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Stable and unstable tiling patterns formed by ABC miktoarm star triblock
terpolymers of symmetric interactions

Cody Hawthorne ,* Juntong He, and Qiang Wang †

Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery,
Fort Collins, Colorado 80523-1370, USA

(Received 17 October 2023; revised 13 February 2024; accepted 18 March 2024; published 11 April 2024)

Several discrepancies exist among previous self-consistent field calculations of symmetrically interacting
ABC miktoarm star triblock terpolymer melts. Here we address this issue by including all known tiling patterns,
as well as several lamellar-type phases known to bound the regions in the parameter space occupied by these
patterns. After carefully studying the effect of numerical parameters on the free-energy accuracy, the central
region of the phase diagram is constructed in detail; both the (3.4.6.4) pattern and the three-dimensional
phase of hierarchical-hexagonal lamellae are found to be stable for the first time. The energetic and entropic
contributions to the free-energy density of several phases are analyzed and compared in detail to reveal their
stability mechanisms, including the important (32.4.3.4) pattern. Comparisons to previous studies of the same
model system are present throughout, with our results resolving the aforementioned discrepancies and providing
a sound basis for future work to build upon.
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I. INTRODUCTION

The self- and directed assembly of block copolymers has
attracted long-standing interest due to its fundamental and
practical importance [1,2]. While the self-assembled mor-
phologies formed by the simplest block copolymer system,
linear and flexible diblock copolymer A-B melts with nearly
equal statistical segment lengths, are simple and have been
well understood [1], adding just one more flexible block C
greatly expands the parameter space and leads to many dis-
tinct morphologies such that the phase behavior of flexible
ABC triblock terpolymer melts remains poorly understood,
despite the large amount of efforts devoted to their study;
this is the case for both linear and miktoarm (or star) chain
architectures [1,3–7].

In this work, we are mainly interested in the various
two-dimensional (2D) tiling patterns formed by ABC mik-
toarm triblock terpolymer melts (referred to as stars hereafter),
which are unique due to their underlying chain architecture
and tendency to form morphologies rarely found in other
block copolymer systems. The tiling patterns, whose struc-
tures consist of cylinders with even-sided polygonal cross
sections arranged so as to periodically tile the plane, can
form when the three arms have comparable block lengths;
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such arrangements force the star junctions to align themselves
along one-dimensional (1D) lines (either straight or curved)
rather than 2D surfaces [8,9]. Each pattern is referred to by a
set of integers enclosed in brackets that denote the polygons
meeting at a vertex; for example, the well-known honeycomb
tiling is referred to as [6.6.6] or [63] as three hexagons meet at
each vertex. The tiling patterns can be further classified based
on whether they correspond to 1 of 11 so-called Archimedean
tilings, all of which have the defining characteristic that they
contain only one type of vertex. It is possible for tiling pat-
terns to exist that have several types of vertex, however (see
Fig. 1), in which case each distinct set of polygons is separated
by a semicolon. There are two exceptions to this naming
scheme in this paper, [10.6.4;10.8.4] and [8.6.4;8.62;12.6.4],
which contain several unique vertices while also having a
corresponding Archimedean tiling that can be superimposed
in a systematic manner. [10.6.4;10.8.4] can be seen to cor-
respond to (32.4.3.4) by connecting the centers of the red
(A-block) regions in Fig. 1, where we use parentheses rather
than brackets to denote that the tiling is superimposed; sim-
ilarly [8.6.4;8.62;12.6.4] can have (3.4.6.4) superimposed
by connecting the centers of the blue (B-block) regions
in Fig. 1.

While numerous tiling patterns [including those shown in
Fig. 1(a)] have been found in experiments [10,11], our focus
in this work is on the study of model, rather than real, melts of
ABC stars. Accordingly, we give a brief overview of the pre-
vious theoretical and simulation studies of ABC stars having
symmetric interactions (i.e., equal repulsion) among segments
on different arms, which are also the focus of our study. These
studies assume that the three arms have the same statistical
segment length and that all polymer segments occupy the
same volume, thus providing a well-defined model system that
avoids complications in experimental systems.
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FIG. 1. Schematics of some (a) stable and (b) unstable phases formed by symmetrically interacting ABC stars at χN = 30, constructed
from the volume-fraction fields {φP(r)} for P = A,B,C. Red, blue, and green correspond to regions where φP(r)>0.5 for P = A,B,C,
respectively, with other regions shown in black. The unit cells used in our SCF calculations are shown by white arrows indicating their
basis vectors, and each phase is assigned a simple code name for convenience. See the main text for more details.
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TABLE I. Correspondence of various names used for the same self-assembled morphology formed by ABC stars.

Name used in this work Other names used in the literature

Two-layer lamellae (L2) P- and P′-segregated domains within L [23], L3 [35]
Three-layer lamellae (L3) LP,P′ with the minority block in the interfaces [23], LAM3 [27], L3

[31], Lam [34,45], L3 [35]
Hierarchical lamellae (HL) L+C [18,22,29,45], CP + CP′ within L [23], LAM+BD [27],

LPOC [34], L⊥ [35]
Hierarchical-hexagonal lamellae (HHL) HPL [34,45]
Hierarchical-tetragonal lamellae (HTL) QPL [34], TPL [45]
Hierarchical-checkerboard lamellae (HCL) LAS [34]
Hierarchical gyroid (HG) G⊥ [35], HDG [45]
Hierarchical cylinders (HCs) CPD [18], SWMA,B within Chex

AB [23], HHC [31,45], C⊥ in the
second row of their figure 4(a) [35]

Hierarchical-matrix cylinders (HMCs) C⊥ in the first row of their figure 4(a) [35]
Core-shell gyroid (CSG) Gyroid with the minority block in the interfaces [23], Gyroid [34],

DG [45]
Core-shell cylinders (CSCs) CSH [27], HC [31,45], HCyl [34]
Core-shell spheres (CSSs) Bcc [34,45], S3 [35]
Perforated lamellae (PL) Perforated layer [18], CA + CB within PLC [23]

For the simplest case of ABC stars where the three arms
have the same length, the [63] tiling pattern is expected
from symmetry considerations and is indeed found by Dotera
and Hatano [12] in their lattice Monte Carlo (LMC) simu-
lations, by Bohbot-Raviv and Wang [13] in their numerical
minimization of a free-energy functional obtained under the
random-phase approximation for incompressible melts in a
2D unit cell, and by Liang and co-workers in their 2D [14]
and 3D [15] calculations of a dynamic density-functional
theory [16,17].

Using the aforementioned LMC simulations at the polymer
volume fraction φ≈0.75 in rectangular cuboid boxes of vari-
ous sizes, where the three arms of each star are connected to
a common joint segment J with the nearest-neighbor interac-
tion parameters εPP′ = εPJ (for P, P′ = A, B, C and P′�P) and
εPP = εJJ = 0, Gemma et al. found various morphologies for
stars having equal A- and B-arm length (i.e., NA = NB) with
increasing γ≡ NC/NA, including five tiling patterns ([82.4],
[63], [8.6.4; 8.62], [10.6.4; 10.62], and [12.6.4]), hierarchical
lamellae (HL), hierarchical cylinders (HCs), perforated lamel-
lae (PL; i.e., a variant of HL with A and B also penetrating
into C layers), A-B lamellae with oblate C spheres at the
A-B interfaces, and prolate spheres of A-B lamellae in the
C matrix [18]. Table I lists the correspondence of various
names used for the same morphology between our work and
those in the literature; note that a “hierarchical” morphology
is the same as the morphology (e.g., lamellae, gyroid, and
cylinders) formed by diblock copolymers but with one do-
main instead consisting of two microphase-separated domains
whose interface is perpendicular to that in the morphology
formed by diblock copolymers (if they are parallel, we have
a “core-shell” morphology). They also studied [82.4], [63],
[12.6.4], and HL using a strong-stretching theory [18]. In their
subsequent simulations in a box of 128×128×10 (in units of
the lattice spacing), Dotera and Gemma [19] found (32.4.3.4)
for A9B7C14 (where the subscripts denote the length of each
block) and the dodecagonal quasicrystal (DDQC) tiling for
A9B7C16, and Dotera [20] found [82.4], DDQC, and [12.6.4]

for A9B7C12, A9B7C15, and A9B7C17 and A9B7C18, respec-
tively. Gemma et al. presented a final phase diagram that
contains additional morphologies of single diamond and an
unknown network, as well as (32.4.3.4) found for A9B7C14

in a simulation box of 48×48×25 [21]. Very recently, using
the same LMC simulations (except with εPJ = 0) at φ≈0.9
with simulated annealing, Li and co-workers found [82.4],
[63], [8.6.4; 8.62], and HL for stars having NA = NB = 6 with
increasing NC = 2 ∼ 15 [22]. Notably, in the range of γ =
13/6 ∼ 15/6, Gemma et al. found [10.6.4; 10.62] and/or PL
[18] while Li and co-workers found HL [22].

Using dissipative particle dynamics (DPD) simulations at
the dimensionless polymer segment number density ρσ 3 = 3
in a cubic box of size (19σ )3, where σ denotes the range of the
nonbonded DPD potential, Huang and co-workers presented
two phase diagrams for stars having N≡ NA + NB + NC = 20,
where the three arms of each star are connected to a com-
mon joint segment J with the dimensionless DPD interaction
parameters aPP = aPJ = 25 and aPP′ = a [23]. In the phase
diagram at a = 36 (for various star compositions), they found
[82.4], [63], [10.6.4; 10.62], (32.4.3.4), HL, two-layer lamel-
lae (L2), three-layer lamellae (L3), core-shell gyroid (CSG),
and tubes (cylinders) formed by mixed two minority blocks
(HEX); while in the case of NA = NB (for various NC and
a values) they did not find (32.4.3.4), but found for the vol-
ume fraction of C segments fC ≡ NC/N�0.5 two additional
morphologies of micellelike structures with either the two
major blocks or all three blocks segregated, and for fC � 0.6
several additional morphologies including PL, two variants of
PL (one referred to as CA + CB within PLAB and PLC, and the
other as A- and B-segregated domains within PLAB, in their
paper), segmented A- and B-wormlike micelles within either
PLAB or a 3D network, AB-formed micelles, and HC [23].
In the case of NA = NB, their γ values at which [82.4], [63],
and [10.6.4; 10.62] are found are consistent with the LMC
simulations [18], and that [8.6.4; 8.62] is found in the LMC
simulations (for fC = 0.429 ∼ 0.467) [18,22] but not in the
DPD simulations [23] is apparently due to the small N value
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used in the latter, where fC can only be integer multiples of
0.1. Also, the star composition ( fA = 0.3 and fB = 7/30) at
which (32.4.3.4) is found in the LMC simulations [18] is close
to that ( fA = 0.3 and fB = 0.2) in the DPD simulations [23].

Given the differences in the above model systems and that
the mismatch between the periodic boundary conditions im-
posed on the simulation boxes and the bulk periodicity of the
self-assembled structures (which is not known in the simula-
tions) can change the structures and their stability [24,25], one
can only expect qualitative agreement among the above sim-
ulation studies (which is indeed obtained). On the other hand,
as we will discuss next, several groups have performed numer-
ical calculations using the polymer self-consistent field (SCF)
theory of the “standard” model (i.e., incompressible melts of
continuous Gaussian chains with the Dirac δ-function repul-
sions), where the bulk periodicity of an ordered phase can be
readily found by minimizing the Helmholtz free-energy den-
sity with respect to the size and shape of the calculation cell.
As one may expect, the resulting SCF phase diagram depends
on both the ordered phases included in the calculation and the
accuracy of their dimensionless Helmholtz free energy per star
β fc (which in turn depends on the spatial and/or chain-contour
discretization) used to construct the phase diagram, where
β ≡ 1/kBT with kB denoting the Boltzmann constant and T
the thermodynamic temperature of the system.

Tang et al. performed 2D SCF calculations with a combina-
torial screening strategy [26], where they solved the modified
diffusion equations (MDEs) using a Crank-Nicholson scheme
and the alternating direction implicit (CN-ADI) method with
chain-contour discretization of 
s = 0.01 and spatial dis-
cretization of 
x = 
y = (

√
6/10)Rg, where Rg denotes the

root-mean-square radius of gyration of an ideal and linear
chain having N segments [27]. They constructed a phase
diagram for stars at χPP′N = 35, where χPP′ denotes the Flory-
Huggins parameter characterizing the repulsion between two
segments of different types, as a function of fA and fB taken
to be integer multiples of 0.1, which includes [63], [82.4],
L3, HL, HEX, core-shell cylinders (CSCs), and the knitting
pattern (KP) [27]. Qiu and co-workers also performed 2D SCF
calculations, where they solved the MDEs using the generic
reciprocal-space method [28] (which has no chain-contour
discretization) with 151 basis functions (corresponding to
spatial discretization of 
x = Dx/18 and 
y = Dy/10 with
Dx and Dy denoting the bulk period of a self-assembled
structure along the x and y direction, respectively, which
is comparable to that used in Ref. [27]) [29]. They con-
structed a phase diagram for stars at χPP′N = 30, which
includes [63], [82.4], [12.6.4], [8.6.4; 8.62], [10.6.4; 10.62],
[8.6.4; 82.4; 12.6.4; 12.8.4], L3, and HL; while they used a
much smaller increment of 0.001 in fP, they focused only
on the central portion (i.e., fP > 0.2 for any P) of the phase
diagram [29]. Apart from the different phases included in
these calculations, the reciprocal-space method is expected to
give more accurate results than the CN-ADI method.

Li and co-workers solved the MDEs using the second-
order pseudospectral method [30] with 
s = 0.001 and a
spatial discretization grid of 1282 or 643 for a calculation cell
containing one or two unit cells of an ordered phase (such
that the grid spacing is less than 0.1Rg), and constructed a

phase diagram for stars at χPP′N = 60, which includes [63],
[82.4], [12.6.4], [8.6.4; 8.62], [10.6.4; 10.62], (32.4.3.4), L3,
HL, CSCs, and HCs; they also included (3.4.6.4) in their cal-
culations but found it to be unstable [31]. The central portion
of the phase diagram that Li and co-workers focused on is
somewhat larger than in Ref. [29], and apart from the different
phases included, their results are in good agreement in most
cases. Note that the spatial discretization used in Ref. [31] is
finer than in Ref. [29]. In the case of fB = fC, [12.6.4] is stable
for 0.513 � fA � 0.566 in Ref. [31] but unstable in Ref. [29];
the stable regions of [63], [82.4], and [10.6.4; 10.62] found
in Ref. [31] are also larger than those in Ref. [29] (with the
opposite occurring for [8.6.4; 8.62]). These could be due to
their different values of χPP′N .

Zhang and co-workers solved the MDEs using a fourth-
order pseudospectral method [32,33] with 
s � 0.01 and
a spatial discretization grid of 323 for a unit cell, and
constructed a phase diagram consisting of five lines con-
necting the central point at fA = fB = 1/3 to those at fC =
0 and fB = 0, 0.17, 0.22, 0.33, and 0.5, respectively, for
stars at χPP′N = 30, which includes [63], [82.4], [8.6.4; 8.62],
(32.4.3.4), L3, HL, CSCs, core-shell spheres (CSSs), CSG,
HEX, gyroid formed by mixed B and C, and hierarchical-
tetragonal lamellae (HTL) [34]. They actually included
many more ordered structures in their calculations and
found, in particular, [12.6.4], [10.6.4; 10.62], (3.4.6.4), and
[8.6.4; 82.4; 12.6.4; 12.8.4] to be unstable along the five lines
[34]. Their spatial discretization, however, may not be enough
to give accurate results; in the case of two blocks having the
same length, for example, Refs. [29,34] give quantitatively
different phase boundaries even for the same phases included
in both studies.

Finally, Qian and Xu solved the MDEs using the second-
order pseudospectral method [30] (with the chain-contour
and spatial discretization not given but presumably the same
as in Ref. [31]), and constructed a phase diagram for
stars at χPP′N = 60 in the case of fB = fC, which includes
[63], [82.4], L2, L3, HL, HCs, hierarchical-matrix cylinders
(HMCs), hierarchical gyroid (HG), and CSSs [35]. The au-
thors noted that the stable region of HMCs they found for
0.46 < fA < 0.48 may actually be occupied by some tiling
pattern not included in their calculations [35].

The discrepancies between these previous SCF results raise
the following question: What are the stable and unstable
phases formed by this simple model system? Here we ad-
dress this question by performing SCF calculations of the
“standard” model for symmetrically interacting ABC stars
at χPP′N≡ χN = 30, focusing on the central portion (i.e.,
fP � 0.2 for any P) of the phase diagram as this is the region
mostly occupied by the tiling patterns. By including all of the
presently discovered tiling patterns from theories and experi-
ments (overlapping many of the candidate pools of previous
SCF studies) and accurately computing their free-energy den-
sity, we definitively establish which of these patterns are
stable at the selected degree of segregation. Additionally, we
investigate the energetic and entropic contributions to the
free-energy density of the patterns in order to understand
what drives their stability, focusing particularly on the dif-
ferences between the lamellar-type phases [i.e., L2, L3, HL,
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hierarchical-hexagonal lamellae (HHL), and HTL] and tiling
patterns, as well as the thermodynamic and morphological
properties of stable complex tiling patterns [i.e., (32.4.3.4) and
(3.4.6.4)].

II. MODEL AND METHOD

A. SCF equations for the “standard” model

As in Refs. [27,29,31,34,35], here we consider the “stan-
dard” model (i.e., an incompressible melt of continuous
Gaussian chains interacting via the Dirac δ-function potential)
for n miktoarm star triblock terpolymer chains in volume V
at thermodynamic temperature T. Each terpolymer chain (re-
ferred to as a star) consists of three linear blocks, denoted by
P(= A, B, C), connected at a common junction with each P
block having NP segments. For simplicity, we assume that
all segments have the same volume ρ−1

0 ≡V/nN with N ≡∑
P NP; the average volume fraction of P, equivalent to the

block fraction, is therefore given by fP ≡ NP/N.
In the “standard” model, the configuration of the P block

in the kth star is given by a continuous curve Rk,P(s) in
space, where s ∈ [0, fP] is the block-contour variable with
s = 0 corresponding to the free end and fP to the star junc-
tion. The dimensionless bonded energy of the P block is
then given by βub

k,P = ∫ fP

0 ds(dRk,P(s)/ds)2/4R2
g, where β ≡

1/kBT with kB denoting the Boltzmann constant, and Rg ≡√
N/6a with a being the effective bond length assumed to be

the same for all the blocks; note that N→� and a → 0 while
Rg is finite. On the other hand, the dimensionless nonbonded
interaction energy (for stars of symmetric interactions) is
given by βU nb = (χρ0/2)

∫
dr

∑
P

∑
P′ 
=P φ̂P(r)φ̂P′ (r), where

χ denotes the Flory-Huggins parameter characterizing the re-
pulsion between two segments of different types and φ̂P(r) ≡
(N/ρ0)

∑n
k=1

∫ fP

0 ds δ(r − Rk,P(s)) denotes the normalized
microscopic number density of P segments at spatial position
r. The canonical partition function of this model system can
therefore be written as

Z = 1

n!

∫ n∏
k=1

∏
P

DRk,P · exp

(
−

n∑
k=1

∑
P

βub
k,P − βU nb

)

×
∏

r

δ

(∑
P

φ̂P(r) − 1

)

×
n∏

k=1

δ(Rk,A( fA) − Rk,B( fB))δ(Rk,B( fB) − Rk,C( fC)),

where the first Dirac δ-function enforces the incompressibility
constraint at r while the others enforce the star chain architec-
ture.

The SCF equations for the above model are given by

ωP(r) = χN
∑
P′ 
=P

φP′ (r) + η(r), (1)

φP(r) = 1

Q

∫ fP

0
ds qP(r, s)q†

P(r, s), (2)

∑
P

φP(r) = 1, (3)

where φP(r) is the normalized number density (i.e., volume
fraction) field of P segments constrained to φ̂P(r), ωP(r) is
the conjugate field imposing this constraint, and η(r) is the
conjugate field imposing the incompressibility constraint at r.
qP(r, s) and q†

P(r, s) are the forward and backward one-end-
integrated propagators for the P block, satisfying the MDEs

∂qP

∂s
= ∇2qP − ωP(r)qP (4)

with the initial condition of qP(r, s = 0) = 1 and

−∂q†
P

∂s
= ∇2q†

P − ωP(r)q†
P (5)

with the initial condition of q†
P(r, s = fP) = ∏

P′ 
=P qP′ (r, fP′ ),
respectively.

Q = 1

V

∫
dr qP(r, s)q†

P(r, s) (6)

is the normalized single-star partition function; note that Q is
independent of P and s, and we have taken Rg as the unit of
length in Eqs. (1)∼(6). After these equations are solved, the
dimensionless mean-field Helmholtz free energy per star can
be calculated (within a constant) as

β fc = χN

2V

∫
dr

∑
P

∑
P′ 
=P

φP(r)φP′ (r)

− 1

V

∫
dr

∑
P

ωP(r)φP(r) − ln Q, (7)

which must be minimized with respect to (up to six)
unit-cell parameters θ for each ordered phase to find its
bulk periodicity; for the “standard” model, this gives [36]

∂Q

∂θ
= 0. (8)

B. Numerical methods and calculated quantities

For a given set of model parameters fP and χN, discretiza-
tion parameters nr and ns (explained in Sec. IIIA below),
and initial guess x(0) ≡ {θ(0), {ω(0)

P (r)}} for an ordered phase,
we solve the above SCF equations using the recently re-
leased C++/CUDA version [37] of PSCF [38], an open-source
code for SCF calculations of the “standard” model for block
copolymer self-assembly that takes advantage of the mas-
sive parallelization provided by graphics processing units
[39]. PSCF uses a fourth-order pseudospectral method [40] to
solve Eqs. (4) and (5), the composite Simpson’s (1/3) rule to
evaluate the chain-contour integral in Eq. (2), the composite
trapezoidal rule to evaluate the integral over r in Eq. (6),
and the Anderson mixing [41] combined with a variable-cell
scheme [42] to simultaneously solve Eqs. (1), (3), and (8),
which can be rewritten as f (x) = 0 with the convergence cri-
terion of |f |max < ε (our choice of ε is also given in Sec. IIIA
below). As our improvement of PSCF, we have implemented
the option to control the order of the Richardson extrapola-
tion K that is used in solving the MDEs and evaluating the
chain-contour integral in Eq. (2) [43] (see the Appendix for
more information); our improved code is freely available at
https://github.com/qwcsu/PSCFplus.
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After solving the above SCF equations, we further cal-
culate the dimensionless mean-field internal energy per star
βuc = ∑

P

∑
P′ 
=P βuc,PP′/2 with βuc,PP′ = χN

∫
dr φP(r)φP′

(r)/V being the contribution due to the P-P′ repulsion, and the
dimensionless entropy per star sc/kB = ∑

P sc,P/kB + sc,J/kB

with sc,P/kB ≡ ∫
dr [ωP(r)φP(r) + ρJ(r) ln qP(r, fP)]/V due

to the conformational entropy of the P block and sc,J/kB ≡
−∫

dr ρJ(r) ln ρJ(r)/V due to the translational entropy of the
junction, where ρJ(r) ≡ ∏

P qP(r, fP)/Q is the normalized
number density of junctions satisfying

∫
dr ρJ(r) = V [44];

clearly, β fc = βuc − sc/kB.

III. RESULTS AND DISCUSSION

The phases known to play a significant role in symmetri-
cally interacting ABC stars are well established [29,31,34],
and here we primarily seek to determine which tiling pat-
terns are stable using the polymer SCF calculations of the
“standard” model. Consequently, we consider as candidate
phases all regular tiling patterns known from past studies, both
theoretical and experimental, as well as several lamellar-type
phases (in order to compute their phase boundaries with the
tiling patterns). These include all the phases shown in Fig. 1;
note that we were able to obtain converged results of KP and
HCL only at a few points in the fP parameter space. Though
our list is not exhaustive, it includes many phases known from
previous work to form near the central region of the phase
diagram and importantly overlaps with the candidate pools
of previous studies, thus resolving the discrepancies that may
have arisen from using different candidates in previous SCF
calculations.

In the remainder of this section, we first describe the impact
of numerical parameters and justify that our choices give
sufficient numerical accuracy in Sec. IIIA. This is followed
in Sec. IIIB by a presentation of the phase diagram at the
segregation strength χN = 30, as well as the dimensionless
Helmholtz free energy per star β fc and its components along
the fB = fC isopleth. Section IIIC finishes with an investiga-
tion of the thermodynamic properties of stable complex tiling
patterns (32.4.3.4) and (3.4.6.4), uncovering the effects that
stabilize them and comparing these amongst various mor-
phologies; the star junction density ρJ(r) of various tiling
patterns is also presented.

A. Numerical accuracy

For a given set of system parameters fP and χN, there
are four numerical parameters that control the accuracy of
our SCF calculations of an ordered phase: the maximum
absolute value of the residual errors of the converged SCF
equations (i.e., the convergence criterion) ε, the total num-
ber of spatial discretization points nr, the total number of
chain-contour discretization intervals ns = ∑

P nP, and the or-
der of the Richardson extrapolation K that is used to solve
the modified diffusion equations. Outside of the error anal-
ysis in this section, we set ε = 10−5 and allow PSCF [37]
to adjust the unit-cell parameters in order to minimize β fc

for all of our results presented. For the error analysis, the
unit-cell parameters are held constant (very close to those
minimizing β fc) so as to examine solely the effect of the

FIG. 2. Logarithmic plot of the error 
 ≡
|β fc(m, ns, K = 1) − β f ∗

c | in the SCF Helmholtz free energy
per star β fc as a function of the spatial discretization parameter
m and the chain-contour discretization parameter ns for (32.4.3.4)
and HTL (inset). Results for (32.4.3.4) are shown at the ABC star
composition ( fA = 0.45, fB = 0.30) and for HTL at ( fA = 0.50,
fB = 0.30), both at χN = 30. A square mesh of nr = m2 and cubic
mesh of nr = m3 is used for (32.4.3.4) and HTL, respectively,
with β f ∗

c = β fc(m = 256, ns = 1600, K = 4) for (32.4.3.4) and
β f ∗

c = β fc(m = 128, ns = 800, K = 3) for HTL; the convergence
criterion of ε = 10−9 for solving the SCF equations is used in both
cases. In units of Rg, the unit-cell parameters are 8.41 for (32.4.3.4)
and (3.48,3.98) for HTL. See the main text for more details.

numerical parameters on the accuracy of β fc of an ordered
phase. In practice, we find the differences in β fc between
different phases to always be greater than our choice of
ε = 10−5, allowing the stable phase (of those considered)
at each point in the system parameter space to be resolved
unambiguously, provided that nr and ns are large enough
to also give an accuracy of β fc(nr, ns,K) higher than 10−5.
Note that the parameter K affects both the accuracy of β fc

and the accessible points in the fP parameter space and should
thus be chosen judiciously. As discussed in the Appendix,
the block-contour discretization nP is constrained to integer
multiples of 2K ; since the block fraction fP = nP/ns, this also
constrains the values that fP can take for given ns. With this
in mind, K = 1 (i.e., the fourth-order pseudospectral method
[40] implemented in PSCF) is used to obtain all subsequent
results while higher-order (i.e., K > 1) methods are used only
to obtain highly accurate values of β fc, denoted by β f ∗

c ≡
β fc(nmax

r , nmax
s , Kmax), for use in the error analysis. The error

in β fc = β fc(nr, ns,1) of an ordered phase is then measured
by 
(nr, ns) ≡ |β fc(nr, ns, 1) − β f ∗

c |. This error must be an-
alyzed for each ordered phase, particularly with respect to its
variation with nr and ns as the values necessary to achieve a
desired accuracy depends on the complexity of the phase, the
size of its unit cell, and the segregation strength χN (which is
set to 30 in this work).

For example, Fig. 2 and its inset show 
(nr, ns) for
(32.4.3.4) and HTL, respectively, serving as representative
results for 2D and 3D phases. Rather than nr, the horizontal
axis m denotes the number of spatial discretization intervals
along each direction of the unit cell; note that a square unit cell
is used for (32.4.3.4) and a tetragonal unit cell for HTL. We
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FIG. 3. Central region of our SCF phase diagram of ABC stars of symmetric interactions at χN = 30. Each dot shows the stable
phase at that point, color-coded according to [63]: pink; [82.4]: orange; [12.6.4]: cyan; (32.4.3.4): blue; (3.4.6.4): gray; [8.6.4; 8.62]: purple;
[10.6.4; 10.62]: red; L: black; HL: green; and HHL: brown. Symmetric interactions reduce the necessary area to 1/6 of the parameter space as
shown in part (a), which is used to reconstruct the full phase diagram in (b). K = 1 and ns = 200 are used in our SCF calculations. See the
main text for more details.

see in Fig. 2 that for small m, 
 curves for various ns overlap
as the errors are dominated by the spatial discretization, while
for large m, 
 curves begin to level off as the errors are now
dominated by the chain-contour discretization. From these
results, it is clear that ns = 200 is sufficient to yield 
 < 10−5

for both (32.4.3.4) and HTL by taking m = 128 for the former
and m = 64 for the latter. In fact, this ns value is sufficient to
give 
 < 10−5 for all phases considered in this work and has
the additional benefit that with K = 1 all accessible fP values
are integer multiples of 0.01, providing a high-resolution dis-
cretization of the parameter space. For this reason, ns = 200 is
used in our subsequent SCF calculations. The effect of nr on

 for all other phases is also studied in a similar manner, and
we find that nr = 128×256, 1282, 1282, 128×256, 128×288,
160×240, 128×256, 128, 160×192, 1282, and 643 for [63],
[82.4], [12.6.4], (3.4.6.4), [8.6.4; 8.62], [10.6.4; 10.62], [8.6.4;
82.4; 12.6.4; 12.8.4], lamellae (L, including both L2 and L3),
HL, KP, and all 3D phases, respectively, ensure 
 < 10−5

in all cases; these are used to construct the phase diagram
in Sec. IIIB.

B. Phase diagram and free-energy data

To construct the phase diagram at χN = 30, at each ac-
cessible point in the central region of the fP parameter space
we compute β fc for all competing phases and take the phase
having the smallest β fc as the stable one at that point. The re-
sults are shown in Fig. 3, where the different stable phases are
shown in different colors. The symmetry-reduced phase trian-
gle (where calculations are carried out) is given in Fig. 3(a),
where fA > fB > fC at all points except for the fB = fC iso-
pleth that forms the hypotenuse and the fA = fB isopleth that
bounds the triangle to the right. Note that the central region of
the parameter space where tiling patterns are stable is enclosed
by L in our SCF calculations.

Figure 3 shows that there are a total of seven stable
tiling patterns at χN = 30, including [12.6.4], (32.4.3.4),

(3.4.6.4), [8.6.4; 8.62], and [10.6.4; 10.62] in addition to the
well-established [63] and [82.4]. The tiling patterns transition
to L as one progresses radially outward in the phase diagram.
We note that L occurs in two variations: L3, where there exist
three microphase-separated layers each mainly consisting of
one species, and L2, where the two minority (B and C) blocks
mix to form a layer between those of the majority (A) block.
Though no distinction is made between these two morpholo-
gies in Fig. 3, we have found that L2 forms when both fB and
fC are small and comparable to each other, while L3 forms
when they are significantly different; for example, in Fig. 3(a)
L2 occurs near the fB = fC isopleth while L3 occurs near the
fA = fB isopleth. As the minority blocks become smaller and
their size disparity decreases, trial (i.e., initial) fields for L3

converge instead to L2 in our SCF calculations, the stability of
which is probably due to either the relatively weak segregation
of χN = 30 considered here or the limited pool of candidate
phases (which does not include, e.g., the perforated lamellae
found in molecular simulations [18,23]). SCF calculations at
a stronger segregation of χN = 60 by Li et al. [31] suggest
that the stability of L shrinks dramatically as χN increases,
most likely from the destabilization of L2 relative to other
morphologies.

The most novel of these results are the regions of stability
of (3.4.6.4) and HHL. These phases are found stable in ABC
stars of symmetric interactions for the first time, although both
have been considered in previous SCF studies [31,34] of these
systems and HHL was found stable for stars of asymmet-
ric interactions [45]. With the parameter-space discretization
used here, (3.4.6.4) is stable at a single point ( fA = 0.44,
fB = 0.29) with its β fc on the order of 10−3 smaller than the
competing tiling patterns [ i.e., (32.4.3.4), [10.6.4; 10.62], and
[8.6.4; 8.62] ]. To the best of our knowledge, HHL was con-
sidered in only one SCF study of symmetrically interacting
ABC stars [34] where HTL was reported as stable instead. In
contrast to that study, we find that HHL is always more stable
than HTL in the region considered here, with β fc of HHL on
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the order of 10−3 smaller than HTL in most cases. According
to our SCF calculations, HHL is the only stable 3D phase that
appears in this region as HC, HMC, and HCL have either
prohibitively large β fc or simply could not be converged on
at any of the points considered. Notably, HMC is not stable
in the region of 0.46 < fC < 0.48 as found in Ref. [35],
since [10.6.4; 10.62] holds a small region of stability here. It
is possible, however, that HC, HMC, or HCL could appear
outside of the region of parameter space considered here. HC,
for example, is most likely stable along the fB = fC isopleth
for larger values of fA as we observe a downward trend in its
β fc along this line (data not shown); it is less likely that HMC
or HCL is stable at any point for a symmetrically interacting
system owing to the observed trend in their β fc as well as the
difficulty in obtaining converged results for these phases.

As discussed in the Introduction, there exist several
previous SCF studies of this system that contain conflict-
ing results, even for the same candidate phases consid-
ered. In particular, Ref. [34] found [12.6.4], [10.6.4; 10.62],
[8.6.4; 82.4; 12.6.4; 12.8.4], (3.4.6.4), and HHL to be unsta-
ble at χN = 30 along the five lines connecting the center of
the fP parameter space to an edge of the phase triangle, while
Ref. [29] found the former three tiling patterns to be stable
at χN = 30 and Ref. [31] found the former two (but not
[8.6.4; 82.4; 12.6.4; 12.8.4]) to be stable at χN = 60. On the
other hand, Refs. [31,34] found (32.4.3.4) to be stable with
its region of stability much larger at χN = 30 in Ref. [34]
than at χN = 60 in Ref. [31], while this phase was not
considered in Ref. [29]. In addition to these differences in
phase stability, Refs. [29,34] (both at χN = 30) also gave
quantitatively different phase boundaries for the same phases;
taking the fA = fB isopleth as an example, Ref. [29] found
the [82.4]/[63] and [63]/[8.6.4; 8.62] transitions to occur at
fC = 0.28 and fC = 0.39, respectively, while Ref. [34] found
these same phase transitions at fC = 0.265 and fC = 0.41,
respectively. Clearly, such discrepancies raise questions con-
cerning the accuracy and reproducibility of these previous
SCF results, which we have addressed with the error analysis
in Fig. 2 and thorough SCF calculations in Fig. 3. Our results
definitively show that [12.6.4], [10.6.4; 10.62], and (3.4.6.4)
are stable tiling patterns at χN = 30 and confirm the stability
of (32.4.3.4), although its region is smaller than that given
in Ref. [34] owing to the stability of [12.6.4]. Additionally,
we have found [8.6.4; 82.4; 12.6.4; 12.8.4] to be an unstable
tiling pattern at all accessible points in the central region of
parameter space considered here.

It is interesting to note that our SCF phase diagram qual-
itatively agrees well with that computed at χN = 60 [31]
with the exception of (3.4.6.4) and HHL, which were found
to be unstable and not considered, respectively; it is possi-
ble that (3.4.6.4) was missed in Ref. [31] as it occupies a
small region of parameter space, or it may simply become
unstable at the stronger segregation. Other than these, it ap-
pears that the phase diagrams at χN = 30 and χN = 60 are
similar, with the stronger segregation primarily causing phase
boundaries to shift outwards along the isopleths. For exam-
ple, along the fB = fC isopleth we find HL to be stable for
fA ∈ [0.52, 0.60]; for larger fA the minority blocks become
small enough to allow mixing and thus the formation of L2.
At χN = 60, however, HL is stable for fA ∈ [0.566, 0.768]

while L3 is reduced to a region centered on the fA = fB iso-
pleth [31]. Despite this, the phase boundaries of [63], [82.4],
[8.6.4; 8.62], and [10.6.4; 10.62] remain relatively unchanged,
shifting only minorly at χN = 60 while [12.6.4] replaces
HL for fA ∈ [0.513, 0.566]. In particular, along the fB = fC

isopleth we find the transition points (i.e., fA values) between
[82.4]/[63], [63]/[8.6.4; 8.62], [8.6.4; 8.62]/[10.6.4; 10.62],
and [10.6.4; 10.62]/[12.6.4] to lie in-between [0.28,0.29],
[0.39,0.40], [0.44,0.45], and [0.46,0.47], respectively, with the
corresponding transitions at χN = 60 given by fA = 0.267,
0.410, 0.457, and 0.513, respectively [31]. This leads to the
conclusion that the central region of parameter space is rela-
tively invariant to χN, with the regions of the interior tiling
patterns (i.e., [63], [8.6.4; 8.62], and [10.6.4; 10.62]) changing
little while [82.4], [12.6.4], and (32.4.3.4) occupy slightly
larger regions at χN = 60 and the region of HL increases
significantly.

To support our results in Fig. 3 and better compare with
other work, the differences in β fc among various tiling pat-
terns and lamellar-type phases (i.e., L, HL, HHL, and HTL)
along the fB = fC isopleth are shown in Fig. 4(a), as well as
those in the dimensionless internal energy per star βuc and the
dimensionless entropy per star sc/kB in Figs. 4(b) and 4(c),
respectively. Along this line the star composition is specified
by a single block fraction, fA, and all the differences in β fc are
taken relative to [12.6.4] rather than the disordered phase so as
to highlight their magnitude, which is generally on the order
of 10−2 for competing phases, except near phase boundaries
where it can be on the order of 10−3 and rarely 10−4 (e.g.,
at fA = 0.6). There is a general transition from tiling patterns
(for fA � 0.5) to lamellar-type phases ( fA > 0.5) along the
isopleth, and we note that [12.6.4] is found to be slightly more
stable than [10.6.4; 10.62] and HL at the two points given by
fA = 0.48 and fA = 0.50, respectively.

From Figs. 4(b) and 4(c), we see that βuc and sc/kB of
the tiling patterns increase concomitantly with increasing fA

while those of the lamellar-type phases decrease in such a
way that they become more stable than the tilings; in other
words, the tiling patterns are stabilized (for fA � 0.5) by βuc

while the lamellar-type phases are stabilized (for fA � 0.5)
by sc/kB. By visually inspecting the morphologies along the
isopleth, we find that this effect can be ascribed to the mixing
of the minority blocks that occurs in the tiling patterns for
larger fA. This phenomenon is entropically favorable but also
incurs energetic penalty, generally large enough to outweigh
the entropic gain and result in β fc larger than the lamellar-type
phases for fA � 0.5 (which can still maintain three distinct
microphase-separated domains at the same fA). Larger χN
would make such mixing more unfavorable and thus favor the
tiling patterns as they consistently attain smaller βuc than the
lamellar-type phases. Consequently, since stability at stronger
segregations is dominated by energetic effects rather than
entropic effects, this explains the larger region occupied by
[12.6.4] along the isopleth at χN = 60 in Ref. [31]. We can
see from Fig. 4(b) that [12.6.4] has the smallest βuc for fA ∈
[0.50, 0.56], which nearly overlaps with fA ∈ [0.513, 0.566]
where [12.6.4] is found to be stable at χN = 60 [31].

Similar results (data not shown) are found for the case
of fB > fC (but still within the central portion of the phase
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FIG. 4. The dimensionless (a) Helmholtz free energy per star β fc, (b) internal energy per star βuc, and (c) entropy per star sc/kB along the
fB = fC isopleth at χN = 30, for various tiling patterns (including A1 = [63], A2 = [82.4], A3 = [12.6.4], A4 = (32.4.3.4), A5 = (3.4.6.4),
T1 = [8.6.4; 8.62], and T2 = [10.6.4; 10.62]) and lamellar-type phases. All values are taken relative to A3. See the main text for more details.

diagram), where [82.4], (32.4.3.4), (3.4.6.4), and [12.6.4]
become stable for fA � 0.5 while HHL becomes stable
for fA � 0.5.

C. Thermodynamic and morphological properties
of complex tiling patterns

Among the tiling patterns formed by ABC stars, (32.4.3.4)
and (3.4.6.4) have no direct Archimedean tiling but rather a
superimposed one; the unit cells of these stable phases are
larger and more complex than other tiling patterns in this
system, resulting in an intriguing morphological structure that
raises questions concerning the mechanisms behind their sta-
bility. Though (3.4.6.4) occupies only a small region of the
phase diagram, (32.4.3.4) is quite prominent in this system
and is particularly interesting for a number of reasons. It is
an example of a cylindrical Frank-Kasper σ phase, having
a structure equivalent to the cross section of the spherical σ

phase found stable in conformationally asymmetric diblock
copolymer melts [46]. It is also closely related (i.e., an approx-
imant) to the DDQC morphology observed experimentally in
ABC stars by Matsushita and co-workers [47], which consists
of an aperiodic tiling of squares and triangles that cannot be
described by a single vertex as (32.4.3.4) can. The existence of
such quasicrystalline structures in both soft and hard materials
suggests that universal principles govern their behavior, and
in ABC stars DDQC forms at compositions close to those of

(32.4.3.4) [19,47]. Finally, theoretical calculations [21] have
also shown that (32.4.3.4) could exhibit photonic band gaps if
composed of materials of the appropriate dielectric contrast.

In order to understand the stability mechanisms of these
unique phases, we calculate the thermodynamic and structural
properties described in Sec. IIB for (32.4.3.4), (3.4.6.4),
and some competing phases at χN = 30 and ( fA = 0.45,
fB = 0.30), where (32.4.3.4) is the stable phase; the results
are shown in Fig. 5. The stability of the tiling patterns is
governed by relatively subtle differences in their βuc and
sc/kB, generally on the order of 10−2. Clearly, (32.4.3.4)
is energetically favorable at this point, having the smallest
βuc at the cost of also having the smallest sc/kB compared
to the competing phases. This trend is observed for nearly
every point where (32.4.3.4) is stable, with the exception of
( fA = 0.43, fB = 0.30) and ( fA = 0.43, fB = 0.31) where
[8.6.4; 8.62] and [82.4], respectively, have the smallest βuc;
(32.4.3.4) is stabilized at these two points by balancing βuc

and sc/kB as it also does not have the largest sc/kB (data
not shown). This is in contrast to the results of Ref. [45]
(which considered asymmetrically interacting stars), where
(32.4.3.4) was found to exhibit larger sc/kB than competing
morphologies at a point where it is stable; this could be due
to the different interaction parameters. Additionally, although
the β fc of (32.4.3.4) was decomposed into energetic and
entropic contributions as a function of fA at fC = 0.2 and
χN = 60 in Ref. [31], no mechanism behind its stability
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FIG. 5. (a) The dimensionless internal energy per star βuc and the dimensionless entropy per star sc/kB, and (b) various contributions to
βuc (shown as the striped bars) and to sc/kB (shown as the solid bars) of A2 = [82.4], A3 = [12.6.4], A5 = (3.4.6.4), T1 = [8.6.4; 8.62],
T2 = [10.6.4; 10.62], HL, and L relative to A4 = (32.4.3.4) at χN = 30 and ( fA = 0.45, fB = 0.30). See the main text for more details.

was noted. The stability mechanism of (32.4.3.4) formed by
symmetrically interacting stars is therefore elucidated for the
first time by our results shown in Figs. 5(a) and 5(b).

(3.4.6.4) has similar properties to (32.4.3.4) in Fig. 5(a) as
the point ( fA = 0.45, fB = 0.30) considered there is adjacent
to the single point where (3.4.6.4) is stable, i.e., ( fA = 0.44,
fB = 0.29). However, it turns out that neither (3.4.6.4) nor
(32.4.3.4) has the smallest βuc at ( fA = 0.44, fB = 0.29),
where [8.6.4; 8.62] actually has the smallest βuc but also
prohibitively small sc/kB; since (3.4.6.4) has more favorable
sc/kB, it achieves its stability here by balancing energetic and
entropic effects.

Although (3.4.6.4) and (32.4.3.4) have similar βuc and
sc/kB at ( fA = 0.45, fB = 0.30) [as shown in Fig. 5(a)],
Fig. 5(b) shows that (3.4.6.4) has more favorable AC
contribution to βuc, βuc,AC, and dimensionless B-block con-
formational entropy per star, sc,B/kB, while (32.4.3.4) has
more favorable βuc,AB and sc,C/kB. Furthermore, (32.4.3.4)
exhibits this behavior against most of the competitive tiling
patterns (except [82.4] and [12.6.4]); note that [82.4], [12.6.4],
and (32.4.3.4) have nearly identical βuc,AB (thus essentially
the same A-B interfacial area) and sc,C/kB, and it is the more
favorable βuc,AC + βuc,BC that stabilizes (32.4.3.4) against
[82.4] and [12.6.4]. These results suggest that (32.4.3.4) in-
corporate the thermodynamically favorable features of these
two direct Archimedean patterns while simultaneously com-
pensating for their unfavorable energetic properties at the
block fractions where (32.4.3.4) is stable. As the stable re-
gion of (32.4.3.4) lies between those of [82.4] and [12.6.4]
in the phase diagram, this morphology can be considered as
a hybridization of the latter two, not only in terms of the
thermodynamic properties but also the morphological struc-
ture. The square regions of the superimposed Archimedean
pattern of (32.4.3.4) are identical to a unit cell of [82.4] but
with larger, distended majority regions while the triangular
regions of (32.4.3.4) are identical to a unit cell of [12.6.4]
but again with distended majority regions. We can therefore
conclude that these properties (βuc,AB and sc,C/kB) are some
of the defining aspects of [82.4], [12.6.4], and (32.4.3.4), with
the last co-opting such properties from the former two and

augmenting with its own favorable aspects. Other complex
tiling patterns could also be considered as hybridizations of
the more fundamental patterns, which may allow the design
of yet to be discovered morphologies.

Finally, the lamellar-type morphologies (i.e., HL and L)
at ( fA = 0.45, fB = 0.30) have both significantly larger βuc

and sc/kB (on the order of 10−1) than the tiling patterns at
this point in the parameter space, where it is clear that the
energetic cost of forming a lamellar-type morphology is too
large for the entropic gain to stabilize it. Both HL and L
also exhibit more favorable βuc,AB and sc,C/kB than (32.4.3.4),
although this is countered by their more unfavorable βuc,AC

and βuc,BC. This is particularly apparent for L, which can
be attributed to its overlap of the C block with the A and
B domains that occurs due to the star architecture, where
C microphase-separates as much as possible but must retain
a significant amount of contact with B and, to a lesser ex-
tent, A. The small βuc,AB observed for L results from the
screening (or substitution) of interactions between A and B
by this layer of C, while simultaneously resulting in its large
contact area with A and B. This may be one of the fac-
tors that contributes to the destabilization of L at stronger
segregations [31].

Another interesting feature of Fig. 5(b) concerns the di-
mensionless translational entropy per star of the star junctions
sc,J/kB, shown for each morphology relative to (32.4.3.4). It
can be seen that [82.4], [12.6.4], and (32.4.3.4) have nearly
identical sc,J/kB, resulting in their entropic properties being
governed solely by the conformational entropy of each block.
In contrast, (3.4.6.4), [8.6.4; 8.62], and [10.6.4; 10.62] exhibit
slightly more favorable sc,J/kB with [10.6.4; 10.62] having the
largest sc,J/kB among the phases considered here, although
their differences in sc,J/kB are generally small. This quan-
tity depends solely on the junction density distribution ρJ(r)
of each morphology, given in Fig. 6 for (32.4.3.4), [82.4],
(3.4.6.4), [8.6.4; 8.62], and [10.6.4; 10.62]. Noting that ρJ(r)
represents the probability of finding a star junction at r, we see
from Fig. 6 that the junctions are smeared along the domain
interfaces rather than tightly aligned along 1D lines (which
would be shown as points in the figure), a result attributed
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FIG. 6. Junction densities ρJ(r) for (a) (32.4.3.4), (b) [82.4], (c)
(3.4.6.4), (d) [8.6.4; 8.62], and (e) [10.6.4; 10.62] at χN = 30 and
( fA = 0.45, fB = 0.30), where domains of each species are labeled.
Note that all morphologies shown except [82.4] have multiple types
of domains for some species, in which case one domain of each type
is labeled. See the main text for more details.

to the relatively weak segregation at χN = 30. Despite this
smearing, ρJ(r) still exhibits clear maxima centered on the
points where three domains of different species meet.

It is interesting to note that certain domain interfaces ap-
pear to be more favorable for the junctions, thus resulting
in higher ρJ(r). This can be seen most clearly for [82.4]
shown in Fig. 6(b), where ρJ(r) is the highest at A-B in-
terfaces and the lowest at A-C interfaces. This trend is also
found for (32.4.3.4) and (3.4.6.4), but not for [8.6.4; 8.62]
and [10.6.4; 10.62] where ρJ(r) at some A-C interfaces is
higher than those at A-B and B-C interfaces. We note that
while [82.4] has only one type of domains for each species,
(32.4.3.4)/[8.6.4; 8.62]/[10.6.4; 10.62] all have two types of B
domains, (3.4.6.4)/[8.6.4; 8.62]/[10.6.4; 10.62] all have two
types of C domains, and (3.4.6.4)/[8.6.4; 8.62] both have
two types of A domains, except that at ( fA = 0.44, fB =
0.28) along the fB = fC isopleth where [8.6.4; 8.62] is stable
[8.6.4; 8.62] has only one type of A domains (but still two
types of B and C domains). Apparently, both [8.6.4; 8.62] and
[10.6.4; 10.62] owe their larger sc,J/kB to their relatively more
uniform ρJ(r) along the interfaces, as shown in Figs. 6(d) and
6(e) by the pink (gray) regions connecting the maxima of
ρJ(r). It is not clear, however, why certain interfaces achieve
higher ρJ(r) than others in the same morphology or why this
phenomenon is most pronounced in [82.4] compared to other
tiling patterns. It appears that the domain area may play a role,
with ρJ(r) at the interfaces between domains of similar areas
consistently larger than between domains of large differences
in their areas; in other words, ρJ(r) seems to be larger at
the interface with larger “contact” area between domains, but
further study is needed to elucidate the cause of this behav-
ior. In all cases, however, we expect that as χN increases,
the interfacial area over which the junctions are distributed

shrinks significantly for all morphologies, and the junctions
eventually approach a 1D alignment in the limit of strong
segregation.

IV. CONCLUSIONS

In this work, we have performed numerical polymer SCF
calculations of the “standard” model (i.e., incompressible
melts of continuous Gaussian chains with the Dirac δ-function
interactions) for symmetrically interacting ABC miktoarm
triblock terpolymer melts (referred to as stars) using the re-
cently released C++/CUDA version [37] of an open-source
software, PSCF [38,39]. The numerical accuracy of our cal-
culations is rigorously tested, and the central region of the
phase diagram (in terms of the volume fraction of the P
block in the star, fP with P = A,B,C) constructed at the
segregation strength χN = 30 with a total of 16 candidate
phases considered, including one 1D phase, ten 2D phases,
and five 3D phases (i.e., those shown in Fig. 1). Eight of
these 2D phases are tiling patterns known to form in this
system from previous studies [29,31,34], and of these eight
tiling patterns we have found seven to be definitively sta-
ble at χN = 30: [63], [82.4], [12.6.4], (32.4.3.4), (3.4.6.4),
[8.6.4; 8.62], and [10.6.4; 10.62]. Notably, (3.4.6.4) is reported
as stable for the first time, and the 3D phase of HHL is
found stable for symmetrically interacting ABC stars for the
first time. Our numerical accuracy and careful selection of
candidate phases allow the resolution of several outstanding
discrepancies from previous SCF studies of the same model
system, demonstrating, for example, the stability of [12.6.4],
(32.4.3.4), and [10.6.4; 10.62] and the unstability of HTL
and [8.6.4; 82.4; 12.6.4; 12.8.4], which had conflicting results
from previous studies [29,31,34,35]. Finally, we have studied
in detail the (mean-field) thermodynamic and morphological
properties of two stable complex tiling patterns, (32.4.3.4) and
(3.4.6.4), and revealed the mechanisms behind their stability.
While (32.4.3.4) is energetically stabilized in most cases, at
a few points the stability of (32.4.3.4) and (3.4.6.4) is due to
their optimal balance between the energetic and entropic ef-
fects. We have also examined the distribution of star junctions
in several tiling patterns, and found that certain domain inter-
faces appear to be more favorable for the junctions; further
study is needed to elucidate the cause of this behavior.

Having established the stable and unstable tiling patterns
for symmetrically interacting ABC stars at χN = 30 within
the “standard” model using SCF calculations, some logical
directions for future work are (1) to systematically increase
χN for symmetrically interacting ABC stars, (2) to systemat-
ically study the phase behavior of symmetrically interacting
ABC stars outside the central region of the fP parameter
space, and (3) to systematically explore the phase behavior of
asymmetrically interacting ABC stars. Only two SCF studies
[31,35] have been devoted to symmetrically interacting ABC
stars at χN = 60, although it is possible that the center region
of the phase diagram (i.e., the region occupied by the tiling
patterns) is relatively insensitive to χN as suggested earlier.
Most of the existing studies have focused on these tiling pat-
terns as they are unique morphologies that are rarely observed
in other polymer systems, and it has been noted [27] that
the star architecture’s topological constraint is less severe as
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the outer regions of the fP parameter space are approached,
resulting in the appearance of familiar morphologies from
diblock and linear triblock copolymers. Nevertheless, some
theoretical [34,35] and experimental [48] studies on ABC
stars have demonstrated the existence of unique 3D morpholo-
gies outside of the central region of the fP parameter space,
and it is worthwhile to systematically study the phase behavior
of these regions as they are still poorly understood. Finally,
only one SCF study [45] has systematically explored the
phase behavior of asymmetrically interacting ABC stars (at
χABN = χBCN = 30 and χACN = 50). It is our hope that this
work will serve as a useful reference for future investigations
into the self-assembly of this fascinating class of materials.
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APPENDIX: RICHARDSON-EXTRAPOLATED
PSEUDOSPECTRAL (REPS) METHODS FOR SOLVING

THE MODIFIED DIFFUSION EQUATIONS

Here we follow the notation in our main text and take
Eq. (4) as an example, which has the formal solution of
qP(r, s + ds) = exp[(∇2 − ωP(r))ds]qP(r, s). Uniformly
discretizing the P-block contour into nP steps each of

size 
s, the second-order pseudospectral (PS) method
[23] gives qP(r, s + 
s) ≈ exp(−ωP(r)
s/2) exp(
s∇2)
exp(−ωP(r)
s/2)qP(r, s), which has a global error of
O(
s2). Morse and co-workers first pointed out that the
error of the PS method contains only even powers of 
s and
thus proposed a fourth-order method, which is used in PSCF

[38], by linearly extrapolating the two results of qP(r,s + 
s)
obtained via the PS method with the step sizes of 
s and

s/2, respectively, to the limit of 
s → 0 [40]. This is
similar to the (composite) trapezoidal rule for numerical
integration, whose error also contains only even powers
of the step size; the Kth-order polynomial extrapolation
of the K + 1 results obtained via the trapezoidal rule with
successively halved step sizes to the limit of zero step size
then gives the commonly used Romberg integration [49],
with K = 1 corresponding to the Simpson’s 1/3 rule. We
therefore refer to the PS method and that proposed by
Morse and co-workers [40] as the REPS-0 and REPS-1
methods, respectively, and have implemented the REPS-K
(for K = 0, . . . , 4) methods as our improvement to PSCF

[43]. Note that the REPS-K method has a global error of
O(
s2(K+1)); this requires the Romberg integration of the
same (or higher) order to calculate the integral in Eq. (2)
(e.g., the Simpson’s 1/3 rule is used in PSCF to match the
REPS-1 method), which in turn requires nP to be an integer
multiple of 2K [43]; our improved code is freely available at
https://github.com/qwcsu/PSCFplus.
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