
PHYSICAL REVIEW MATERIALS 8, 046202 (2024)

Influence of pinholes and weak-points in aluminum-oxide Josephson junctions
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Josephson junctions are the key components used in superconducting qubits for quantum computing. The
advancement of quantum computing is limited by a lack of stability and reproducibility of qubits, which
ultimately originates in the amorphous tunnel barrier of the Josephson junctions and other material imperfections.
Pinholes in the junction have been suggested as one of the possible contributors to these instabilities, but evidence
of their existence and the effect they might have on transport is unclear. We use molecular dynamics to create
three-dimensional atomistic models to describe Al-AlOx-Al tunnel junctions, showing that pinholes form when
oxidation of the barrier is incomplete. Following this, we use the atomistic model and simulate the electronic
transport properties for tunnel junctions with different barrier thicknesses using the nonequilibrium Green’s
function formalism. We observe that pinholes may contribute to excess quasiparticle current flow in Al-AlOx-Al
tunnel junctions with thinner barriers, and in thicker barriers we observe weak-points that facilitate leakage
currents even when the oxide is continuous. We find that the disordered nature of the amorphous barrier results
in significant variations in the transport properties. Additionally, we determine the current-phase relationship for
our atomistic structures, confirming that devices with pinholes and weak-points cause a deviation from the ideal
sinusoidal Josephson relationship.

DOI: 10.1103/PhysRevMaterials.8.046202

I. INTRODUCTION

Josephson junctions are one of the key components used in
superconducting qubits for quantum computers [1–3]. While
there have been significant developments in the fabrication
processes of Josephson junctions, which now enable us to
have working examples of small-scale quantum computing
[4–6], we still see significant problems with device stability
and reproducibility. In particular, large variabilities have been
found in the coherence times with time [7,8], and across
different qubits on a quantum computing chip [9–11]. Vari-
ations have also been found in the critical currents between
Josephson junctions fabricated in the same way [12]. These
variations in the qubit parameters mean that significant tun-
ing is required to ensure that qubits across the chip function
similarly. Although qubits can be tuned [13,14], this typically
requires more gates to be patterned onto quantum computing
chips, as well as recalibration during the computation [6,15].
This significantly limits the reliability of quantum comput-
ing chips that are fabricated today. It is not yet clear what
causes stability and reproducibility problems in these devices,
however a large amount of research discusses the importance
of the tunnel barrier in this context [16]. Often comprised
of an amorphous metal-oxide material, the tunnel barrier is
inherently disordered, inviting the possibility of structures that
could act as two-level systems that couple to the qubit current
causing instabilities in its parameters. A particular type of
imperfection in the tunnel barrier that has been proposed are
microscopic metallic links, coined “pinholes.” These pinholes
may increase the current that couples to two-level systems in
the barrier, exacerbating instabilities [17].

*jared.cole@rmit.edu.au

In the literature there is currently conflicting evidence on
the role and prevalence of pinholes. Zhou et al. [18] find
that pinholes may exist in particular circumstances, such as
when the oxide barrier is too thin, whereas Greibe et al. [19]
develop a model that rules out pinholes as the source of excess
current. On the other hand, Tolpygo et al. [20] show that
pinholes may not exist in a newly fabricated device, however
they may form through degradation of the oxide when the
junction is used in a circuit. Recent work has studied the ef-
fect of Josephson harmonics on the current-phase relationship
(CPR), highlighting that the disordered nature of the oxide
barrier could contribute to effects in the CPR, specifically if
there are high transmission channels present [21].

This paper uses computational techniques to study how
pinholes form, and it aims to investigate what effects they
might have on transport properties in Josephson junction
devices that are fabricated today. Commonly, Josephson junc-
tions are fabricated as Al-AlOx-Al tunnel junctions [22–24].
This study investigates pinhole formation during AlOx growth
to discuss under which conditions they might be stable, and
what effect stable pinholes might have on electronic transport
through the device. We begin by discussing the stability of
pinholes following Zhou et al. [18], who model a cylindri-
cal pinhole in an otherwise uniform oxide barrier. Using the
interfacial surface energies between materials in the system,
the stability of pinholes can be determined. Using a similar
method, we determine the stability of cylindrical pinholes
with increasing radii for different barrier thicknesses. Using
the same geometries, we then calculate the transport proper-
ties for each of these devices.

To then investigate the formation and closing of pin-
holes more realistically, we use our previously developed
molecular-dynamics approach [25] to grow Al-AlOx-Al
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tunnel junctions with different amounts of oxide in the
barrier.

Using a tight-binding description of the system, we em-
ploy a nonequilibrium Green’s function (NEGF) approach to
investigate normal (single-electron) transport in the structures
studied herein. NEGF is a numerical approach that has been
widely used for calculating transport properties in nanoscale
devices [26], and it has also been used explicitly for the case of
Al-AlOx-Al tunnel junctions [27]. In this work, we determine
the transmission, resistance-area, and current density through
full three-dimensional models of Al-AlOx-Al tunnel junctions
with different amounts of oxide. Understanding variations
in the normal transport based on structural irregularities can
suggest causes for variation in the superconducting properties.

To understand how the normal transport translates
to the superconducting (correlated-electron) transport, the
Ambegaokaar-Baratoff (AB) relation is commonly used
[28,29]. It specifically relates normal-state resistance to the
superconducting critical current. The validity of this relation-
ship is unclear when there are pinholes present in the oxide
barrier. As an alternative, the model in this work is used to
calculate the transmission eigenvalues for each of our struc-
tures, which in turn allows us to determine the contributions
from different transmission channels and the effects they have
on the CPR.

From a toy model we determine that pinholes may be
present in thinner barriers and a source of single-electron
current. We then use the analysis from the toy model to under-
stand the transport properties of a three-dimensional atomistic
model describing Al-AlOx-Al tunnel junctions derived from
molecular-dynamics simulations. Our results show that there
is a significant amount of variability in the transport proper-
ties. These variabilities are still present for devices without
pinholes, indicating that the variation is a product of the
inherently disordered AlOx barrier. We also find that the amor-
phous structure of the oxide results in a nonuniform electric
potential, which makes the metal-insulator transition of the
barrier less clear compared to analysis from our toy model.
Specifically, some results highlight that thick barriers with no
pinholes may remain conductive. These devices do not have
clear pinholes in the barrier, but they have weak-points that
can facilitate single-electron current flow. This could indicate
a situation in which a seemingly complete barrier could result
in a dysfunctional device.

II. TOY MODEL

Given the complex structure of disordered AlOx, we first
develop an idealized model to understand how pinholes of
a simple structure remain stable in the barrier and also how
systematic changes in pinhole size may affect the transport
properties of tunnel junctions. For this section, we use a
geometric model with pinholes described as cylinders in an
otherwise uniform oxide layer in Al-AlOx-Al tunnel junc-
tions. Figure 1 schematically depicts the geometry of our
model.

A. Stability of pinholes

To study under which conditions pinholes are stable in
the oxide barrier, we follow methods outlined in Zhou et al.

FIG. 1. A schematic representation of a simple cylindrical pin-
hole in an Al-AlOx-Al tunnel junction. (a) Aluminum bottom contact
(gray) and an aluminum-oxide layer (orange) with a pinhole. (b) A
complete tunnel junction showing the aluminum-oxide layer with a
pinhole underneath an aluminum top contact (transparent gray).

[18] to determine the interfacial surface energies between
different materials in our system. Previous theoretical studies
use molecular-dynamics methods to calculate the interfa-
cial surface energies for different Al and AlOx interfaces
[30], finding γAl = 0.057 eV/Å2, γAlO = 0.341 eV/Å2, and
γAl/AlO = 0.186 eV/Å2, which we use in subsequent calcula-
tions. The surface energy, γ , is between the materials specified
in the subscript, and where only one material is given, the
interface is vacuum.

Equation (1) describes the hole formation energy for the
geometry shown in Fig. 1(a), with a pinhole in the oxide on
an Al bottom contact and vacuum above the oxide (before the
top contact is deposited),

�E = πr2(γAl − γAlO − γAl/AlO) + 2πrh(γAlO). (1)

A similar equation can be derived for the case with an Al top
contact deposited. Using Eq. (1), we can determine the energy
required to form holes of different radii, r, in the oxide barrier
at different thicknesses, h. Figure 2 shows this relationship for
the two geometries shown in Fig. 1.

A negative hole formation energy implies that for a
uniform oxide layer arrangement it is more energetically fa-
vorable to have pinholes and they may form spontaneously.
On the other hand, a positive hole formation energy indicates
that energy is required to form pinholes in a uniform oxide
layer. The results in Fig. 2 show that for thinner oxides, it
is more energetically favorable for larger pinholes to form.
However, as the oxide is grown thicker there is a crossover
point where it becomes more energetically favorable to form
smaller pinholes. This is consistent with the oxide beginning
to cover more of the underlying substrate, resulting in the
formation of smaller holes. Although this is the case, it is
more common that the formation energy becomes positive
before we see this cross over, indicating it is not favorable
for pinholes of any size to form.

For the case of a complete junction as depicted in Fig. 1(b),
where aluminum is deposited as a top contact, we find that
the formation energy remains negative for larger oxide thick-
nesses. This implies that thicker oxide barriers are required to
prevent the spontaneous formation of pinholes compared to
the case when the oxide is exposed to vacuum. Consequently,
this means that the deposition of aluminum on top of existing
pinholes may increase their stability.
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FIG. 2. The energy required to form cylindrical pinholes with
different radii in AlOx barriers of different thicknesses. Solid lines
indicate a calculation with vacuum above the oxide layer, while
dashed lines show a calculation with an aluminum top contact. The
black dashed line indicates a typical oxide thickness of 20 Å used in
Al-AlOx-Al junctions.

The results in Fig. 2 are consistent with previous findings
in work on dewetting of thin-films in which it was found that
the number of holes formed scales inversely with the film
thickness [31]. This highlights the importance of consider-
ing the stability of pinholes when studying the formation of
Al-AlOx-Al tunnel junctions, specifically ones with thinner
barriers.

B. Normal transport in a toy model

Using a model with the same geometry as depicted
in Fig. 1(b), we develop a three-dimensional tight-binding
model. We do this here to compare to later sections where
this method is used with a full atomistic description of the
device (see Sec. IV). For all our calculations, we take z to
be the direction of transport, so that the x-y plane defines
the cross-sectional area of the device. We define a potential
in three dimensions with dimensions in x and y of 24 Å ×
24 Å, and a barrier height and length of 1.3 eV and 30 Å,
respectively. When Al-AlOx-Al junctions are fabricated, they
can range from 0.03 to 1 µm2 in cross-sectional area [32,33],
which is significantly larger than our simulated device area.
To account for this, we apply periodic boundary conditions in
x and y, whereas z has open boundary conditions to simulate
transport [27].

To calculate the normal transport through the junction,
we employ a nonequilibrium Green’s function (NEGF) ap-
proach, which is a widely used method for solving the
time-independent Schrödinger equation (TISE) numerically
for a system with open boundary conditions [26,34]. This al-
lows us to simulate the effects of attaching a source and drain
contact to the barrier and subsequently calculate properties

such as the transmission and normal state resistance through
the device.

The retarded Green’s function is given by

Gr (E ) = [(E + iη)I − H − �S − �D]−1, (2)

where I is the identity matrix, and iη is a positive imaginary
infinitesimal number.

The Hamiltonian, H = T + U , is defined with a kinetic,
T , and potential, U , energy operator. We describe our system
using a second-order finite-difference representation of the
kinetic energy operator,

T =
N∑
i

ε|i〉〈i| −
N∑

〈i, j〉
tk|i〉〈 j|, (3)

where ε = 2tx + 2ty + 2tz, and k ∈ {x, y, z}. The hopping pa-

rameter, tk , is given by tk = h̄2

2m∗a2
k
, where m∗ is the effective

mass and ak is the finite grid spacing in a given direction.
We assume the effective electron mass m∗ = 9.1 × 10−31 kg
as the structures considered are mostly pure aluminum and
we use ak = 1/3 Å throughout as this has previously shown
good convergence for these structures [27]. In this section,
the electrostatic potential energy term, U , is applied as a
rectangular barrier with a cylindrical hole in it. In Sec. III,
U is determined from the charges and positions of the atoms.
The self-energies for the source and drain, �S/D, are calculated
recursively [35], and these terms account for the effect of
attaching semi-infinite leads.

The normal transmission is then calculated from [26]

T (E ) = Tr(�SGr�DGa), (4)

where the broadening matrices are given by
�S,D = i(�S,D − �

†
S,D), and the advanced Green’s function is

Ga = Gr†.
The Landauer-Büttiker formula allows us to use T (E ) to

calculate the current in a device:

I = 2e2

h

∫ ∞

−∞
T (E )[ fS(E ) − fD(E )]dE , (5)

where the Fermi-Dirac distributions for the
source and drain contacts are given by
fS,D = 1/[exp((E − EF − eVS,D/2)/kBT ) + 1], e is the
electron charge, h is Planck’s constant, EF is the Fermi energy,
kB is the Boltzmann constant, and T is the temperature.

The normal state resistance at a given energy is determined
by taking the zero-temperature, zero-bias limit of Eq. (5) and
is given by

RN = h

2e2

1

T (E = EF)
. (6)

In general, modeling superconductivity with a NEGF method
is more difficult than for normal transport [34,36]. However,
we are able to perform an analysis of the transmission chan-
nels and thereby estimate the superconducting response in
Sec. II C.

Figure 3 shows the transmission and resistance-area prod-
uct through junctions with pinholes of different radii. To
ensure consistency and clarity in later sections, we hence-
forth define the presence of pinholes using the percentage of
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FIG. 3. (a) Transmission through cylindrical pinholes in a 3D
rectangular barrier which leave different percentages of the under-
lying substrate covered, 0%, and 30–100 % in intervals of 10%. The
vertical dashed line indicates EF = 0.7 eV. (b) The corresponding
resistance-area products calculated at EF for each of these junctions
with extra points shown between 90% and 100% to show the metal-
to-insulator transition. The inset shows a zoomed-in area indicated by
the rectangle, with dashed lines corresponding to resistance quanta.

the underlying substrate that is covered. In this section, we
model pinholes as cylinders, so our substrate coverage begins
at 30% as this allows a full circle to fit within the square
cross-sectional area of the device that is simulated.

The x and y dimensions of the potential barrier used for
results in Fig. 3 are chosen to compare to an example barrier
from molecular-dynamics calculations, which are performed
in Sec. III. Similarly, we choose the barrier height and thick-
ness to correspond to the thickest barriers in Sec. III. We
define the barrier region as the distance from the first oxygen
atom to the last oxygen atom in the structure, and then we
find the average height in the middle 50% of the barrier to
be 1.3 eV. Integrating the electric potential in the barrier
region, we find the barrier area and consequently determine
the effective width of the barrier as 30 Å.

In Fig. 3(a) we see quantized transmission steps, which
show the modes of conduction available. As more of the
underlying substrate is covered and the barrier becomes more
complete, we see smoothing of these quantized steps. At the
extremes, the 0% coverage data show ballistic conduction, and

the 100% indicate transmission through a uniform rectangular
barrier. We also see an increase in the transmission at all
energies as the percentage coverage decreases, indicative of
a more conductive device as is expected when pinholes are
present in a barrier.

To calculate the resistance using Eq. (6), we require the
Fermi energy, EF, of the leads. To determine a suitable
EF, we use measurements from prior experiments where the
resistance-area product was found to be RNA = 600 	 µm2

[37]. Using this value as a standard, we calculate the corre-
sponding transmission value T = 4 × 10−5 using Eq. (6) and
the quoted device cross-sectional area. Linearly interpolating
between points in the transmission function of our 100% cov-
erage data set, we determine the corresponding EF ≈ 0.7 eV,
which we use for all subsequent calculations.

Figure 3(b) shows RNA calculations using EF = 0.7 eV,
marked with a dashed line with the transmission results in
Fig. 3(a). Between 90% and 100% coverage, we have included
extra points in intervals of 1% to highlight the sharp increase
in resistive behavior as we approach 100% coverage. This
jump corresponds to the transition from metal conduction to
insulating barrier. To demonstrate this clearly, the inset in
Fig. 3(b) shows horizontal dashed lines at multiples of one
resistance quantum. The darkest dashed line corresponds to
T = 1, or a resistance value of RNA = 0.07 	 µm2, which is
also marked on the main figure for clarity. Beyond this there
are no modes to facilitate ballistic conduction, and the device
becomes insulating, i.e., all conduction occurs via barrier
tunneling.

C. Superconducting transport in a toy model

The supercurrent-phase relationship [29,38,39] in a
Josephson junction is given by

IS(φ) =
∑

p

e�2

2h̄

τp sin(φ)

EABS+
tanh

[
EABS

+ (φ)

2kBT

]
, (7)

where

EABS
± = ±�

√
1 − τp sin2(φ/2). (8)

Here, τp is the transmission probability for a transmission
eigenmode p, � is the superconducting order parameter, and
h̄ is the reduced Planck constant. EABS

± is the energy of the
Andreev bound states which mediate Cooper pair transfer
between superconducting regions, leading to the Josephson
effect. Equation (7) is valid for short Josephson junctions,
i.e., when the device length is much less than the super-
conducting coherence length [28], L � ξ . Aluminum has a
long coherence length of ξ = 1600 nm [40], which makes
it widely suitable for Josephson junction applications as the
device lengths are typically much shorter.

If τp is low for all transmission eigenmodes (τp � 1), the
supercurrent-phase relationship in Eq. (7) can be written as
the Ambegaokaar-Baratoff (AB) relation,

ISRN = π� sin(φ)

2e
tanh

(
�

2kBT

)
, (9)

where RN = h/[2e2 ∑
p τp]. This equation relates the trans-

port properties of the device in its normal state to properties
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of the device in its superconducting state. In a similar manner,
in the fully transparent limit where all τp = 1, Eq. (7) can be
written as the Kulik Omel’yanchuk (KO) relation [41], which
is given by

ISRN = π� sin(φ/2)

e
tanh

(
� cos φ/2

2kBT

)
. (10)

Taking the zero-temperature limit of Eq. (10), T → 0, we
find tanh(� cos φ/2/[2kBT ]) → sgn(cos φ/2). Typically, the
relations in Eqs. (9) and (10) are used for devices with a
complete oxide barrier [42], however in the case of devices
with pinholes and weak-points there are channels with differ-
ent transmission probabilities. This results in a combination
of channels that display characteristic AB and KO behavior,
as well as behavior in between. Summing these channels
then causes a deviation from the ideal sinusoidal Josephson
relationship.

To determine the transmission probability eigenvalues
[43,44] in our model, we find the largest 30 eigenvalues of the
transmission matrix, �SGr�DGa, which is also used in Eq. (4)
to determine the normal transmission.

We take the low-temperature limit of Eq. (7) to calculate
the supercurrent for each transmission eigenvalue. We use a
low-temperature superconducting gap value of � = 200 µeV
as measured for thin films in prior work [45]. Figure 4 shows
the sum of the supercurrent from each of these channels,
giving the overall CPR.

Figure 4(a) shows the eigenvalues for the transmission ma-
trix for each toy model structure. Notably, we find that the the
eigenvalues in the 0% coverage structure are all approximately
equal to 1. With increasing coverage, some eigenvalues begin
to drop closer to zero, indicating channels with lower trans-
mission probabilities are present. For the structure with 100%
coverage, there are no channels with transmission probabili-
ties close to 1. In Fig. 4(b) we see that for a complete barrier
(100% coverage) we obtain the expected sinusoidal Josephson
relationship for ideal Josephson junctions described by the AB
relation [Eq. (9)]. In the other extreme for ballistic conduction,
or in the fully transparent limit, we obtain a sawtooth relation-
ship that is given by the KO relation [Eq. (10)]. Aside from
these extremes, for percentage coverages between 40% and
70%, the current-phase relationship follows the expected trend
from sawtooth to sinusoidal for increasing surface coverages.

We find exceptions to this in the very low-coverage and
very high-coverage cases, given by the 30%, 80%, and 90%
coverage data sets shown in Fig. 4(c). These cases correspond
to two different regimes. In the very low-coverage regime
indicated by the 30% coverage data set, the diameter of the
cylindrical pinhole is approximately equal to the width of
the substrate in our simulation. Due to the periodic boundary
conditions applied in our model, this creates a pattern that is
similar to diamonds of oxide on a metallic substrate, rather
than a hole in a uniform oxide layer. This pattern leads to
a shape for the CPR that does not fall between the results
for 0% and 40% coverage. In the high-coverage cases we
approach a limit where we see a single transmission channel
that dominates the conduction. In Fig. 4(a) there are multiple
eigenmodes with a transmission probability close to 1, how-
ever for 80% and 90% there is only one eigenvalue. This is

FIG. 4. (a) Eigenvalues of the transmission matrix for the toy
model structures 0%, and 30–100 % coverage in 10% intervals.
(b) CPRs for structures indicated in the legend. (c) CPRs which
correspond to the low and high coverage regimes, for structures
indicated in the legend.

resemblant of the Josephson effect for a narrow constriction,
or a superconducting quantum point contact [46].

We use the insights from this toy model study to inform our
interpretation of results in later sections.

III. ATOMISTIC MODEL

A. Molecular dynamics

In the preceding sections, pinholes have been described as
cylindrical holes in the oxide barrier, however in practice pin-
holes are likely to have irregular shapes. To represent pinhole
formation in Al-AlOx-Al tunnel junctions more accurately,
we use molecular dynamics to grow devices atomistically,
allowing us to resolve microscopic structures within the bar-
rier. To simulate this growth, we follow a similar method
to that used by Cyster et al. [25], and in this work we use
the large-scale atomic/molecular massively parallel simulator
(LAMMPS) [47,48] to perform our simulations with a ReaxFF
force field to describe atom to atom interactions [49,50]. The
methods in Cyster et al. are designed to replicate the Dolan
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FIG. 5. Molecular-dynamics simulation for a “(100)1” junction with increasing amounts of oxide in the barrier. Aluminum atoms are
represented in gray, and oxygen atoms in orange. Structures are presented in order of number of oxygen atoms in the barrier, (a)–(f) no.
O = 28, 56, 83, 143, 240, 346. See Table I for more details on oxide thicknesses.

double-angle evaporation process [51], and model the low-
pressure oxidation and aluminum evaporation processes that
are often used when fabricating Al-AlOx-Al tunnel junctions.

Beginning with a 24 Å × 24 Å substrate cell of crystalline
aluminum, we introduce a vacuum above the substrate and
grow an AlOx layer by introducing oxygen atom-by-atom with
atom trajectories and velocities sampled from a Boltzmann
distribution. We create a set of 12 structures with increasing
numbers of oxygen atoms in the AlOx layer, some of which
are shown in Fig. 5. We find that the layers with less oxide
tend to contain pinholes that close over as more oxide is grown
(see Sec. III B).

We find that this simulation method results in self-limiting
AlOx growth when the LAMMPS/ReaxFF force field is used
[in contrast to our previous work with GULP/Streitz and
Mintmire (SM) [27], which did not self-limit]. However
the resulting oxide grown with LAMMPS/ReaxFF is thinner
(approximately 1 Å) [37,52] than is typically observed exper-
imentally. To study thicker oxides, we replicate the methods
used to grow >10-nm-thick oxides experimentally. Namely,
after the oxide self-limits, an atomically thin layer of alu-
minum is deposited atom-by-atom and is oxidized following
the same process as before. This is repeated until the oxide
reaches the desired thickness.

After the oxidation, an aluminum contact is deposited on
top in a similar manner, introducing aluminum atoms one at a
time until the aluminum contact layer is of a similar thickness
to the initial aluminum substrate. In this case, the distribution
of velocities is chosen to mimic the metal evaporation; see
Cyster et al. [25] for details. The structure is then optimized
using the LAMMPS energy minimization to find the lowest
energy configuration of the atoms that constitute the junction.
We calculate the charges of the atoms in the system, and
then the Ewald summation method can ultimately be used to
determine the electric potential of the system with respect to
atom position [53].

This method is used with an Al (100) and Al (111) sub-
strate for two complete simulations of each, with varying
thicknesses of oxide giving 48 structures in total as shown in
Table I.

B. Characterizing the junction formation

1. Thickness

When simulating oxide growth, we require a measure of
thickness to indicate when to stop the simulation. For this,
we use the z distance from the first to last oxygen atom in
the junction (oxygen extent) as an approximate guide to the
barrier thickness. Table I shows these barrier thicknesses for
each structure. We have also determined the full-width at half-
maximum (FWHM) thickness of the barrier for each structure.
This is calculated using the maximum of the average mass
density across the junction shown in Fig. 6.

Due to the lower stoichiometric ratio of Al:O near the
Al/AlOx interface, we expect the oxygen extents in Table I to
be an overestimation of the thickness that would be measured
experimentally. We include the FWHM thickness computed
from the mass density as an alternate measure, however this
in turn may be an underestimation. Given the ambiguity of
defining oxide thickness at the atomic scale, Table I gives both
values as an upper and lower limit of the thickness for a given
structure. The intervals between FWHM values are multiples
of 0.25 due to the bin size chosen for the rolling average of
the mass density.

FIG. 6. The rolling average of the mass density across the thick-
est barrier in the “(100)1” data set. The half-max reference line is
halfway between the maximum value in the data set and the Al
density, where the latter is set using the mass density value at the
beginning of the source contact. The solid orange lines then indicate
the FWHM, which we take as the barrier thickness.
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TABLE I. Summary of parameters used to characterize junction formation in this work for each data set. The number of oxygen atoms in
a simulation cell is given by “no. O,” and the percentage coverage calculated using the Voronoi cells is “% coverage.” The thicknesses from
the FWHM of the mass density (shown in Fig. 6) and the oxygen extent are labeled “FWHM” and “O extent,” respectively.

(100)1 (100)2 (111)1 (111)2

no. O % coverage no. O % coverage no. O % coverage no. O % coverage
28 27.81 20 24.28 26 25.38 24 27.38
36 36.88 26 30.34 33 32.74 29 32.37
56 52.77 43 46.07 46 42.75 32 35.76
69 59.24 54 52.92 56 51.70 44 46.38
83 68.48 68 67.06 84 63.90 58 59.08
139 92.12 148 91.31 140 91.68 120 86.69
no. O FWHM O extent no. O FWHM O extent no. O FWHM O extent no. O FWHM O extent
143 4.75 10.07 150 3.00 10.25 146 4.75 10.57 134 4.25 10.46
239 6.00 12.74 158 3.25 12.44 156 4.00 12.72 206 7.25 13.40
240 6.00 14.21 243 6.75 15.50 232 7.00 14.03 245 8.00 14.77
311 8.75 16.48 250 6.00 16.81 248 9.50 16.62 269 7.75 16.64
346 9.50 20.37 255 6.00 22.89 279 10.00 19.03 306 9.00 20.66
451 15.25 23.49 383 13.50 23.49 397 15.50 24.10 399 14.50 24.09

2. Percentage coverage

To determine the percentage of substrate that is covered
in oxygen for each of our structures, we first determine the
volume occupied by oxygen atoms in the barrier region. This
is done by calculating the Voronoi cell around each atom in
the barrier [54–56]. Figure 7 shows oxygen volumes for a low
percentage coverage (< 50%) barrier on the “(100)1” crystal
substrate.

For clarity, Fig. 7(a) shows the Voronoi cells for just the
oxygen atoms in this structure, looking down on the substrate.
By projecting the 3D Voronoi cells onto a 2D plane, we can
determine a ratio of uncovered to covered regions, giving
the percentage of the underlying substrate that is covered.
Figure 7(b) shows a percentage coverage calculation indi-
cating areas that are covered by an oxygen Voronoi cell,
and Table I shows the percentage coverage values for each
structure.

FIG. 7. (a) A three-dimensional Voronoi diagram showing the
oxygen volume in a Josephson junction simulated using molecu-
lar dynamics, showing the xy plane which is perpendicular to the
transport direction. Oxygen and aluminum atoms are indicated using
orange and gray points, respectively. The z (transport) direction is
into the page. (b) Results of surface coverage calculation for the same
structure.

Comparing the various structures in Table I, we see that
percentage coverage and oxygen extent increase monotoni-
cally with the number of oxygen atoms. However, the barrier
FWHM (which is key for defining the transport character-
istics) can vary greatly from run to run, and as a function
of substrate crystal orientation. See, for example, structure
“(100)2” in the range 200–300 oxygen atoms. This is because
the barrier characteristics depend strongly on the microstruc-
ture details of the oxide region. Note that we do not set the
thickness or the percentage coverage of a simulated junction,
rather these are emergent properties of the simulation.

Figure 8 shows the relationship between the substrate cov-
erage against the number of oxygen atoms in the barrier for
the “(100)1” structure. Slices are taken at every tenth oxygen
atom that is bound to the surface during oxidation in the
molecular-dynamics simulation.

In Fig. 8 we see two different regimes. Below ∼100 oxygen
atoms (per 24 Å × 24 Å area) we see one gradient which
we attribute to individual oxygen atoms being deposited onto
the metal substrate, and above ∼100 oxygen atoms we see
a different gradient attributed to the formation of an oxide
layer. The insets show the Voronoi surface coverages for two
structures within each regime as calculated in Fig. 7. These re-
sults indicate that below ∼100 oxygen atoms is where pinhole
formation is likely to occur before we see behavior consistent
with a film of AlOx as the number of oxygen atoms increases.

IV. NORMAL TRANSPORT IN AN ATOMISTIC MODEL

Having developed an atomistic model of Al-AlOx-Al tun-
nel junctions using molecular dynamics, we now use this
model to obtain information about the transport properties
of these 3D simulated junctions. The transport calculations
in this section do not include superconducting parameters or
considerations of Cooper pairs of electrons. They describe
the device in its normal state and are purely single-electron
transport calculations.

We use a NEGF method to calculate the transmission and
the normal resistance, RN, in the same way as we did for
the toy model in Sec. II B. Figure 9 shows the resultant RNA
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FIG. 8. The oxidation process in a molecular-dynamics simu-
lation of AlOx growth on the “(100)1” aluminum substrate before
overgrowth with a metal contact. Data points are shown for every
tenth oxygen atom that is bound to the surface. Results show the
percentage of the aluminum substrate that is covered by oxygen
atoms as a function of the number of oxygen atoms in the insulating
barrier with a cross-sectional area of 576 Å2.

relationship for junctions grown on each substrate. As we
expect RNA to be exponential with film thickness [57], results
are plotted on a logarithmic scale.

FIG. 9. Resistance area for Al-AlOx-Al junctions with increasing
numbers of oxygen atoms in the barrier. Each panel shows data
for structures grown on different aluminum substrates, and two cal-
culations of each. The structures for each panel are (a) “(100)1,”
(b) “(100)2,” (c) “(111)1,” and (d) “(111)2.”

On each of the data sets in Fig. 9 the dashed line indi-
cates the resistance quantum that corresponds to T = 1 as
determined in Fig. 3. It corresponds to the expected transition
from metallic to insulating behavior. For every data set we
see significant variation in the resistance values, and no clear
transition to insulating behavior until 400 oxygen atoms are
deposited. An exception to this is in the “(111)1” data set,
where we find that the last data point is below the metal-
to-insulator transition even with approximately 400 oxygen
atoms in the barrier, like the other structures. This implies
there may be more metallic regions present in the barrier in
the form of pinholes or weak-points.

In this study, we aim to create a distinction between pin-
holes and weak-points. We define pinholes to be present when
the Al substrate is < 100% covered in oxide, which results in
a direct metallic link once metal is deposited as a top contact
(as in Sec. II B). We define weak-points to be present when our
surface coverage calculations show no presence of pinholes,
however the transport calculations indicate a localized higher
current density compared to a uniform barrier. Such localized
variation in the current density results from variation in the
oxide density or stoichiometry but may not correspond to the
conventional image of a pinhole, as illustrated in Fig. 1.

Comparing these results to Fig. 8, we find that an increase
in surface coverage (especially close to 100%) is not directly
correlated to insulating behavior in the barrier. We reach close
to 100% coverage when approximately 200 oxygen atoms
are deposited, however for all data sets in Fig. 9 we see that
the RNA data points around 200 oxygen atoms are close to
or below the metal-to-insulator transition, indicating metallic
behavior. This highlights that surface coverage alone cannot
give us a good indication of a functioning barrier.

The variation we see in the resistance data in Fig. 9 is
consistent with measurements in manufactured Al-AlOx-Al
tunnel junctions [9–11]. For example, it has been shown that
when some device barriers are grown to thicknesses that are
typically expected to display insulating behavior, a few may
fail due to an excess current [20]. Data set “(111)1” shows
a theoretical example that could explain these situations. As
well as this, experiments have shown significant variability
in the transport between devices fabricated in the same way.
We believe these variabilities may arise from the disordered
nature of the AlOx region as results in Fig. 3 showed sig-
nificantly less variability, likely due to the uniform potential
barrier used and systematic changes to the pinhole size. It
has also previously been shown that crystal grain boundaries
in the aluminum bottom contact could cause thickness vari-
ations in the AlOx layer that is grown above [52]. These
thickness variations could then in turn cause irregularities
in the transport measurements. In this study, we have not
included the effects of grain boundaries, and we grow devices
on single-crystal aluminum substrates. Despite omitting grain
boundaries, we still see significant variability, highlighting
that disorder alone may be a key contributor to the variation
in transport we see in junctions of this sort.

There also appears to be a larger spread in the data for
junctions grown on Al(100) substrates compared to Al(111).
This could indicate that the spatial variation of the junc-
tion resistance for the (111) crystal orientation is lower,
however further statistics are required to be definitive. The
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FIG. 10. Transmission functions for the thickest barriers in each
of our data sets. The dashed line indicates EF = 0.7 eV, which is used
for the calculations in this work.

computational expense of growing large atomic structures and
performing atomic-resolution transport calculations limits our
ability to perform detailed replication studies at this time.

In prior work by Cyster et al. [27], a reliable exponential
trend was observed in RNA calculations for junctions with in-
creasing thickness. That work used a melt and quench method
to create devices that gave control over the oxide thickness,
however it did not consider the experimental fabrication pro-
cesses used. In this study, we mimic the fabrication process
more closely [25], aiming to provide a more accurate repre-
sentation of what would be obtained from measurements of
real devices. However, this does produce greater variability
in the transport results. Cyster et al. [27] also use an SM po-
tential, whereas this work uses a ReaxFF potential, which has
since been shown to more accurately describe the self-limiting
behavior we see experimentally [25].

To investigate the variation we see in the transport calcula-
tions, Fig. 10 shows the transmission function for each of the
thickest structures, corresponding to more than 350 oxygen
atoms in the simulation cell.

In particular, Fig. 10 shows the sensitivity of transport
measurements to changes in the Fermi energy, noting that
our calculations all use EF = 0.7 eV, marked in Fig. 10 with
a dashed line. From the transmission we also see that the
“(111)1” structure is more transparent than the other three
structures, supporting results from Fig. 9 where we found that
the thickest structure was metallic compared to the junctions
in the other data sets.

Our calculations discussed up to this point give us an in-
dication of the overall transport in the junction. However, to
understand the specific effects that pinholes have on transport
within the barrier, we need to study how current flows through
the junction spatially. To investigate this, we calculate the
three-dimensional current density throughout the junction.

The current flowing between two points in a junction is
given by the elementwise product of H and Gn,

J (r, r′, E ) = e

h
Im[H ◦ Gn], (11)

where the electron Green’s function is given by

Gn(E ) = Gr�inGa (12)

FIG. 11. Orange arrows show the current density through the
“(111)1” device for (a) the lowest coverage structure with no. O =
26 (pinholes), and (b) the thickest barrier (comparable to a fabricated
device) with no. O = 397. Charge density throughout the junction
is shown in grayscale. Orange arrows show the localized current
densities. The arrow scale indicates the magnitude of the current
density, and the arrow color table is normalized.

and

�in(E ) = �S fS + �D fD. (13)

Using Gn(E ), the charge density can be calculated in three
dimensions with

n(x, y, z) = 1

2πaxayaz
diag(Gn(E )). (14)

The current in one direction is calculated from the difference
between pairs of points. For the z direction this looks like

Jz(x, y, z; E ) = 1

axay
[J (r, r′, E ) − J (r′, r, E )]. (15)

Figure 11 shows yz slices of the barrier and the charge and
current densities for positions in those slices.

Dark regions in Fig. 11 correspond to areas in the junction
that have a higher charge density, typically indicative of a
metallic region. The orange arrows show the single-electron
current density at positions in the junction. In both figures it is
apparent that the largest proportion of current flows through
localized regions of the junction. Figure 11(a) shows the
lowest surface coverage junction in the “(111)1” data set
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FIG. 12. Current density xy slices through the transport direc-
tion, z, for the thickest barriers in the (a) “(100)1” and (b) “(111)2”
device. Slices are taken at regular z intervals through the barrier
region as fractions of the oxygen extent in each junction. Current
densities are normalized by the maximum in the “(100)1” data set.

(26 oxygen atoms), and Fig. 11(b) shows the same substrate
but for the thickest oxide for full surface coverage (397
oxygen atoms). The current in Fig. 11(a) is on average ap-
proximately four times higher than in Fig. 11(b) as is expected
for a more transparent barrier. Of particular interest is that,
despite the device in Fig. 11(b) having a thick enough barrier
to expect insulating behavior, there are still weak-points that
facilitate peaks in the single-electron current flow.

The “(111)1” structure shown in Fig. 11(b) is the same
device that has displayed a higher transparency in Figs. 10
and 9(c). Figure 11 allows us to probe how the microscopic
structure of the device may contribute to the higher trans-
parency across the junction, emphasizing that the disordered
barrier may be a crucial consideration when trying to predict
the parameters of fabricated Josephson junction devices.

In general, defects in a superconducting qubit can couple
via charge, flux, or critical current in the circuit [58]. In the
case when defects in the junction modulate the critical current
[16,17], the qubit-defect coupling strength is proportional to
the magnitude of the (normal or super) current flow at the
site of the defect. Therefore, increased variance in the current
density through the junction can result in increased coupling
to defects.

Figure 12 shows xy slices of the magnitude of the current
density perpendicular to the transport direction for the thickest
barriers in “(100)1” and “(111)2” data sets. For figures that
follow, we compare the “(100)1” and “(111)2” data sets where
the thickest two barriers are both insulating.

The slices shown in Fig. 12 are taken at equal intervals
through the oxygen extent of the barrier region. The distri-
bution of the current density between slices varies greatly;

specifically, we see that the current peaks in different posi-
tions between slices. This highlights that for thicker structures
without clear pinholes in the oxide, we find weaker, indirect
paths of single-electron current (weak-points). We suspect
this is due to aluminum-rich regions in the oxide enabling a
current flow with an indirect path. It is important to note that
the edges of the oxide are not abrupt as there is significant
oxygen diffusion into the contacts [22,25]. This stoichiometric
gradient results in more current hot spots at the starts and ends
of the oxide compared to the middle of a junction. The central
slices from Fig. 12 are then the most indicative of the behavior
of the insulating barrier in the junction.

Although these weak-points have the most significant ef-
fect in the “(111)1” data set, they are nonetheless present in
all junctions studied in this work.

V. SUPERCONDUCTING TRANSPORT IN AN
ATOMISTIC MODEL

Higher transparency channels within the tunnel barrier in
Josephson junctions can cause variations in the transmission-
dependent CPR [21]. The results in Sec. IV indicate higher
transparency regions in the normal current density. Following
the same methods used in Sec. II C for the toy model, we
determine the transmission eigenvalues and CPR for each
structure.

In this section, we also follow recent work which shows
that the contributions from different transmission channels
can be written as a Fourier series [21]:

IS(φ) =
∞∑

m=1

cm sin(mφ), (16)

where cm are the transmission-dependent Fourier coefficients
of order m.

The ratio of the fundamental sinusoidal signal to the
higher-order contributions is given by

ν = 1

c1

∞∑
m=2

cm, (17)

which allows us to quantify how sinusoidal the CPR is.
Figure 13 shows the CPR and Fourier components calcu-

lated for three structures within the “(100)1” data set.
The magnitudes of the CPRs in Fig. 13(a) differ by orders

of magnitude. For this reason, we choose to scale them by
the critical current, IC, which is equivalent to the maximum
for each curve. These values are given in the caption and vary
between structure. We find the structures with the least amount
of oxygen to have a higher IC compared to the thickest barri-
ers. Scaling the results in Fig. 13(a) allows us to more clearly
study the shape of the CPR. For lower surface coverages, we
see a deviation from the expected sinusoidal Josephson rela-
tionship, IS(φ) = sin φ [21,41]. When we look at the Fourier
transform of each IS curve, we find that for junctions with
27.81% and 59.24% coverage there are extra contributions
in the Fourier series expansion in Eq. (16). These arise from
the higher transmission probability eigenvalues for the thinner
barrier structures, and result in a deviation from the sinusoidal
relationship. To show this clearly, Figs. 13(b), 13(c) and 13(d)
give a breakdown of different sinusoidal contributions to the
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FIG. 13. (a) CPRs for structures within the “(100)1” data set,
as labeled in the legend. Each curve is normalized by the critical
current, IC = 0.169, 0.132, and 0.003 µA for the 27.81%, 59.24%,
and 15.25–23.49 Å structures, respectively, all of which have a
cross-sectional area of 24 × 24 Å2. (b)–(d) The frequency domain
representation of each of the curves in (a), highlighting the different
sinusoidal contributions to each signal. The Fourier coefficients, cm,
are normalized such that their sum equals 1.

CPR. Most notably, the thickest junction shown in Fig. 13(d)
has only one significant contribution, the main sinusoidal
signal, and is the closest to an ideal Josephson junction. As
discussed in Sec. II C, although we see a systematic change
toward sinusoidal behavior in Fig. 13, this is not necessarily
indicative of every structure in the data set. The shape of the
CPR is dependent on the number of channels with transmis-
sion probabilities close to 1, which in turn depends on the
structure of the oxide and the presence of pinholes. Figure 14
summarizes data from Fig. 13 for all the structures in the
“(100)1” and “(111)2” data sets, including the transmission
eigenvalues for the “(100)1” structure.

Figure 14(a) shows the “(100)1” set of data for the eigen-
values of the transmission matrix calculated from the Green’s
function. We see that for thinner barriers, the eigenvalues are
closer to 1, indicating a more transparent junction. As the
barriers become thicker, the eigenvalues begin to drop to zero.

FIG. 14. (a) Eigenvalues of the transmission matrix for the
“(100)1” data set. (b) Fano factors for each structure in the “(100)1”
data set (black) and “(111)2” data set (orange); dashed lines indicate
different types of nanoscale conduction from the literature. (c) The
ratio of higher-order Fourier coefficients to the fundamental coeffi-
cient. A value of zero corresponds to a purely sinusoidal signal.

The Fano factor, shown in Fig. 14(b), is given by

F =
∑

n Tn(1 − Tn)∑
n Tn

, (18)

which allows us to differentiate between different types of
nanoscale conduction [59]. We find that as we grow thicker
barriers the Fano factor approaches 1, indicating barrier tun-
neling, and for pure aluminum we obtain a Fano factor of 0
corresponding to ballistic transport as indicated on the graph
with dashed lines. A Fano factor of 1/3 corresponds to a
diffusive wire, and 1/2 a 2D layer of randomly distributed
scatterers [29,59]. We note that many of the points in the
thinner barriers are situated around the diffusive wire regime,
and we also see a few points near the 2D layer of the scatterers
regime. However, given the variability in our data, we cannot
distinguish between these two regimes definitively.

Due to the logarithmic scale in Fig. 14(a) for the “(100)1”
data set, the results in Figs. 14(b) and 14(c) for the same data
set may show a greater discrepancy (by eye) compared to the
eigenvalues in Fig. 14(a). Figure 14(c) shows the ratio of the
largest sinusoidal contribution to the CPR with the other con-
tributions, highlighting results in Fig. 13 which indicate that
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FIG. 15. (a) CPRs for the thickest structures in the “(100)1” and
“(111)1” data sets. Each curve is normalized by the critical current.
(b) The transmission matrix eigenvalues for the same two structures.
For the “(100)1” and “(111)1” structure, respectively, ν = 0.0071
and 0.1777.

thicker barriers approach a pure sinusoidal CPR and a ν  0,
indicative of an ideal Josephson junction. For the “(100)1”
data set, the junction with the strongest sinusoidal response
in Fig. 14, with ν = 0.0071, has a thickness between 15.25
and 23.49 Å based on the FWHM and O extent in Table I.
Figure 14 indicates that lower oxygen content in the barrier re-
gion leads to channels with higher transmission probabilities,
resulting in a deviation from the expected sinusoidal response.
This is particularly true for thinner barriers where pinholes are
more likely to be present. In Sec. IV we found an anomaly in
the thickest barrier for the “(111)1” data set, where there were
no pinholes present, however there were weak-points in the
barrier. The term weak-points is synonymous with channels
that have higher transmission probabilities.

Figure 15 directly compares the “(111)1” data set to
the “(100)1” for the thickest barriers. Figure 15(b) shows
the larger proportion of higher transmission eigenvalues
for the “(111)1” data set compared to the “(100)1” data set. As
we found for junctions with pinholes, these higher transmis-
sion channels result in extra contributions to the CPR given in
Eq. (16). Figure 15(a) shows how this results in a deviation
from the expected sinusoidal response, which “(100)1” shows
an example of based on its ν ratio given in Fig. 14(c) and in
the caption of Fig. 15. How pure the sinusoidal response is has
a direct influence on the effective Hamiltonian in supercon-
ducting qubits. To accurately calibrate qubits, it is essential to
be able to predict the CPR [21]. Our results indicate that both
pinholes and weak-points in the barrier can lead to corrections
to the conventional sinusoidal response.

VI. CONCLUSION

The results of this work show the key role that both pin-
holes and disorder in the amorphous oxide barrier play in
Al-AlOx-Al tunnel junctions. Prior work has shown varia-
tions in the critical current of Josephson junction devices

fabricated in the same way. Using molecular dynamics, we
have been able to probe the microscopic structure of these
devices and analyze the oxidation process step-by-step. We
have shown that in thinner barriers pinholes may be present
and be a source of single-electron current, which could in turn
affect the transport properties of Josephson junction devices.
In addition, we have also observed a significant amount of
variability in junctions with a complete barrier, which appears
to be caused by the inherently disordered oxide barrier. To
understand the minimum amount of oxide required to have a
functioning device, we studied the metal-insulator transition
and found that for a uniform electric potential we should see
a transition to insulating behavior between 90% and 100%
coverage. In reality, the amorphous structure of the oxide
creates a nonuniform electric potential, which makes this tran-
sition less clear. In fact, even when barriers are grown to have
thicknesses comparable to experimentally fabricated devices,
we might not see a transition to insulating behavior, which
could be a contributing factor to device failure. These devices
do not have pinholes in the barrier, but have weak-points that
can facilitate single-electron current flow.

We find that the variations in transport that arise from the
nonuniform electric potential also have consequences on the
CPR. More transmissible channels due to pinholes result in
more contributions to the CPR, causing it to deviate from
the expected pure sinusoidal signal. As barriers are grown
thicker, we obtain a stronger sinusoidal signal. Although this
is the case, we also find that weak-points in the barrier (in
addition to fully metallic pinholes) can lead to corrections to
the conventional sinusoidal response. This emphasizes that
it is not only essential that a Josephson junction be free of
pinholes but also that the oxide barrier be as uniform as pos-
sible. Such precise control of junction thickness, density, and
stoichiometry may ultimately only be possible with epitaxial
junctions [16,60,61].

Previously, the specific processes of oxide growth and why
thinner films may not function as expected were not well
understood. Our work uses computational models to analyze
the oxidation process and the formation of structures that may
cause faults in junctions with oxide barriers. The analysis
in this work aims to inform and support Al-AlOx-Al device
fabrication.
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