dimensionality have been

also discussed in the 2D superlattices and 2D electron gas
realized in the field-effect transistors [9,10]. Moreover, we
infer that the sample-dependent slope values in 8’-(ET),ICl,
shown in Figs. 4 and 5 originate from the sample-dependent
amount of imperfections or disorder, which may affect not
only the low-temperature thermopower [Figs. 2(a) and 2(b)]
but also the dimensionality for the transport properties. In
the 2D «k-type organic salt, for instance, the out-of-plane
(interlayer) resistivity indeed depends on the sample purity
[65], indicating that the amount of impurities can effectively
influence dimensionality. Such a sample-dependent effective
dimensionality may possibly lead to the sample-dependent
slope values in the Jonker plot. Also note that the uniaxial
pressure experiments [66,67] may be crucial to examine the
effect of low dimensionality.

IV. SUMMARY

To summarize, we have measured the low-temperature
thermoelectric transport properties of quasi-one-dimensional
dimer-Mott insulator B’-(ET),ICl, single crystals. We find
a prominent enhancement of the thermopower, which is not
scaled in the conventional Jonker-plot analysis. Interestingly,
such a large thermopower has also been observed in the
related low-dimensional organic systems, implying that the
low dimensionality is a key property to realize the efficient
organic-based thermoelectrics.
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