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Atomically thin van der Waals magnetic materials offer exceptional opportunities to mechanically and elec-
trically manipulate magnetic states and spin textures. The possibility of efficient spin transport in these materials
makes them promising for the development of novel nanospintronics technology. Using atomistic spin dynamics
simulations, we investigate magnetic ground state, magnon dispersion, critical temperature, and magnon spin
transport in CrCl3 bilayers in the absence and presence of compressive and tensile strains. We show that in the
presence of mechanical strain, the magnon band gap at the � point and the critical temperature of the bilayer
are increased. Furthermore, our simulations show that the magnon diffusion length is reduced in the presence
of strain. Moreover, by exciting magnons through the spin Seebeck effect and spin Hall-induced torque, we
illustrate distinctions between magnon spin transport in the antiferromagnetic state, under compressive strains,
and ferromagnetic states, under tensile strains or in the unstrained case.
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I. INTRODUCTION

Two-dimensional (2D) magnetic systems [1–4] represent
a novel and promising platform for the next generation of
magnonic [5–7] and spintronic [8–10] nanodevices. This is
attributed to their highly tunable magnetic and electronic
properties, making them an ideal testbed for probing novel
exotic phenomena [11–17]. With the demonstration of long-
range magnetic order in monolayer and few-layer thickness
van der Waals (vdW) materials [4,11,18–20], the class of
chromium trihalides (CrX3, X = Cl, Br, I) with honeycomb
lattice structure has come into focus. It has been shown that
in contrast to CrI3 that shows a topological band gap in the
magnon dispersion at the Dirac points [21–24], CrCl3 hosts
massless Dirac magnons at the K and K’ points [25,26].

In particular, the possibility of tuning the magnonic proper-
ties in these layered magnetic vdW materials through external
stimuli, such as electrostatic gating, magnetic fields, and me-
chanical strains [16,27–38], is intriguing for application in
novel nanospintronic technology. Recent theoretical studies
have demonstrated controllable manipulation of the magnetic
ground state in the CrCl3 mono- and bilayer through me-
chanical strains [16,38]. Biaxial strains have the potential to
induce transitions between ferromagnetic (FM) and antifer-
romagnetic (AFM) phases. Additionally, they can alter the
magnetic ground state from uniaxial out-of-plane (OOP) to
biaxial easy-plane (EP) magnetic states.

Although there are several theoretical and experimental
studies on the static magnetic behavior of these materials,
only a few recent experiments have explored magnon spin
transport in atomically-thin vdW FM and AFM materials
via either thermal [39–42] or electrical [43] mechanisms. To
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demonstrate the potential of vdW magnets for spintronic and
magnonic nanotechnology, additional theoretical and experi-
mental studies under various external stimuli are essential.

In order to make a theoretical ground for further studies
in magnon dynamics in vdW materials, in this paper, we
investigate magnon transport in a bilayer of CrCl3 under bi-
axial compressive and tensile strains. Using atomistic spin
dynamics simulations [44], we compute magnon dispersion
and magnon transport, where the latter is excited through the
thermal spin Seebeck effect (SSE) [45–55] and the electri-
cal (anomalous) spin-Hall torque (SHT) mechanism [56–61].
Three sets of effective spin parameters represent three mag-
netic states that can be achieved through mechanical strains
[38]: an EP AFM state in the presence of a compressive strain
(negative strain), an EP FM state at the absence of strain,
and an OOP FM state in the presence of a tensile strain
(positive strain). It is worthwhile to mention that while we use
CrCl3 spin interaction parameters in this study, the qualitative
findings of this article can be applied to a wide class of vdW
magnetic layers.

The rest of the paper is structured as follows: First, we
present our system setup, its effective spin model, and our
spin dynamic simulation method in Sec. II. In Sec. III, we
compute the magnon dispersion and critical temperature in the
CrCl3 bilayer under various mechanical strains. In Sec. IV, we
investigate magnon spin transport and compute the magnon
diffusion length in different magnetic states of the system. Fi-
nally, we discuss and conclude the findings and their practical
implications in Sec. V.

II. MODEL AND METHOD

This section presents our system geometry, effective spin
Hamiltonian, and the atomistic spin dynamic simulation
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FIG. 1. Schematic setup for magnon spin transport simulation in
a CrCl3 bilayer with honeycomb lattice structure: magnons, denoted
by a solid black damped wave, are injected by the left lead through
the SSE and/or SHT mechanisms, and propagate via a diffusive
transport to the right lead along the x direction, where they are
detected through the inverse (anomalous) spin Hall effect.

method employed to calculate magnon dispersion and magnon
spin transport.

A. Device geometry and setup

To investigate spin transport in a CrCl3 bilayer, we use
a setup depicted in Fig. 1. It emulates experimental sys-
tems where spin-transport measurements are performed in
the so-called nonlocal geometry [43,57,60]. In this geome-
try, magnons are injected from the left lead via either SSE
[45,46,56] and/or the (anomalous) SHT [56,61,62] and propa-
gate through the system along the x direction until the magnon
spin current signal is detected on the detector lead. In magnon
spin transport experiments, the injector and detector can be
either a heavy metal or an FM metal with strong spin-orbit
coupling. In the first case, the (inverse) spin Hall effect only
allows for the injection (detection) of in-plane spin signals
[62]. However, in the second case, the (inverse) anomalous
spin Hall effect enables the injection (detection) of OOP spin
signals [61]. We will address spin injection and detection
processes in more detail in the next sections.

B. Effective spin Hamiltonian of CrCl3 bilayer

A CrCl3 bilayer consists of two atomic planes of magnetic
Cr atoms surrounded by nonmagnetic Cl atoms. Within each
atomic plane, the magnetic Cr atoms are arranged on a honey-
comb lattice, and the two planes are stacked rhombohedrally.
The system thus has four spins per magnetic unit cell. The
effective spin interaction between magnetic Cr atoms can be
modeled by the following Hamiltonian [38,63]:

H = −
∑
i< j

Ji jSi · S j − Kx

∑
i

(Si · êx )2

− Kz

∑
i

(Si · êz )2. (1)

In this spin Hamiltonian, Si is a unit vector that carries the
direction of the atomic magnetic moment at site i, Ji j de-
notes the symmetric Heisenberg exchange coupling between
sites i and j. This exchange term includes the intralayer
nearest-neighbor (NN) J1 and next-nearest neighbor (NNN)
J2 coupling, as well as interlayer NN J1⊥, and NNN J2⊥

FIG. 2. Atomic model depicting magnetic Cr atoms arranged
in a honeycomb lattice within a CrCl3 bilayer with rhombohedral
stacking. Figures present a top view (a) and a perspective view (b).
The red and cyan wavy lines in (a) illustrate the intralayer NN,
J1, and NNN, J2, respectively. The purple and blue wavy lines in
(b) denote interlayer NN, J1⊥, and NNN, J2⊥, coupling, respectively.
d ≈ 0.6 nm is the lattice constant.

coupling, see Fig. 2. We also introduce two single-ion mag-
netic anisotropy axes along the in-plane x and OOP z
directions, parameterized by Kx and Kz, respectively. Since
the Dzyaloshinskii-Moriya interactions are very weak in this
system, we neglect them in our effective spin Hamiltonian
[38,64,65].

Mechanical strains can modify both the sign and strength
of Heisenberg exchange coupling Ji j and magnetic anisotropy
Kx(z) [38]. The exchange coupling parameters Ji j are mod-
ified by strain, leading to an AFM order at -5% strain,
and an FM order at 0% and +5% strain [38]. Furthermore,
for both the unstrained and the -5% compressive strained
case, the magnetic ground state lies along the x direction
inside the easy x-y plane, with Kx > 0 and Kz < 0, which
leads to an EP magnetic state. For the +5% tensile strain case,
the magnetic ground state lies along the z direction, Kz > 0,
resulting in an OOP FM state. The parameters used in our spin
dynamics simulations are listed in Table I. In order to reduce
computational cost, we do not include dipolar interactions in
our simulations. This can be justified by the fact that in 2D
bulk vdW magnetic materials, dipolar interactions are mainly
reduced to an effective magnetic anisotropy that slightly shifts
the magnon spectrum [66,67]. This has no qualitative impact
on our findings, since it only leads to a minor modification of
the magnetic anisotropy constants.

C. Atomistic spin dynamics simulations

Spin dynamics at finite temperature is governed by the
stochastic Landau-Lifshitz-Gilbert (sLLG) equation [44]:

∂Si

∂t
= − γ

1 + α2
0

[
Si × Beff

i + α0Si × (
Si × Beff

i

)]
, (2)

where γ is the gyromagnetic ratio, α0 denotes the Gilbert
damping parameter, and Beff

i is the effective magnetic field
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TABLE I. The value of spin interaction parameters under various
strains [38], introduced in the spin Hamiltonian Eq. (1): NN and
NNN intra-layer, J , and inter-layer, J⊥, Heisenberg exchange param-
eters, and magnetic anisotropy Kx(z). The magnetic ground state is
sketched using the sublattice spins.

Parameter 0% strain +5% strain −5% strain

J1 1.53 meV 2.39 meV −2.94 meV
J2 0.29 meV 0.24 meV 0.44 meV
J1⊥ 0.07 meV 0.11 meV 0.01 meV
J2⊥ 0.07 meV 0.08 meV 0.07 meV
Kx 0.06 meV 0 0.06 meV
Kz −0.5 meV 1.25 meV −4.75 meV

Magnetic state →
[−1em]→ ↑↑ →

[−1em]←
EP FM OOP FM EP AFM

at site i. The effective field Beff
i consists of two terms: a deter-

ministic term, related to the spin Hamiltonian, and a stochastic
term, related to the thermal fluctuations,

Beff
i = − 1

μs

∂H

∂Si
+ ξ

(th)
i , (3)

where μs is the atomic spin moment. The stochastic term
at the low-frequency regime is modeled as Gaussian thermal
noise, 〈

ξ
(th)
i (t )

〉 = 0, (4a)

〈
ξ

(th)
i,m (t )ξ (th)

j,n (t ′)
〉 = 2α0kBT

γμs
δi jδmnδ(t − t ′), (4b)

where kB is the Boltzmann constant and m, n = {x, y, z} de-
note spatial components.

To investigate the spin dynamics within our system, we uti-
lize a stochastic Heun algorithm implemented in the VAMPIRE

code [44,68] for the numerical solution of the sLLG equation.

D. Spin injection and spin detection

(i) Detection of spin signal via spin pumping. The spin
signal at the distance x from the injector is determined
by computing the local spin accumulation at the detector
interface [69–71],

μ(x) := G↑↓
r

N∑
i=1

〈[Si(t ) × Ṡi(t )]〉t , (5)

where the sum runs over sites at the interface between the
detector and the magnetic bilayer, G↑↓

r is the real part of the
spin mixing conductance [72], and 〈·〉t denotes a time average
that is conducted after steady state is reached. As we already
mentioned, the spin accumulation at the interface is converted
to a charge voltage at the lead via the inverse (anomalous)
Hall effect. In this article, we are interested in the dc spin
signal, and thus, we only present the component of the spin
accumulation that is parallel to the magnetic ground state.

(ii) Injection of spins via SSE and SHTs. The spin signal
can be generated through a thermal gradient, via SSE, and/or
electrically through spin Hall effects, via (anomalous) SHTs.

In the first scenario, a temperature gradient is applied
to generate a spin voltage through the so-called SSE

[45,46,48–51,56,73]. The increase in temperature in the in-
jector results in a higher local occupancy of thermal magnon
modes compared to the rest of the system, which maintains
a lower temperature. This results in an incoherent magnon
current flowing from the hotter side toward the cooler side
[52–55].

In the second scenario, the charge-induced (anomalous)
spin Hall effect in the injector layer gives rise to interfacial
spin torques [6,56,57]. These SHTs can be modeled using
the following effective field [74] that is added to the effective
magnetic field, Eq. (3),

Bτ
i = τP

0 (p − α0Si × p) + τR
0 (Si × p + α0 p). (6)

Here p is the spin polarization direction, induced by the
(anomalous) spin Hall effect. The first term is the precession-
like field, parameterized by τP

0 , and the second term is the
relaxation-like field, parameterized by τR

0 . These two parame-
ters are related to the material parameters and charge current
density.

The relaxationlike torque is responsible for generating
an effective magnon chemical potential [75] at the inter-
face. Consequently, it facilitates the flow of the magnon
current through the system. On the other hand, the precession-
like torque only adjusts the eigenfrequencies of the magnon
eigenstates [74].

In our simulations, we set p parallel to the ground-state
spin direction. As we discussed earlier, in experiments, an in-
plane and OOP spin polarization direction p can be generated
by spin Hall and anomalous spin Hall effects, respectively
[61]. Note that in this scenario, where p is parallel to the
magnetic ground state, finite thermal fluctuations are required
to generate a finite spin torque at the interface [60].

III. MAGNON DISPERSION AND CRITICAL
TEMPERATURE

To calculate the magnon dispersion through atomistic spin
dynamics simulations [44], we set up a CrCl3 bilayer system
with rhombohedral stacking. First, we determine the mag-
netic ground state of the system. Following this, we introduce
a small random deviation around the equilibrium spin di-
rections. Next, we let spins evolve according to the sLLG
equation, Eq. (2), and compute the temporal and spatially
resolved transverse spin components. Finally, we find the
dispersion curve by performing a Fourier transform in both
the time and space domains.

The magnon dispersion of the CrCl3 bilayer is shown in
Fig. 3 for all the three magnetic states. Since the honeycomb
magnetic unit cell carries two magnetic atoms, there are two
magnon branches per layer, one at low frequencies, acousti-
clike, and one at high frequencies, opticlike. Thus, in total, the
bilayer system has four magnon branches. Magnon branches
can be partially (non)degenerate in some regions of the mag-
netic Brillouin zone. The degeneracy of the two acoustic-like
magnon branches at the � point can be lifted by either the
interlayer exchange couplings or the presence of a hard-axis
magnetic anisotropy. While the easy-axis magnetic anisotropy
opens a magnon band gap at the � point, the amplitude of the
exchange couplings modifies the slope of the branches and
also determines the magnon bandwidth.
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(a) (b) (c)

FIG. 3. Magnon dispersion relation for (a) an unstrained case 0% (biaxial EP FM state), (b) a tensile strain +5% (uniaxial OOP FM state),
and (c) a compressive strain -5% (biaxial EP AFM state).

Figure 3(a) shows the magnon dispersion of the unstrained
case, with a biaxial EP FM state. The degeneracy of acousti-
clike magnon bands around the � point is lifted because of
a finite hard-axis magnetic anisotropy Kz < 0 and its low-
est branch is gapped because of a finite easy-axis magnetic
anisotropy Kx > 0. Around the K point, there is a mass-
less Dirac-like magnon dispersion with a fourfold degenerate
crossing at the K point.

Figure 3(b) presents the magnon dispersion of the bilayer
system in the presence of tensile strain with OOP FM state. In
this case there is only a uniaxial easy-axis anisotropy Kz > 0
which is larger than its counterpart in the unstrained case and
thus creates a larger magnon band gap at the � point. The
degeneracy of acousticlike magnon branches around the �

point is lifted because of interband exchange interactions. The
magnon dispersion at the K-point maintains its fourfold de-
generate crossing in this case as well. The magnon bandwidth
is increased in this case compared to the zero strain case.

Figure 3(c) shows the magnon dispersion of the bilayer
system in the presence of compressive strain with a biaxial
EP AFM ground state. The linear magnon dispersion around
the � point, characteristic of AFM magnons, is different from
the FM cases with a parabolic dispersion. The magnon gap
at the � point and lifting the degeneracy of the two acous-
ticlike branches are caused by the presence of an easy-axis
Kx > 0 and a hard-axis Kz < 0 magnetic anisotropy, respec-
tively.

The characteristics of magnon modes vary across the three
distinct magnetic states engineered by mechanical strains. In
FM systems, magnon eigenstates have right-handed helic-
ity, whereas in AFM systems, both left- and right-handed
helicities are allowed [60,76]. Moreover, the ellipticity of
magnon eigenmodes varies across the three scenarios owing
to distinct magnetic anisotropies. In the magnetic easy-axis
case, the magnon eigenmodes are circularly polarized. In the
easy-plane case, however, magnons are elliptically polarized,
attributed to the magnetic hard-axis anisotropy [60,76].

In our 2D magnetic model, Eq. (1), without long-range
dipolar interactions, the magnon gap at the � point mainly
determines the critical temperature of the magnetic states
[77–83], which is dictated by the Hohenberg-Mermin-Wagner
theorem [84–86]. Due to variations in Heisenberg exchange
couplings and magnetic anisotropies, induced by strain fields,

the CrCl3 bilayer shows different critical temperatures across
its three magnetic states. We find the critical temperature,
using specific heat calculations, for three magnetic states, see
the Appendix for technical details,

T 0%
c ≈ 18 K, (7a)

T +5%
c ≈ 26 K, (7b)

T −5%
c ≈ 32 K. (7c)

These results show the viability of 2D magnetic bilayers for
novel magnonic technology. In the next section, we show how
the spin angular momentum, as an information carrier, can be
transferred by these magnons in the system.

IV. MAGNON SPIN TRANSPORT IN BILAYER CrCl3

As we have discussed in Sec. II D, the spin voltage can be
created by either SSE or SHT in a nonlocal geometry setup;
see Fig. 1. It is worth mentioning that in SHT experiments, an
SSE is also generated because of the parasitic Joule heating
created by an applied low-frequency charge current in the
injector and contributes to the measured total spin voltage in
the detector [6,56,57]. To discriminate between the spin volt-
age induced by nonthermal SHT and thermal SSE, the first-
and second-harmonic voltages are measured in the detector,
respectively. The even component of the spin voltage, which is
quadratic in the applied charge current and related to the ther-
mal SSE contribution, is the average of measured spin signals
for two opposite charge current polarities in the injector. The
odd component, which is linear in the applied charge current
and describes the nonthermal SHT contribution, is computed
from the difference between spin voltages generated by two
opposite charge current polarities. In the following we also
compute these even and odd spin signals.

In the presence of Gilbert damping, magnons diffusely
propagate through the system along the x direction in our
setup, Fig. 1. The spatial dependence of nonequilibrium spin
accumulation, far from the injector, can be modeled by [88],

δμ̄(x) := μ(x) − c

μ0
= exp

(
−x − x0

λ

)
, (8)

where λ is the magnon spin diffusion length, x0 � d , and
c is the background thermal equilibrium spin accumulation.
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TABLE II. Material parameters used for the magnon spin trans-
port simulations.

Quantity Symbol Value Unit

Length Lx 500 nm
Width Ly 50 nm
Lattice constant d 0.6 nm
Time step 
t 1 fs
Bulk Gilbert damping [87] α0 2 × 10−3 −
Gilbert damping at left (right) edge αL (αR ) 0.5 (0.9) −
SHT Mechanism
Spin torques in FM (AFM) state τP

0 = τR
0 0.01(0.2) T

Background temperature T0 1 K

SSE Mechanism
Injector temperature Tinj 5 K
Background temperature T0 1 K

The spin accumulation is normalized to μ0 ≡ μ(x0). As we
mentioned earlier, we only compute the component of spin
accumulation that is parallel to the magnetic ground state in
each case.

We utilize the material parameters listed in Table II to
simulate magnon transport in our system with a nonlocal
geometry as illustrated in Fig. 1. Figures 4 and 5 depict the
outcomes of atomistic spin dynamics simulations illustrating
the spin signal, Eq. (5), at the detector for SSE and SHT mech-
anisms, respectively, in three magnetic states of the CrCl3

bilayer.
(i) SSE mechanism. To introduce a temperature gradient

across the system, we set the temperature of the injector at
Tinj = 5 K. In the biaxial EP and uniaxial OOP FM states,
which are magnetic ground states under 0% and +5% strains,
respectively, thermally excited incoherent magnons carry a net

FIG. 4. Spatial dependence of the thermal SEE-induced nonequi-
librium spin accumulation for EP (unstrained) and OOP (+5% strain)
FM states. There is no spin signal in −5% strain case with an AFM
state in this scenario. The extracted spin diffusion length λ, found
with Eq. (8), of each case is represented in the legend. The inset
shows the total spin accumulation and the dashed lines indicate the
thermal equilibrium spin accumulation c.

FIG. 5. Spatial dependence of the electrical SHT-induced
nonequilibrium spin accumulation for three magnetic states under
different strain conditions. In the main plot, the y-axis is on a log-
arithmic scale. The extracted spin diffusion length λ, found with
Eq. (8), of each case is represented in the legend. The inset depicts
the spatial dependence of the nonequilibrium spin accumulation on
the nonlogarithmic axis.

spin angular momentum that diffuses through the system and
creates a spin signal at the detector. Figure 4 shows the spatial
dependence of the spin accumulation for two FM states. In
the EP AFM state of the CrCl3 bilayer, which is the mag-
netic ground state under a compressive strain of −5%, two
AFM magnon eigenstates in Fig. 3(c) are roughly linearly
polarized and thus, in principle, do not carry any spin angular
momentum.

It is worth mentioning that even in uniaxial easy-axis AFM
systems with two degenerate circularly polarized magnon
eigenmodes, the SSE mechanism is unable to generate a finite
spin signal. This is due to the equal thermal population of the
two degenerate magnon branches [47,89].

As mentioned earlier, the thermal spin signal in SSE ex-
periments is an even component of the spin voltage, δμ̄ =
(δμ̄(x,+p) + δμ̄(x,−p))/2. Therefore, for a FM state, the
background thermal spin signal, c, is finite in the spin signal
generated by the SSE mechanism, as shown by the dashed
lines in the inset of Fig. 4. We extract the magnon diffusion
length for the SSE mechanism by fitting the spin accumulation
with Eq. (8), see Table III.

(ii) SHT mechanism. In the nonthermal SHT mechanism,
most of the generated magnons have a well-defined wave
vector and frequency determined by the amplitude of the
spin torque and the geometry of the injector [60]. Hence, the

TABLE III. The magnon spin diffusion length normalized to the
lattice constant, λ/d , of three magnetic states for SSE and SHT
mechanisms.

Mechanism/Strain 0% +5% −5%

Thermal SSE 68.3 ± 0.1 57.4 ± 0.1 −
Electrical SHT 88 ± 3 63 ± 3 49±3
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magnons in the SHT mechanism are not as incoherent as in
the thermal SSE mechanism. In the SHT mechanism, the spin
polarization p must be parallel to the magnetic ground state at
a finite temperature background, see Sec. II D. We set a back-
ground temperature T0 = 1 K in our simulations for the SHT
mechanism. As we discussed earlier, in SHT experiments,
the odd component of the spin voltage, δμ̄ = δμ̄(x,+p) −
δμ̄(x,−p), is measured, and thus the background thermal spin
signal does not appear in the spin accumulation data.

Figure 5, shows the spatial dependence of the spin accu-
mulation for three magnetic states. We find that in the SHT
mechanism, we also get a finite spin signal in the biaxial EP
AFM case. As we mentioned before, in the biaxial EP AFM
case, each magnon branch is linearly polarized, which means
that no spin angular momentum can be carried by them. How-
ever, in a biaxial EP AFM system, the SHT mechanism may
still generate a finite spin signal through a coherent beating
oscillation between two orthogonal linearly polarized magnon
eigenmodes [57,60,90]. A finite spin signal can be observed if
two magnon modes, with similar frequency but different wave
vectors, on the two acousticlike magnon branches, with linear
polarization, pair up and combine to an effective elliptical
polarized magnon mode. Therefore, the spin torque in this
case must be strong enough to excite a pair of magnons at
two acousticlike magnon branches around the � point. This
situation is different in the other two FM cases, where it is
enough to only overcome the magnon band gap of the lower
acousticlike magnon branch.

Such finite magnon spin transport in EP AFM systems has
recently been observed in the EP phase of hematite thin films
[57,90]. Similar experiments in 2D EP AFM cases will shed
light on the exotic magnon transport within such a system.

We extract the magnon diffusion length in three magnetic
states for SHT mechanism with fitting the spin accumulation
with Eq. (8), see Table III.

Note that all transport simulations have been conducted at
the same background temperature T0 = 1 K, while the critical
temperatures, or equivalently the magnon band gap at the �

point, of the three magnetic states are different; see Eq. (7).
This means that the effective temperature of magnons, or
number of thermal magnons, in these three cases are different.
The effect of this can be seen in Fig. 4, where there is a larger
background spin signal, as shown by the dashed lines in the
inset, in the unstrained EP FM state (gray) compared to the
+5% strain with OOP FM state (red).

In general, high-frequency magnons have shorter lifetimes
compared to low-energy ones [53,91,92]. Our analysis shows
that the magnon spin diffusion length, listed in Table III, is
shorter in the SSE mechanism compared to the SHT mecha-
nism. This can be explained by the fact that in the thermal SSE
mechanism, mostly incoherent magnons with a wide range
of frequencies and momenta are generated, whereas in the
electrical SHT mechanism, mainly low-frequency coherent
magnon modes with a longer lifetime are generated.

For magnons excited by the SHT mechanism, the lifetime
is the largest in the unstrained case which has a lower magnon
band gap and thus lower frequencies compared to magnons of
the strained cases with higher magnon band gaps, see Fig. 3.

Although the quantitative magnon spin diffusion length λ

found in this article is tied to our chosen material parameter

set, we expect that the qualitative behavior holds for a large
range of vdW magnetic materials.

V. SUMMARY AND CONCLUDING REMARKS

In this article, we have studied the effect of strain on
a CrCl3 bilayer using atomistic spin dynamics simulations.
First, we computed magnon dispersions and critical temper-
atures of the three magnetic states of the bilayer system.
Second, we computed spin signals generated by thermal SSE
and electrical SHT mechanisms in these three magnetic states.
From the results we conclude that the unstrained bilayer
shows the longest propagation length and the lowest critical
temperature.

We show the high tunability of magnon dispersion rela-
tions, magnetic state, critical temperature, and spin signal
using mechanical strains in bilayer vdW magnetic systems.
Based on our research for CrCl3 bilayer, we propose that the
strain-dependent magnetic states in layered vdW magnetic
systems can be monitored by spin transport measurements.

These magnetic layers also serve as an intriguing plat-
form for studying magnon propagation in the presence of
nonuniform mechanical strains that may create the coexis-
tence of different magnetic states in the same system. These
characteristics demonstrate the significant potential of vdW
magnetic layers for the next generation of magnon-based
nanotechnology.

ACKNOWLEDGMENTS

V.B. acknowledges R. F. L. Evans and A. Meo for
helpful discussions. This work has been supported by the
Norwegian Financial Mechanism 2014 - 2021 under the
Polish-Norwegian Research Project NCN GRIEG “2Dtron-
ics” No. 2019/34/H/ST3/00515.

FIG. 6. The mean specific heat for the three magnetic states, see
Table I. We estimate the critical temperatures as T 0%

c ≈ 17.8 K for
the EP FM state, T +5%

c ≈ 26.0 K for the OOP FM state, and T −5%
c ≈

31.8 K for the EP AFM state.
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APPENDIX: COMPUTING CRITICAL TEMPERATURE

The magnetic ground state for each strain case is obtained
using a classical Monte Carlo algorithm with a zero-field
cooling procedure [44]. To determine the critical temperature,
Tc, we use specific heat calculations implemented in the VAM-
PIRE code. In Fig. 6, we present the temperature-dependent
specific heat for three magnetic states. The critical

temperature for each case is determined by the divergence
in the corresponding specific heat. The value of the critical
temperature in 2D magnetic systems is mainly governed by
the magnetic anisotropies and NN Heisenberg exchange inter-
actions. These parameters are smallest in the unstrained case
and largest at −5% strain, as also reflected in their critical
temperatures.
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