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Nickel-based superalloys are an exceptional class of materials that are indispensable for high-temperature
applications in the aerospace and power sector industries worldwide. The prolonged application of these
materials in a demanding environment is hindered by the increased oxidation rates and deformation due to
mass gain at high temperatures and the presence of corrosive agents. Calculating the oxidation properties using
experimental techniques is laborious and highly cost/time intensive, which presents a considerable challenge
to reducing the oxidation in these materials. In this work, we establish an extensive database consisting of the
specific mass gain due to oxidation (�m) and the parabolic oxidation rates (kp) of nickel-based superalloys
spanning all the superalloy generations. Highly accurate machine learning (ML) models are developed to predict
(�m) using artificial neural networks and tree-based XGBoost. The ML models are extended by unsupervised
k means clustering to improve the accuracy of the models and generate insights on the composition-property
linkages. Additionally, the ML model for kp developed utilizing XGBoost yields unprecedented results with
errors of 0.04. The ML model is analyzed using the SHapely Additive exPlanations parameters to determine the
effect of individual features on the model. Further, we employ a genetic algorithm-based approach utilizing the
developed ML models to minimize the kp to improve the performance of the superalloys at high temperatures.
The genetic algorithm-assisted optimization successfully yields several compositions for new Ni superalloys
with up to 20% reduction in the kp. This work presents essential advances for accelerating the targeted discovery
of new materials for highly specialized and demanding applications.
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I. INTRODUCTION

Nickel-based superalloys are a special class of alloys used
in the combustion turbines of power plants and aircraft [1,2].
The superalloys possess exceptional mechanical properties
such as high yield strength, tensile strength, significant creep,
and fatigue life [3]. Modern composition and microstructural
optimization processes in the past decades have led to alloys
that can sustain temperatures over 1100◦C [4]. The presence
of a continuous γ matrix and γ ′ precipitate phase is responsi-
ble for strengthening the superalloys via precipitate hardening
[5,6]. The γ ′ phase exhibits a L12 crystal structure and forms
coherent interfaces with the fcc-γ matrix phase. The γ /γ ′
interfaces block the dislocation movement to the γ ′ phase,
thus limiting the dislocations to the narrow γ channels be-
tween the precipitates and leading to precipitation hardening
[7]. Due to these properties, superalloys are employed in the
fuel combustion sections of turbines, where the mechanical
and temperature conditions are highly demanding.

Increasing the efficiency of the turbines is highly beneficial
for the reduction of fuel usage, the weight of the engine, and
emissions. One of the major route of enhancing the efficiency
is through increasing the operation temperature of the engine
[8,9]. While operating at high temperatures, significant de-
terioration of materials occurs due to corrosion, leading to
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deviations in the mechanical performance. The deterioration
is experimentally quantified on the surface of superalloy using
the specific mass-gain (�m) (simply refered to as mass-gain
hereafter) due to the surface oxide layer. The extent of the cor-
rosion can also be measured via the parabolic rate of oxidation
(kp), in addition to the mass gain. The oxidation kinetics can
be described using the Pilling and Bedworth’s equation [10]:

(�m/A)2 = kpt + C, (1)

where, A is the area of the oxidised surface and C is a constant.
Oxidation may also occur in the intergranular regions, along
different grains, or below the external surface. The damage
due to oxidation is especially significant in the vicinity of the
new surface created by cracks, which are susceptible to the
hot gases and particles. The continuous oxidation in these re-
gions can accelerate the crack propagation leading to reduced
service lifetimes of components [11].

The detrimental effects of oxidation in the superalloys
can be reduced by adding elements such as aluminum and
chromium. The addition of aluminum and chromium leads
to the formation of a protective scale of Al2O3 or Cr2O3

[12]. Generally, the scales formed must have a slow growth
rate and high adhesion to the superalloy in addition to being
continuous on the surface. The slow growth of the oxide layer
is essential for maintaining the ideal composition and proper-
ties of the superalloys for a longer duration. Alumina scale
formation is possible for aluminum concentrations as low
as five wt.%. However, formation of Cr2O3 requires higher
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concentrations of chromium [13]. The addition of silicon is
also beneficial for combating hot corrosion attacks. Silicon up
to 0.45 wt.% can improve oxidation resistance while having
minimal impact on the mechanical properties [14]. Tanta-
lum addition of up to 6 wt.% is found to be beneficial for
oxidation resistance due to the formation of NiTa2O6 [15].
However, increasing tantalum concentration further leads to
the degradation of oxidation resistance. In addition, the in-
clusion of highly reactive elements such as yttrium, hafnium,
cerium, and lanthanum in limited quantities of 0.01–0.1 wt.%
significantly improves the oxidation resistance. Significant
improvement in alumina scale adhesion is also observed due
to the presence of these trace elements [12]. In the fourth- and
fifth-generation alloys, rhenium and ruthenium are added in
significant quantities to enhance the superalloys’ mechanical
properties [16]. These elements form oxides such as Re2O7

and RuO4, which have high vapor pressures [15,17]. Con-
sequently, these elements are considered detrimental as they
prevent the formation of a strong and cohesive alumina layer
on the surface of the superalloy. The elements titanium, nio-
bium, molybdenum, tungsten, and cobalt are also generally
detrimental to nickel-based superalloys’ oxidation properties.
The oxidation properties of superalloys are also affected due
to the synergistic effects of two or more elements. Tantalum
increases the oxidation resistance for lower concentrations of
aluminum, however, increasing the aluminum leads to discon-
tinuous alumina scale and increased mass gain [18]. Similarly,
the oxidation resistance due to aluminum is reduced due to the
addition of tungsten due to the disruption of the oxide layers
due to the formation of NiWO4 [19].

The optimization of the oxidation properties is complicated
due to the presence of large number of doping elements. The
compositional space for the Ni superalloy swiftly becomes
intractable experimentally due to the time and experimental
costs. Moreover, often the mechanical and oxidation prop-
erties have contradictory requirements, which are difficult to
optimize experimentally. Therefore, a new approach is needed
to accelerate the process of discovery of new superalloy com-
positions for better oxidation resistance. In recent years, the
introduction of artificial intelligence and machine learning to
materials science has significantly accelerated new materials
discovery and property improvement by learning and identi-
fying essential patterns from past data. Supervised learning
is a class of machine learning (ML), that uses alabeled data
set to generate a function that maps the input features to the
desired target/output value [20]. A good understanding of the
past data through supervised machine learning then allows us
to make highly accurate predictions of materials or properties
for specified usage. Supervised machine learning algorithms
have been successfully used to predict a wide range of mate-
rials properties [21–27]. Similarly, supervised ML has been
successfully applied in superalloys to optimize parameters
such as γ ′ phase fraction, solvus temperature, detrimental
phase volume, and processing temperature. [28,29]. ML has
also been used to predict the structural properties of super-
alloys, including the Vickers hardness [30,31], creep rupture
lives [32,33]. In addition to this, unsupervised machine learn-
ing, which focuses to discover the relationships between the
features, is being utilized to classify materials based image
data [34], study the dislocation motion [35], and discovering

thermoelectric, photovoltaic, and solid state conductor ma-
terials [36–38]. Since a large amount of nickel superalloy
data is available, machine learning approach is best suited
for optimizing the oxidation properties of the superalloys via
unsupervised and supervised learning approaches.

In this work, utilizing data from experimental studies, we
develop machine learning models for determining the oxida-
tion resistance of superalloys. The ML models are trained
to predict the mass gain (�m) and the parabolic rate (kp)
of oxidation. The mass gain in a superalloy occurs due to
the formation of various oxidation products. Mass gain and
parabolic rate constant for oxidation are essential parameters
that decide the service life of a superalloy component. Ini-
tially, ML models for mass gain are developed using artificial
neural network and tree based methods. k-means clustering
is employed in the data set to partition it into clusters with
distinct characteristics. This is done to increase the efficiency
and accuracy of the developed ML models. Further, the ML
model for kp developed and analyzed using SHapley Addi-
tive eXplanation (SHAP) to identify the essential features. A
material design strategy is then discussed for reducing the
detrimental effect of oxidation and extending the lifetime of
superalloys.

II. METHODOLOGY

Initially, to select only the relevant features from the orig-
inal dataset of 22 features, we apply least absolute shrinkage
and selection operator (LASSO) [39]. LASSO solves the L1-
penalty regression problem of finding the individual weights
to minimize the error term [40]:

min

{
1

N
||y − wx||2 + λ||w||1

}
, (2)

where λ is the penalty term, which decides the degree of
shrinkage of individual weights. A more significant value
of λ leads to eliminating a larger number of features. After
selecting essential features, artificial neural network (ANN)
and eXtreme Gradient Boosting (XGBoost) algorithms are
employed for training the ML models. Since the database gen-
erated consists of large data points, we prefer to employ the
ANN and XGBoost as they scale better than the kernel-based
algorithms [41].

Artificial neural networks are massively parallelized sys-
tems with the interconnection of many primitive units. ANN
is modeled after biological neural networks of the brain to
mimic the qualities of parallelization, distributed computa-
tion, generalization, learning ability, and fault tolerance [42].
ANN learns through detecting patterns and relationships in
the data, fed sequentially to the network. The ANN consists
of several hidden layers and a single output layer consisting
of individual processing units known as neurons [43]. These
neurons are the building blocks of ANN, which are intercon-
nected to each other in a specific and rigid architecture [44].
Each layer in the ANN can accommodate several neurons. A
schematic diagram for a single neuron is presented in Supple-
mental Material Fig. S1(a) [45]. The output layer may contain
one neuron for regression or several neurons for classification
problems. The architecture is feed-forward, which implies that
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the data is transferred in a single direction only, as shown in
Supplemental Material Fig. S1(b) [45].

Ensemble-based methods are best known for reducing bias
components leading to low errors in prediction [46]. XGBoost
is a decision tree-based ML model that uses gradient boosting
algorithms for enhanced performance. Boosting technique can
be used for both classification and regression problems. In
boosting, weak learners are generated at each step, accumu-
lating in a final model. When the learner for each step is
decided by the direction of the gradient of the loss function, it
is called gradient boosting [47]. For a data set with m features,
a tree ensemble based ML model uses k different functions to
predict the output given as [48]:

ŷi = φ(xi ) =
K∑

k=1

fk (xi ), fk ∈ F , (3)

where F = wq(x)(q : �m → T) consists of all the regression
trees and q is the unique structure of the tree. Each fk is of a
unique tree structure q with T independent leaves. The final
prediction is calculated by summation of all the scores in the
corresponding leaves. In a normal ensemble tree to learn a set
of functions, the ML model minimizes the following objective
function [48]:

L =
∑

i

l (ŷi, yi ) +
∑

k

�( fk ) where,

�( f ) = γ T + 1

2
λ‖w‖2, (4)

where, l is the convex loss function measuring the difference
between the original value (yi) and intermediate predicted
value (ŷi). The second term in the equation (�) penalizes
the model complexity. The λ term is a regularization term
that smoothens the final weights and reduces overfitting. In
gradient boosting, a greedy algorithm is employed that starts
with a single leaf and adds complex branches iteratively to the
tree [49]. The loss function in this case becomes

Lsplit = 1

2

[ ( ∑
i∈IL

gi
)2∑

i∈IL
hi + λ

+
(∑

i∈IR
gi

)2∑
i∈IR

hi + λ
−

( ∑
i∈I gi

)2∑
i∈I hi + λ

]

− γ , (5)

where, g and h denote the first and second gradient statistics
derivative of the convex loss function from Eq. (4) and IL and
IR denote the instances to the left and right of the current split.
XGBoost is a highly scalable end-to-end tree boosting system
and can be used easily for large data set.

ML models that predict the target property can best explain
the role of individual features. However, for complex models
such as the ANN and XGBoost, original models cannot be
used directly to determine the role of an individual feature.
These ML models, however accurate, are essentially black
boxes for extracting the target property. They provide no infor-
mation in the prediction, which can be essential to enhancing
understanding of the underlying mechanisms. Therefore, it is
important to analyze the ML models to find relevant patterns
for further improvement. To identify the relevant features, we
employ SHAP analysis to the ML models developed using the
data set [50]. SHAP assigns an importance value to individual

features which are additive. These SHAP values are obtained
by employing cooperative game theory, where the importance
of individual features is assessed by the difference between the
average prediction of an instance minus the average prediction
using all instances. In this work, SHAP as implemented in
python is employed on the ML models. We try to understand
the complex dependence of the feature values on the oxidation
characteristics of superalloys

In order to discover novel superalloys for better oxidation
resistance, genetic algorithms (GA) are implemented to de-
liver novel compositions using the developed ML models.
GAs are a subset of evolutionary algorithms, which search
for a new set of solutions heuristically from the preexisting
solutions [51,52]. The adeptness of the GA to search for a
possible solution space is modeled after the Darwinian the-
ory of natural evolution and genetic inheritance. The initial
step is the recombination process, which is based on the
application of two operators: crossover and mutation [53].
Crossover process is the equivalent of biological transfer of
chromosomes. The features from the current best solutions
are combined to be transferred to the new population. Further,
the combined features are mutated by introducing random
variations to enhance the uniqueness of the solutions. The best
solutions in the population are tested using a fitness function.
The fitness function controls the evolution process and can be
used to implement constraints on the new population. Genetic
algorithms do not require derivative information, which may
not be available for all data sets and makes it immune to
gradient-based methods’ failure. Moreover, genetic algorithm
has good parallelization capabilities and provides many possi-
ble solutions instead of a single solution. In this work, genetic
algorithm was implemented to minimize the parabolic rate of
oxidation using the ML models developed. The composition
of individual elements was constrained to be in the range of
the initial data set. Moreover, constraints imposed penalties on
the entire composition if the sum was not equal to 100%.

III. RESULTS

A. Database validation and standardization

Development of novel superalloys for greater oxidation
resistance is important to increase the safety and service life of
the turbine components. In addition, increasing the oxidation
resistance of the superalloys will reduce the operation costs.
The schematic of the entire work is presented in Fig. 1. The
availability of considerable volume of data on the oxidation
characteristics enables us to perform ML modeling for oxi-
dation resistance. Initially, an extensive superalloy materials
database is established by manually collecting the data from
literature, consisting of the mass gain and parabolic rate of
oxidation [18,54–80]. Since, there is no standard method to
report the compositions, and oxidation properties, all the en-
tries of the database are verified individually. The selection of
the superalloys is done such that only those compositions are
included, which have nickel as the majority element. Further,
to make the data unbiased towards any specific generation, we
have included the superalloys of all the possible generations
(1st to 6th). Our database consists of 2540 entries for mass
gain and 875 entries for the parabolic rate constant. Only
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FIG. 1. Schematic of the present work. Initially, a database is established for corrosion properties, followed by feature engineering and
machine learning.

basic descriptors were employed in this study to keep the ML
models simpler to use, interpret and enhance user-friendliness.
The descriptors consist of individual superalloy compositions
(wt.%), time (hours), and temperature (◦C) of exposure to the
corrosive atmosphere.

In literature, the material is subjected to different types of
environments for the study of oxidation. The data collected
in this study only considers the experiments conducted in air.
The database consists of 22 features, and two target properties,
which are taken in log scale as the original values span several
orders of magnitude. The details of all individual features and
target property are presented in supplementary section table
S1 [45]. Initially, validation steps were carried out to ascer-
tain that the numerical values of all the database features lie
within the acceptable limits. Any data set was considered
only if the summation of individual elemental compositions
added up to 100. Similarly, the values of time, temperatures,
mass gain, and kp were also checked for consistency in the
units. The data set was then standardized using the Standard
scalar in the Scikit-learn library [81]. Standard scalar is ap-
plied to the features in the data set, where the mean of all
the feature distributions is brought to zero with a standard
deviation of one. The standardized feature set for mass gain
and rate of oxidation (kp) is presented in Figs. S2(a) and S2(b).
Standardization is crucial as it reduces the bias towards the
features with larger variance since the features with a higher
magnitude of variance may dominate over the other features.

B. ML models for mass gain

Nickel superalloys, subjected to temperatures in excess
of 1100 ◦C, experience corrosion and formation of surface
oxide layer. The formation of the surface oxide layer leads
to increase in the mass, which is measured by the weight
gain curves. Since �m measures the extent of corrosion, the
prediction of �m as a function of temperature is important.

We initially employ the artificial neural network algorithm to
predict �m. The data was divided into training and testing
data in a ratio of 90:10. To avoid overfitting, the architec-
ture of ANN was fixed to 2 dense layers, with the output
of each layer being fed to either the next dense layer or the
output layer, as shown in Supplemental Material Fig. S1 [45].
Rectified linear unit, soft-max, or linear activation functions
were applied to the individual neuron outputs. The number of
neurons in different layers, the activation function of layers,
learning rate, and epoch were considered hyperparameters,
and hyperparameter optimization of ANN was carried out
using the gridsearch algorithm. It was observed in the initial
stage that the learning rate had a minor effect on the ANN
training for the mass gain, and therefore we chose the default
learning rate of 0.01. Next, we checked the effect of the num-
ber of epochs in training the ANN models. The ANN models
performed poorly when the default/recommended value of
epoch was employed. We searched for an optimal number
of epochs for the ANN using gridsearch from one to five
thousand. The results improved drastically when the number
of epochs increased. After 1000 epochs, the results were seen
to be converging to a constant value, and any further arbitrary
increase does not lead to an increase in the accuracy of ANN
models. Therefore for further ANN training, the number of
the epoch was fixed to 1000. The best results for models using
the ANN are presented in Table I. The results of ANN show
good accuracy with acceptable error. The accuracy of the ML
models is determined by calculating the root mean squared
error (RMSE) and the coefficients of determination (R2). The
root mean squared error is represented as

RMSE =
√∑N

i=1

(
yi

t − yi
p

)2

N
, (6)

where yt and yp are the true and predicted values of target
variable and N is the total number of data set in the model.
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TABLE I. The best results for the ANN models are presented
along with the number of neurons in each layer. The learning rate
and epochs are taken to be 0.01 and 1000, respectively. The R2 and
RMSE for the training and test set are reported.

Layer 1 Layer 2 R2 RMSE

20 12 0.97/0.97 0.24/0.25
12 20 0.97/0.97 0.23/0.25
16 25 0.97/0.97 0.24/0.26
25 20 0.98/0.97 0.22/0.26
25 18 0.97/0.97 0.23/0.26

Since the error is squared while calculating the RMSE, it gives
higher weight to the larger errors and thus is a better indicator
of model accuracy than absolute error. The coefficients of
determination are defined as the proportion of variance of
the dependent variable, which is captured or explained by the
combined independent variables. It is defined as

R2 = 1 −
∑

i

(
yi

t − yi
p

)2

∑
i

(
yi

t − ymean
)2

.
(7)

The best result of R2 = 0.97/0.97 and RMSE = 0.24/0.25
for the ANN model is obtained for 20 and 12 neurons in the
first and second dense layer, respectively. The results for the
ANN are similar to the work of Kim et al., where ANN also
provided a highly reliable prediction for a smaller data set of
oxidation resistance over the response surface methodology
[82]. The learning curve for the ANN model is plotted in
Fig. 2(a). The trends for predicting the oxidation properties of
various materials in literature are similar to our work, which
confirms the effectiveness of the ANN models [83]. However,
it is also observed that tree-based algorithms also predict the
oxidation properties such as mass gain and kp with equivalent
accuracy, provided sufficient data is available [84,85]. There-
fore, to explore different algorithms to improve the accuracy
of the ML models developed, we trained XGBoost-based ML
models for mass gain.

Initially, the XGBoost model was trained on the training
data considering all the available compositional and experi-
mental features. Hyperparameter tuning was carried out while
training the ML models. For XGBoost, the eta, gamma, max-
imum depth, and maximum leaf nodes are the important
hyperparameters to be tuned. The eta and gamma parameters
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FIG. 2. Learning curve for (a) �m, (b) kp. The learning for �m
although converged shows considerable variation for the test data.

are the learning rate and regularization parameter, which con-
trol the rate of convergence and prevents overfitting. Max
depth and maximum leaf nodes control the complexity of the
tree models. The best result obtained for the XGBoost with all
features has R2 = 0.97/0.97 and RMSE = 0.22/0.22. It can
be seen that the ML models provide only a marginal improve-
ment in the prediction of properties. Therefore, to improve the
XGBoost model, we partition the data into different clusters
using k-means clustering and principal component analysis
(PCA). The l LASSO is then applied to the individual clusters
to select the most relevant features for ML. K-means cluster-
ing is the simplest and most widely used clustering algorithm.
It is a form of partitional clustering algorithms where the data
is segregated into distinct clusters (subsets) subject to specific
clustering criteria [86]. The clustering criteria in K-means
clustering is the sum of squared Euclidean distances between
the cluster center (centroid) and the individual dataset. The al-
gorithm starts with an initial random guess for partitioning the
clusters. The clusters are updated by minimizing the squared
distances between the individual dataset to its assigned cluster
center. The error term (inertia) is represented as [87]:

E (m1, m2, ..., mM ) =
N∑

i=1

M∑
k=1

I (xi ∈ Ck )||xi − mk||2, (8)

where M and N denote the number of clusters and features, re-
spectively. xi and mk denote the coordinates of the ith data set
and kth cluster in the feature space. The expression I(xi ∈ Ck )
is equal to one if the data set xi lies in the cluster Ck. The
centroids of the M clusters are adjusted in each iteration to
decrease the inertia term. The clusters converge when either
the data reassignment to different clusters stops or the inertia
stops decreasing further. The K-means clustering algorithm is
straightforward and scales linearly with data [86]. We initially
employ PCA on the entire data set to perform clustering ef-
ficiently. PCA is a multivariate technique that represents the
entire data in a new set of orthogonal coordinate systems. The
orthogonal axes in the new coordinate system are known as
the principle components. The objective of PCA is to reduce
the dimensionality of the data set by first transforming the
entire data set into a new orthogonal coordinate system and
retaining the axes (principal components) which exhibit max-
imum data variance. The data can be thus represented as

F j =
min(J−1,R)∑

i=1

α
j
i Ii + F̄i, (9)

where, Ii are the principal components obtained and α
j
i are

the corresponding coefficients or coordinates of the jth data
set. The maximum number of components is limited by ei-
ther the dimensionality of the original data set J or by an
objectively selected truncation level, R. The variance of data
captured by successive principal components is presented
in Fig. 3(a), where the variance of 80% is deemed suffi-
cient to capture the essential characteristics of the database.
Since the first ten principal components can capture 80%
variance, therefore, we proceed with them to perform the
clustering of the database using the k-means clustering. The
default number of clusters generated by the algorithm is
eight. However, we perform optimization to identify the ideal
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FIG. 3. (a) Variance of data captured by successive princi-
pal components. The first ten principal components capture 80%
variance, hence they are selected for describing the database,
(b) Identification of ideal clustering. The inertia (error) reduces con-
siderably until the 6th cluster. The error reduction after the 6th cluster
is minimal, giving rise to the elbow plot.

clustering method since proceeding with the default number
of clusters in the algorithm may not give the most accurate
result and have any physical significance. The ideal clustering
is identified in Fig. 3(b). It can be seen from Fig. 3(b) that
the error reduces considerably when the number of clusters is
increased from one to six. However, after the six clusters, the
error reduction is not significant, indicating that any further
increase in clustering is ineffective in partitioning the data.
Therefore, we partition the data into six clusters in this work.
The clustering of data is presented in Fig. S2. In Fig. S2, the
data is plotted in the different principal component directions,
and the data is distinctly segregated into six clusters.

After successfully performing clustering on the data, we
build ML models on these clusters individually. To develop
accurate ML models, selecting highly correlated features to
the target property is essential. We employ LASSO feature
reduction to select the most relevant features for the individual
cluster. LASSO minimizes the sum of square residual (error)
subject to the L1 penalty term. Due to the nature of L1 con-
straint, some of the coefficients of features are zero leading
to the elimination of these features during the training of the
ML model. More features are eliminated for larger values of
λ. We employ gridsearch for the λ parameter of LASSO, and
the XGBoost algorithm is employed to train the ML models
for all the clusters. The results for the XGBoost models are
presented in Table II. The six clusters vary significantly in
size, ranging from the largest cluster with 1858 data to the
smallest cluster with 20 data. There is also a considerable

TABLE II. The best results for the XGBoost models for various
clusters. The R2 and RMSE for the training and test set are reported.

Cluster Size R2 RMSE Features

1 1858 0.99/0.99 0.11/0.11 19
2 74 0.76/0.82 0.11/0.11 3
3 229 0.93/0.93 0.22/0.23 10
4 141 0.96/0.96 0.14/0.14 3
5 20 0.81/0.84 0.21/0.16 6
6 205 0.96/0.91 0.23/0.23 9
7 (2+4+5) 235 0.99/0.99 0.01/0.04 7

variation in the individual compositions for different clusters.
The ML models developed for clusters one, three, and six
are highly accurate with high R2 and low RMSE for both
train and test data. However, the cluster size is insufficient
for clusters two, four, and five to develop any meaningful
ML models. We train new XGBoost models by combining
the data from the three clusters into a new cluster seven. The
data for these clusters is presented in Table II. Combining
clusters two, four, and five into the new cluster results in a
highly accurate ML model with R2 of 0.99/0.99 and RMSE
of 0.01/0.01. The ML models are then analyzed using the
Pearson correlation coefficient to check the relevance of each
feature in deciding the �m. The Pearson correlation for all
the clusters along with the features is shown in Fig. 4. Time
of exposure and temperature are the common features for all
the clusters in the present work. Both time and temperature
show a significant positive correlation with the mass gain,
indicating that an increase in the two features independently
leads to a larger extent of oxidation. This trend is similar to
the experimental work on Inconel alloys, where an increase in
temperature or time of exposure leads to a larger mass gain in
the superalloy [54]. For cluster 1, it can be observed that the
elements tungsten, molybdenum, cobalt, and titanium show
a positive correlation with the mass gain, indicating that the
presence of these elements deteriorates the oxidation resis-
tance of the superalloys. Chromium, zirconium, ruthenium,
and aluminum negatively correlate with mass gain, leading to
increased resistance of superalloy to oxidation. The results are
consistent with experimental observations where it is seen that
aluminum, chromium, and zirconium are highly beneficial
for reducing oxidation and mass gain while molybdenum,
tungsten, cobalt, and titanium are detrimental [12,18,88]. For
cluster 3, titanium, nickel, niobium, and molybdenum show
a positive correlation, while aluminum shows a negative cor-
relation to the mass gain. The composition of chromium in
cluster 3 shows a positive correlation, which has been at-
tributed to the minimal variety of its composition in the data
set of cluster 3. Therefore, the correlation of chromium is
statistically insignificant and can be ignored. In cluster 6, the
composition of tungsten, vanadium, and nickel shows a posi-
tive correlation while aluminum shows a negative correlation
to the mass gain, which resembles the experimental results
found in literature [12,89]. For cluster 7, the composition of
nickel and silicon shows a positive correlation to mass gain,
implying deterioration of oxidation resistance properties with
increasing concentrations of the elements. A common trend is
visible in all the ML models of the four clusters. The composi-
tions of cerium, lanthanum, and gadolinium are either absent
or have a very poor correlation with the oxidation property.
This is due to the fact that these rare earth elements are added
to the superalloys in trace amounts, which the ML models are
unable to delineate properly.

C. ML models for parabolic rate constant

After successfully developing accurate ML models for
mass gain, which depict the extent of the oxidation, it is essen-
tial to develop ML models that describe the rate of oxidation
in superalloys. To make the ML models for kp consistent with
the ML model for mass gain, we use the same feature set for
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FIG. 4. Correlation of target property with the features for all the clusters. Blue (red) represent positive (negative) correlation of the feature
of the cluster with the target property. Time and temperature are important parameters as the correlation is largley positive in all the clusters.

training the kp ML model. After the validation of the collected
data, 787 entries for kp are chosen. Initially, LASSO is em-
ployed for selecting the essential features for predicting kp.
Further, the XGBoost algorithm is applied to develop the ML
models. The hyperparameters of LASSO and XGBoost are
optimized using the gridsearch algorithm. The best ML model
presents high accuracy with R2 of 0.99/0.99 and RMSE of
0.03/0.04. Learning curves for the XGBoost model presented
in Fig. 2(b) confirm that no overfitting occurs for the model.

To better understand the XGBoost model and analyze the
role of individual features in the prediction of kp, analysis is
performed for the XGBoost ML model using SHAP. SHAP
is useful to understand and gather inferences directly from
the ML model as opposed to the Pearson correlation coef-
ficients, which present the correlation between the features
and the target property. The effect of individual feature on
the kp as predicted by the XGBoost model is presented as
summary plot in Fig. 5. In Fig. 5, the scaled value of individual
feature is plotted against the SHAP value. The SHAP value
indicates the magnitude of positive or negative impact a fea-
ture has on the output/ target property. Similar to the ML
models for mass gain, temperature shows a positive cor-
relation with kp indicating that temperature is one of the
dominating features for prediction of kp. Positive correlation
indicates that an increase in temperature leads to the increase
in kp. The distribution of temperature is much significant
when compared to the other features, which implies that
temperature has the most profound effect on increase of kp.
The SHAP value for temperature increase as the temperature
increases (presented in red), indicating a positive correlation
with kp, which is detrimental for oxidation. The distribution
of time reveals that the SHAP value is larger for short dura-
tion and smaller for longer duration, implying. This strongly

TABLE III. The best parameters for genetic algorithm.

Parameter Value

Max iteration 100
Size 100
Mutation probability 0.1
Elite ratio 0.05
Crossover probability 0.5
Parents portion 0.3

agrees with experimental studies where the kp decreases due
to the formation of protective oxide coatings [90–92]. The
elements aluminium, chromium, tungsten, tantalum, yttrium,
hafnium show a negative correlation with kp, implying that ad-
dition of these elements are beneficial to decrease the kp. Iron,
niobium, molybdenum, cobalt show a positive correlation
which is detrimental for oxidation resistance. The correlation
for the elements is in agreement with the experimental ob-
servations [12]. An important aspect of the correlations for
kp, similar to the mass gain ML models, is the correlation for
the rare earth elements such as lanthanum and cerium. These
materials show a negative correlation with the oxidation rate.
It is experimentally established that lanthanum and cerium are
highly beneficial for the oxidation resistance while ruthenium
is detrimental [93,94]. These rare earth elements are added
in trace quantities, which leads to difficulties in establishing
accurate correlations. The effects of time and temperature on
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FIG. 5. Summary plot for kp derived from SHAP. It represents
the relation of the feature with kp as described by the best ML model
for kp.
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FIG. 6. Optimization of kp using genetic algorithm. The maxi-
mum, average and minimum values of kp for the initial and new
population are presented. The average kp for the new population is
considerably low as compared to the initial population. Further, the
minima obtained for the new population is also an improvement over
the initial population.

kp are well known. However, using SHAP values, we have
determined the effect of each element on kp, which is highly
cost and labour intensive if done experimentally. The trends
obtained using the ML model can now be employed to search
for superalloy compositions with reduced kp.

D. Oxidation rate optimization

After developing accurate ML models for oxidation and
analyzing the trends for individual feature, we utilize genetic
algorithm to search for new compositions of superalloys to
minimize the oxidation in superalloys. Since the optimization
of the property is based on the prediction of ML model, it is
important that we utilize the best ML model. Since, there is a
huge variation in the accuracy of the ML models for different
clusters for mass gain, the ML model developed for the kp is
selected to optimize the oxidation properties. To optimize the
composition of all elements present, we retrain the XGBoost
ML model for kp by including all the elements and using the
same hyperparameters. The new ML model developed has R2

of 0.99/0.99 and RMSE of 0.03/0.04. The overview of the
entire dataset for parabolic oxidation rate is presented in Sup-
plemental Table 1. The input range of the features are taken as
the bounds for the optimization process. The fitness function,
used to evaluate the performance of the new population, is
defined such that any offspring with composition not equal to
100 is penalized. Similarly, penalty is imposed for less value
of time and temperature. The optimization of hyperparameters
is carried out iteratively and values giving the best results are
provided in Table III. The new population obtained by GA
shows improvement in the rate of oxidation results.

The compositions and the corresponding values of kp are
presented in the Supplemental Table 2 [45], while the gain in
the results is presented in the Fig. 6. The optimization leads
to the reduction of the kp by 20%, which is unprecedented

and can help in extending the life cycle of the superalloy com-
ponents significantly. The new population obtained contains
several new superalloys with kp less than the current minimum
in the database hence providing new options for exploring
superalloys with improved oxidation resistance.

These new superalloy compositions predicted by the GA
reveal interesting trends. It is widely known that addition of
rhenium is important for enhancing the creep resistance prop-
erties. The successive generations of Ni-superalloys are based
on the addition of rhenium [95]. However, the oxidation resis-
tance of the superalloys suffer greatly due to rhenium [17,96].
In the new composition predicted by GA, the concentration
of rhenium decreases significantly to enhance the oxidation
resistance. Further, the concentration of the element tungsten
is increased which can help to retain the creep resistance
by inducing a negative lattice misfit [97,98]. The increase of
ruthenium in the new superalloys can be beneficial to increase
the microstructure stability and suppress the Topologically
close-packed phase formation due to rhenium, tungsten and,
other refractory elements. The concentrations of aluminium
and chromium, which are highly beneficial for the oxida-
tion resistance, are increased further, while the concentrations
of Ta, Co, and Mo are reduced. The values of the kp for
the different compositions are for higher temperatures range.
Therefore, the superalloy compositions in this work represent
an advancement for developing novel superalloys with better
oxidation resistance.

IV. CONCLUSIONS

We have established an extensive superalloy materials
database with oxidation properties. The database consists of
the alloy compositions, testing conditions, and the individual
alloy’s mass gain and parabolic rate constants. We utilize this
database to develop ML models to predict oxidation mass
gain and parabolic rate constant. The data for mass gain is
first partitioned into six clusters to segregate the data with
similar behavior and obtain better prediction accuracy. The
best XGBoost ML model shows high accuracy with a mini-
mum RMSE of 0.04. The ML model developed for kp also
shows great prediction accuracy with RMSE of 0.04. SHAP
analysis of the kp models elucidates the effect of different
elements, including the minority alloying elements and the
experiment conditions on the oxidation characteristics of the
superalloy. The trends obtained for the elements are in agree-
ment with the experimental observations. Further, utilizing
genetic algorithm, we successfully reduce the parabolic rate
of oxidation by 20% which is unprecedented. In this work, we
have successfully demonstrated the utilization of supervised/

unsupervised learning and genetic algorithms to accelerate
new materials discovery and design new superalloy composi-
tions for better oxidation resistance and extended service life.

The data and machine learning scripts of this study are
available from the corresponding author, upon reasonable re-
quest.
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