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Computational studies of the order-disorder transition in block copolymer topological blends
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Block copolymer (BCP) nanolithography provides an economical way to pattern nanoscale features for
the semiconductor industry. Molecular cyclization can reduce feature sizes, but like linear BCPs, cyclic BCP
nanostructure size is limited by the order-disorder transition (ODT). Although the ODTs of pure linear and
cyclic BCPs have been studied extensively, there is little information on binary blends of these BCPs. Here, we
use dissipative particle dynamic simulations to study the impact of size mismatch and molecular architecture of
component BCPs on the ODT for various blends. We see that the blend ODT always occurs at higher segregation
strength than one would predict from linear interpolation between pure-component ODTs. The deviation from
this simple prediction is greater for blends with greater size mismatch between components. We find clustering of
like components (i.e., linear BCPs with linear BCPs and cyclic BCPs with cyclic BCPs) in the disordered phase,
and the characteristic lengths of the component clusters correlate with molecular size. Because the ordered state
consists of uniformly spaced lamellae, which requires interdigitation of linear and cyclic components of the
blend, resolution of the size mismatch between clusters seen in the disordered state can be thought of as a barrier
to ordering.

DOI: 10.1103/PhysRevMaterials.8.045603

I. INTRODUCTION

Based on historical trends, Gordon Moore predicted in
1965 that computing power would grow exponentially with
the number of transistors on a computer chip doubling every
18 months [1]. Moore’s “law” was realized over the next 50
years, in large part due to advancements in photolithography
techniques that enabled the fabrication of ever-smaller feature
sizes. Furthermore, according to The 2017 IRDS Lithogra-
phy Roadmap [2], the semiconductor industries will need
sub-10-nm features by 2024 to meet the rising demands of
high-performance logic devices. Photolithographic fabrica-
tion of sub-10-nm features, however, is expensive due to the
extremely short-wavelength ultraviolet light source required
[3] and high-resolution tools needed to overcome light’s
diffraction limit [4]. This cost presents a bottleneck for the
continuous advancement promised by Moore’s law. Block
copolymers (BCPs) can form assemblies on the length scale
of individual polymer chains with sub-10-nm sizes, providing
a potential alternative to traditional photolithography with
lower costs. Thanks to several decades of research on the fun-
damental principles of BCP self-assembly, several strategies
for controlling nanostructure size and orientation in thin films,
minimizing defects, and transferring the BCP pattern to a
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semiconductor chip are available to meet the nanolithography
needs of the semiconductor industry [5–8].

A linear BCP consists of two chemically distinct blocks
(referred to as A and B) that are incompatible in the melt.
The self-assembled structures of pure BCPs exhibit a range of
nanoscale morphologies controlled by the volume fractions of
each block ( fA and fB = 1 − fA) and the segregation strength
(χN , where χ is the Flory-Huggins interaction parameter and
N is the overall degree of polymerization of the polymer) of
the BCP chain [9]. At high values of χN , the repulsion be-
tween blocks is sufficiently strong to drive self-assembly into
ordered nanoscale morphologies, including lamellae, cylin-
ders, spheres, and network phases. However, for low values
of χN , where the repulsion between blocks is insufficient, the
structure is disordered. This order-disorder transition (ODT)
is marked by the segregation strength χN |ODT. For BCP
nanolithography, lamellar and cylindrical morphologies have
been studied extensively for templating nanosized lines and
posts, respectively. While the features observed are largely
controlled by the influence of fA (or equivalently fB) on the
BCP’s packing parameter that dictates the structures that can
be formed [10], the characteristic feature sizes result from the
interplay between the lengths of the BCPs and the interactions
between blocks. For lamellar morphologies in the strong seg-
regation regime (χN � χN |ODT), the interlamellar domain
spacing (d) was predicted by Semenov [11–13] to follow the
scaling relationship

d = βχ1/6N2/3, (1)

where β is a constant. While this expression suggests
the domain spacings can be reduced by lowering χ or
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N , χ is determined by the chemical composition of
the BCP, limiting its utility in controlling the structural
sizes. While N is a viable control parameter, the range
of domain sizes available is limited by the condition
χN > χN |ODT for self-assembly. Selection of high-χ BCPs
enables the use of low N to achieve smaller features. For
example, poly(styrene-b-dimethylsiloxane) has a significantly
larger χ (∼0.26) than the industry standard poly(styrene-b-
methylmethacrylate) with χ (∼0.06) [14]. Another strategy
for controlling feature dimensions is the use of alternate chain
architectures [15].

Poelma et al. [16] reported that the lamellar domain spac-
ing of cyclic block copolymers is nearly half of that of
analogous (equal molecular weight) linear block copolymers.
The synthesis of cyclic BCPs, however, is challenging, fre-
quently yielding a blend of linear and cyclic polymers in the
final product. Nevertheless, we have previously demonstrated
that the domain spacing of linear–cyclic BCP blends is not
significantly impacted when linear chains constitute less than
10% of the mixture [17]. With respect to the ODT of pure
cyclic BCP systems, theory [18–20], simulation [21,22], and
experiments [23,24] have found that the phase diagram of
cyclic BCPs is qualitatively similar to that of linear BCPs,
but the ODT for symmetric cyclic BCPs is shifted to higher
segregation strengths with χN |ODT

cyc ≈ 1.7 × χN |ODT
lin . Thus,

it is more difficult to get self-assembled nanostructures of
cyclic BCPs compared to linear BCPs with the same length
N . However, Poelma et al. [16] showed that when cyclic and
linear BCPs of similar molecular size are compared (a cyclic
BCP of length N compared to a linear BCP of length N/2),
the cyclic BCP self-assembled under conditions where the
linear BCP was disordered. Thus, we asked whether blending
a disordered linear BCP with an ordered cyclic BCP could
be a potential route to smaller features. Because blending
BCPs either homotopologically (linear polymers with linear
polymers) or heterotopologically (linear polymers with cyclic
polymers) is not well explored, we approached our study
systematically, covering a range of polymer chain lengths and
blend compositions.

Experimental [25] and theoretical [26] studies of linear–
linear BCP blends have examined their miscibility criterion
based on the relative molecular weights of the constituent
chains, but comparatively little attention has been focused
on blend ODTs. An experimental study [16] on blends of
poly(styrene-b-isoprene) BCPs found that the blend compo-
nents were miscible and formed single-period lamellae if their
molecular weight ratios (large polymer to short polymer) were
smaller than about 5, but the blend components phase sep-
arated into coexisting long- and short-period lamellae for a
molecular weight ratio of about 10. This result was later re-
produced by a self-consistent field theory study [26]. Floudas
et al. [27] also studied linear–linear blends of poly(styrene-
b-isoprene) copolymers in the miscible regime but in the
vicinity of the ODT. They reported that these blends behaved
like a single-component system with a number-average de-
gree of polymerization equal to the mean blend degree of
polymerization.

In this work, we use dissipative particle dynamics (DPD)
to computationally investigate the ODT in BCP blends. DPD
has been used extensively to study the features of classical

morphologies in diblock [28–32], triblock [33,34], multi-
block [35–38], multiarm [39], and cyclic [21] copolymers,
as well as for visualizing expected morphologies for several
chemically specific diblock [40–44] copolymer systems. In
simulations containing cyclic BCPs, we note that the un-
physical bond crossing permitted in DPD simulation may
lead to knotted and concatenated conformations for cyclic
chains. Although the impact of disallowing bond cross-
ing on cyclic polymer conformation in the melt state has
been seen in some simulations of linear–cyclic homopolymer
blends when chains are much longer than those simulated
in our work [45], others have shown that for sufficiently
short chains, cyclic polymers exhibit Gaussian scaling, and
bond crossing has negligible impact on conformational statis-
tics [46–50]. Supporting this assumption, Huang et al. [51]
showed that decreasing the frequency of unphysical bond
crossings (by enhancing the spring-spring repulsion) has neg-
ligible effect on resulting equilibrium phase behavior and
nanofeature size. Likewise, our previous DPD simulation re-
sults on domain spacing for pure cyclic BCPs [17] and for
blends of linear and cyclic BCPs [15], as well as results
presented in this paper, are in good agreement with theory
and experiment, suggesting that bond crossing has negligible
impact on the self-assembled equilibrium structures and the
feature sizes.

In the present study, we examine the impact of molecular
weight disparity between constituent BCPs on the ODT of
heterotopological blends (linear + cyclic BCPs) and homo-
topological blends (linear + linear BCPs). The molecular
weights of linear and cyclic BCPs in the blends are chosen
independently, and χ is varied systematically to determine the
blend ODTs. We characterize the system structure using RDFs
(radial distribution functions) and the microphase separation
of blend components using cluster analysis.

II. MATERIALS AND METHODS

We performed DPD simulations as described in the
Supplemental Material [52] (see Sec. I; see also
Refs. [53–56]). For this study, DPD simulations were
performed using the LAMMPS software package [57]. The
cubic simulation box had a size of 30 × 30 × 30 (DPD length
units, with one unit equal to the radius of a single DPD
monomer) with 81 000 DPD monomers, resulting in a bead
number density of ρ = 81 000/303 = 3. The temperature was
fixed at 1 in DPD units. Similarly, the mass and radius of each
bead was fixed at 1 in DPD units. The interaction parameter
(with the dimension of energy per length) between like beads,
aAA and aBB, was fixed to 25 (in DPD units) in all simulations,
while the cross interaction between unlike beads, aAB, was
varied systematically to moderate the repulsion between A
and B blocks. These interaction parameters were mapped to
the Flory-Huggins χ parameter as [56]

χ = 1

3.27
(aAB − aAA). (2)

The velocity-Verlet [58] algorithm was used to integrate
the equations of motion with a time step of �t = 0.025 in
DPD units. All the simulations were equilibrated for at least
106 time steps, followed by a production run of 5 × 105
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time steps for evaluation of thermodynamic averages. At least
50 configurations evenly sampled from production runs were
used for data analysis. Error analysis was performed using
Jackknife resampling [59]. All simulations were performed on
the Ashbaugh group’s Dell cluster. Initial configurations for
the blends were generated randomly. Since the volume frac-
tions of A and B blocks are equal in all cases (i.e., fA = 0.5),
all blends form lamellae above the ODT. For convenience, we
refer to cyc-AmBm as C2m and lin-AnBn as L2n, where 2m and
2n are the degrees of polymerization of cyclic and linear BCP
chains, respectively. For example, cyc-A18B18 is shortened as
C36, and we follow this nomenclature in the rest of the pa-
per. The cyclic–linear blends studied are C8/L16, C10/L18,
C16/L16, C12/L12, C24/L12, C16/L8, C24/L8, C32/L8,
and C36/L6 and are chosen such that there is a greater dis-
parity between the molecular weights of the components in
blends like C8/L16 and C36/L6. The blend compositions
varied from ϕcyc = 0 to 1 in increments of �ϕcyc = 0.1. In
addition to the cyclic–linear BCP blends, we also studied
linear–linear BCP blends of L6/L18 and L12/L16 with com-
positions ranging from ϕL6 (or ϕL12) = 0 to 1 in increments of
�ϕL6 (or �ϕL12) = 0.1. As N , the degree of polymerization,
is not well defined for blends of dissimilar molecular weight
components, for two-component blend, (1 and 2), we define
Ñ (the mean “degree of polymerization of a blend”) as

Ñ = ϕ1N1 + ϕ2N2, (3)

where ϕi is the volume fraction with ϕ1 + ϕ2 = 1, and Ni is
the degree of polymerization of the respective component.
For example, a C36/L6 blend at ϕC36 = 0.3 would have Ñ =
0.3(36) + 0.7(6) = 15.

A. Identification of the ODT

Benchmark simulations were run both in series, i.e., the
configuration of a prior simulation was the starting point for
the next one, and in parallel, i.e., multiple simulations at
different aAB were run from the same starting configuration
to detect the ODTs. Series simulations were run both forward
(increasing aAB) and backward (decreasing aAB). All methods
yielded the same χ Ñ |ODT with a relative error of 3% or less,
which is negligibly small (see Fig. S1 in the Supplemental
Material [52]). Most of the blends were simulated in parallel
for the study. A cross-interaction increment of �aAB = 0.25
was used for the ODT runs. We estimate χ Ñ |ODT as the
average of χ Ñ |ODT

− (where the subscript “−” indicates the
simulated value of χ Ñ just below the ODT) and χ Ñ |ODT

+
(where the subscript “+” indicates the simulated value of
χ Ñ just above the ODT). The ODT is a weakly first-order
transition for linear [60] and cyclic [61] BCPs of finite molec-
ular weights while the transition is second order in the limit
of infinite molecular weights [62]. Thus, the blends studied
here are expected to show a jump in total internal energy
(a consequence of a first-order transition) across the ODT
although the jump is not anticipated to be large. Since part of
the total energy is the result of contacts among unlike beads
(repulsive energy), and the system tends to reduce such un-
desired contacts upon ordering, a discontinuous drop in such
contacts is also expected across the ODT. Also, the lamel-
lar phase is more orientationally ordered than the disordered

phase. We exploit these features along with visual inspection
of system configurations to identify the ODT. The calculation
procedures for determining the number of undesired contacts
and the chain-orientation order parameter are described below.

Two unlike beads are identified as being in contact with
each other if the distance between them is less than the cutoff
value of 1 in DPD units and the beads are part of different
chains. The reason for choosing the distance cutoff of 1 is that
the nonbonded repulsive potential of DPD is zero beyond 1,
meaning that the beads lying beyond the cutoff distance do not
interact with the reference bead. We count only the interchain
A/B bead contacts because the ODT is driven by minimization
of the interfacial contact area between the two domains, which
in turn reduces the system’s free energy [9]. We normalize the
mean interchain A/B bead contacts by dividing by the total
number of beads in the simulation box and denote it by 〈nAB〉.
A discontinuous drop in 〈nAB〉 is a signature of the ODT.

Far from the ODT in the disordered phase, the chains orient
randomly, and the system is isotropic. As χN approaches
χN |ODT the chains start aligning, and their alignments become
stronger at higher segregation strength. To quantify the change
in alignment, we calculate an orientational order parameter
and use it to distinguish between a disordered phase and
an ordered lamellar phase. The calculation procedure is as
follows: For each chain, we find the center of mass (COM) of
the A block and the COM of the B block. The vector starting
from A-COM and ending at B-COM gives the orientation of
the chain. Next, we translate this vector so that it originates
from the origin. The director for this set of chain-orientation
vectors is the eigenvector that spans the largest variance, and
it describes the preferential orientation of the chains in the
simulation box. For the lamellar phase, the director is normal
to the lamellar plane. We calculate the orientational order
parameter 〈P2〉, the mean of the second Legendre polynomial
describing the chain orientation, according to

〈P2〉 = 1
2 (3〈cos2θ〉 − 1), (4)

where θ is the angle between the chain-orientation vector and
the director. In our simulations, a value of 〈P2〉 approaching
1 indicates a strongly aligned, ordered lamellar phase and
the value approaching zero indicates a random distribution of
chain orientations characteristic of a disordered phase. While
mathematically negative values of 〈P2〉 are possible, this result
would correspond to chain alignment normal to the director
(or in-plane alignment of chains within a lamella), which is
physically unreasonable for our system.

B. Cluster analysis

To investigate the segregation of blend components in the
disordered phase near the ODT, we perform cluster analysis
on the A beads in the simulation box using the following
algorithm: Starting from a reference A bead on a cyclic chain,
the adjacent A bead is deemed to be part of the same cluster
as the reference bead if it belongs to the same chain or lies
on another cyclic chain and is within a distance cutoff of 1 in
DPD units. This process is repeated until all A beads on cyclic
chains have been considered. This process is repeated for the
A beads of the linear BCP component. The number average
mean cluster size for component i of the blend normalized by
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(a)

(b) (c) (d)

FIG. 1. Methods to detect the order-disorder transition. (a) Simulation snapshots rendered by VMD [65] at χ Ñ |ODT
− (just below the ODT),

and at χ Ñ |ODT
+ (just above the ODT) for pure L12 (first figure), pure C12 (last figure), and 50% C12/L12 blend (middle figure). The gray and

red regions consist of A and B blocks, respectively. Variation of the (b) mean total internal energy per bead, 〈E〉 (c) mean interchain A/B bead
contacts per bead, 〈nAB〉; and (d) orientational order parameter, 〈P2〉, with χ Ñ in 50% blend. Error bars are smaller than figure symbols. The
ODT is characterized by the jumps exhibited in the three preceding methods and consistent with the simulation snapshots.

the total number of A beads belonging to component i in the
simulation box, 〈nc/n〉i, is calculated according to

〈nc

n

〉
i
=

∑
j

[
n j,i · ( n j,i

ni

)]

ni
, (5)

where n j,i is the number of A beads belonging to cluster
j and component i, and ni is the total number of A beads
belonging to component i in the simulation box. A normal-
ized cluster size close to zero indicates the presence of many
small clusters of a few beads, whereas a value approaching 1
indicates almost all the beads are connected forming a single,
simulation-box spanning cluster.

III. RESULTS AND DISCUSSION

A. Order-disorder transition

Figure 1(a) shows simulation snapshots of L12 (lin-A6B6),
C12 (cyc-A6B6), and a 50 vol% blend of the two polymers at
χ Ñ |ODT

− (just below the ODT) and at χ Ñ |ODT
+ (just above the

ODT) of each system. Below the ODT, the A and B blocks are
segregated, but the system adopts a disordered bicontinuous
structure akin to a sponge [63]. Just above the ODT, on the
other hand, the A and B blocks segregate into an ordered
lamellar structure. While this transition is apparent visually,
the ODT is also evident from changes in thermodynamic
and structural quantities. Figures 1(b)–1(d) show the mean
internal energy per bead, 〈E〉, mean number of A/B contacts
per bead, 〈nAB〉, and the orientational order parameter 〈P2〉 as a
function of χ Ñ for the 50 vol % L12/C12 blend. Each of these

variables changes discontinuously between χ Ñ of 53.21 and
54.13 suggesting the ODT occurs between these two values,
in agreement with visual examination of the simulation snap-
shots. In the case of the energy [Fig. 1(b)], a marked drop is
observed in the energy across the ODT, partly as a result of the
drop in A/B contacts observed in Fig. 1(c). Indeed, Beardsley
and Matsen [64] demonstrated that the ODT is linked to a dis-
continuous drop in 〈nAB〉. In the case of the chain-orientational
order parameter, below the ODT 〈P2〉 is nearly zero, indicative
of no orientational order. Above the ODT, however, 〈P2〉 dis-
continuously jumps from approximately 0 to 0.5, indicative of
orientational reordering of the chains into lamellar structures.
Indeed, the increase in 〈P2〉 suggests the polymers adopt a
mean angle of ∼35° (or ∼145° for polymers oriented in the
opposite direction) with respect to the lamellar normal. Taken
together, these observations support the proposition that the
ODT can be reliably determined from both thermodynamic
and structural variables obtained from our simulations. Nev-
ertheless, the precise location of the ODT is not determined
directly, but rather is bounded by χ Ñ |ODT

− and χ Ñ |ODT
+ deter-

mined from simulation. We estimate χ Ñ |ODT as the average of
these values (i.e., χ Ñ |ODT = (χ Ñ |ODT

− + χ Ñ |ODT
+ )/2, which

is 53.67 = (53.21 + 54.13)/2 for the 50% vol % C12/L12
blend illustrated in Fig. 1).

In Fig. 2(a) we show χ Ñ |ODT for C36/L6 blends as a
function of ϕC36, the volume fraction of the cyclic com-
ponent. First, as expected, χN |ODT

C36 /χN |ODT
L6 = 64/39 ≈ 1.6

is in reasonable agreement with the theoretical prediction
of 1.7 and with previous simulation studies [21]. Second,
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(a)

(b)

FIG. 2. (a) A graphical representation of the definition of
�χ Ñ |ODT. The solid circles are calculated χ Ñ |ODT for C36/L6
blends at various compositions. The broken lines between the circles
are drawn for guidance. The solid line connecting χÑ |ODT at ϕC36 =
0 and χ Ñ |ODT at ϕC36 = 1 is obtained by the linear interpolation be-
tween the pure-component values of χN |ODT. The vertical line with
double arrows represents the �χ Ñ |ODT for a blend with ϕC36 = 0.3.
(b) Variation of �χ Ñ |ODT for different blends with volume fraction
of cyclic component of the blend (ϕcyc). The broken lines drawn are
for guidance. All plot symbols are defined in the legend.

and more strikingly, χ Ñ |ODT varies nonmonotonically as
a function of the blend composition, exhibiting a maxi-
mum of 114.9 at ϕC36 = 0.4. That is, it is significantly
more difficult to order the blend than the pure BCPs. We
note that the absolute values of χ Ñ |ODT that we report are
based on Eqs. (2) and (3) without any additional correc-
tions to χ , e.g., accounting for finite chain-length effects.
Although applying such corrections to our data following
methods reported by Gavrilov et al. [66] leads to better
agreement between our values and others reported in the lit-
erature for pure linear BCPs (see Sec. 1 in the Supplemental
Material [52]), applying this correction to cyclic BCPs and
blends is not straightforward, so we have opted not to do so
for consistency within this work.

The simplest expectation for the dependence of χ Ñ |ODT on
the blend composition would be a linear dependence on ϕ. We
quantify deviations from this expectation in a two-component

FIG. 3. The comparison of �χ Ñ |ODT obtained from an exper-
imental system of linear–linear blends of poly(styrene-b-isoprene)
[27] with α = 1.35 and simulated blends of L12/L16 with similar
size mismatch (α = 1.36).

blend (1 and 2) by the difference

�χ Ñ |ODT = χ Ñ |ODT − [
ϕ1 χN |ODT

1 + ϕ2 χN |ODT
2

]
, (6)

where χ Ñ |ODT is the observed ODT for the blend and
�χ Ñ |ODT is the excess [Fig. 2(a)]. In Fig. 2(b) we report
�χ Ñ |ODT for a number of blends of linear and cyclic poly-
mers. We generally observe a positive excess over simple
mixing for all blends. Moreover, the magnitude of the effect
depends on the disparity between the degrees of polymeriza-
tion of the blended polymers. To quantify this disparity, we
define the polymer size mismatch as

α = λ1/λ2, (7)

where λi is the number of bonds in polymer i divided by
the number of bonds between unlike monomers in polymer
i. This definition is based on our previous work modeling the
dimensions of lamellar and hexagonal structures assembled
from blended linear and cyclic BCPs [67]. For linear and
cyclic polymers, we have

λlin = Nlin − 1 (8a)

and

λcyc = Ncyc/2, (8b)

where Ni is the degree of polymerization of polymer i. As a
convention in this study, for linear–cyclic blends, in Eq. (7) we
identify λ1 = λcyc and λ2 = λlin. In the case of linear–linear
polymer blends the identification of λ1 and λ2 is arbitrary
because α and 1/α are equivalent to each other for homotopo-
logical blends.

The results in Fig. 2(b) suggest that the magnitude of
�χ Ñ |ODT is strongly correlated with α. Specifically, for α

values close to 1 (no size mismatch) �χ Ñ |ODT is nearly zero,
indicative of ideally blended polymers. When the α is large,
however, �χ Ñ |ODT exhibits large positive deviations from
ideal blending. For homotopological BCP blends (e.g., blends
of two linear or two cyclic polymers), �χ Ñ |ODT is the same
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FIG. 4. Impact of topology on �χ Ñ |ODT. Comparison between
the variations of �χ Ñ |ODT for (a) C36/L6 and L18/L6 blends with
the volume fraction of its larger component, respectively, and (b)
L6/L18 and C10/L18 blends with the volume fraction of its smaller
component, respectively. All plot symbols are explained in the leg-
ends. The broken lines drawn are for guidance.

for polymer mismatches of α and 1/α due to the symmetry of
the two polymers. For heterotopological blends this symmetry
is broken, and this expectation fails. For example, in Fig. 2(b)
we find that the maximum of the C36/L6 blend (α = 3.6)
is more than 50% that of the C8/L16 (α = 0.27 ≈ 1/3.6 =
0.28) blends. These observations suggest that both the contour
length mismatch and topological differences impact the onset
of order within the polymer blend.

We subsequently asked (i) whether this effect could have
arisen from the finite size of the simulation box (i.e., could
macrophase separation into coexisting lamellar or lamel-
lar + disordered phases be the true equilibrium state for
some blends, particularly those with high �χ Ñ |ODT), and
(ii) whether it has been observed experimentally. To address
the question of macrophase separation, we ran additional
simulations of C36/L6 blends at ϕC36 = 0.4 from a starting
configuration in which linear and cyclic chains were separated
in the simulation box (see Fig. S2 in the Supplemental Mate-
rial [52]). These simulations always resulted in a single phase

FIG. 5. Self-aggregation behavior of components in C36/L6
blends. The hollow black circles and red solid circles represent the
variation of normalized cluster size of the cyclic and the linear
components of the blends, respectively, with the volume fraction
of the cyclic component in the blend, ϕC36. Both components form
simulation-box spanning clusters (〈nc/n〉i > 0.8) at intermediate vol-
ume fractions (0.3 � ϕC36 � 0.6) in the blend. Outside this window,
the minority component is dispersed into smaller clusters. Error bars
are smaller than figure symbols.

(either a mixed disordered phase or single-period lamellae)
with no hint of macrophase separation, suggesting that the
increase in blend χ Ñ |ODT we see is an indication of a phys-
ical phenomenon, not an artifact of the simulation method.
With respect to comparing to experiment, little research has
been conducted on linear–cyclic blends; however, Floudas
et al. [27] have reported experimental results for linear–linear
poly(styrene-b-isoprene) blends with α = 1.35 (Fig. 3; see
Sec. 2 in the Supplemental Material [52] for procedure used
to obtain the experimental �χ Ñ |ODT from data reported in
Floudas et al. [27]). From their data, it can be inferred that
the blend ODT shows positive deviations from ideal mixing
due to the polymer size mismatch, although the deviations are
small due to α being close to 1. We compare these experi-
mental results against our simulations for an L16/L12 blend
(α = 1.36). While we observe greater noise due to the finite
differences used to estimate �χ Ñ |ODT from simulation, our
results are in semiquantitative agreement with the experiment.
This comparison lends confidence that the DPD simulations
are capturing the physics underlying the impact of blending
size-mismatched polymers on the ODT.

To further examine the impact of polymer topology on
�χ Ñ |ODT we consider homotopological (linear–linear) and
heterotopological (linear–cyclic) blends with comparable val-
ues of α. Specifically, in Fig. 4 we compare results for
blends of C36/L6 vs L18/L6 [α = 3.6 and 3.4, respectively;
Fig. 4(a)] and C10/L18 vs L6/L18 [α = 0.29 for both blends;
Fig. 4(b)]. For the C36/L6 and L18/L6 blends [Fig. 4(a)]
in which the topology of the larger component differs (C36
vs L18), we observe a more significant impact of topol-
ogy. Specifically, the magnitude of �χ Ñ |ODT over the entire
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(a)

(b)

(c)

FIG. 6. Simulation snapshots demonstrating the organization of individual components in C36/L6 blends at three different blend com-
positions at their respective χ Ñ |ODT

− . First two columns show the individual blend components, third represents the blend, and last column
shows a top view of a cross section of the simulation box. (a) At ϕC36 = 0.1, cyclic chains are dispersed as disconnected clusters in the blend
while the linear chains form a single simulation-box spanning cluster. (b) At intermediate composition (ϕC36 = 0.5), both components form
simulation-box spanning clusters individually. (c) At ϕC36 = 0.9, linear chains are dispersed as disconnected clusters in the blend while the
cyclic chains form a single simulation-box spanning cluster. Only A beads are shown in all the figures for clarity.

concentration range for the heterotopological blend is more
than twice that of the homotopological blend. In contrast, for
the C10/L18 and L6/L18 blends [Fig. 4(b)] in which the
topology of the smaller component differs (C10 vs L6), we
find �χ Ñ |ODT for the two blends are effectively the same. We
subsequently surmise that the differences in the magnitudes of
�χ Ñ |ODT between hetero- and homotopological blends are
exacerbated by the topology of the larger component of the
blend. This difference is made even greater the larger the size
mismatch between the blend components.

B. Chain organization in the disordered phase

To gain insight into the positive deviations of �χ Ñ |ODT

from ideal mixing, we consider the properties of blends
C36/L6 (α = 3.6), C24/L12 (α = 1.09), and C8/L16 (α =
0.27) at χ Ñ |ODT

− , just below their ODTs. We perform cluster
analysis on the A beads in the simulation box (see Sec. II,
Materials and Methods) to examine the self-aggregation of
blend constituents (e.g., clustering of L6 with L6 and C36
with C36). Figure 5 reports the normalized mean cluster
sizes (〈nc/n〉i) of C36 and L6 as a function of ϕC36 at
χ Ñ |ODT

− . For ϕC36 > 0.3, the majority of the cyclic polymer
chains belong to a simulation-box spanning cluster of cyclic
chains (〈nc/n〉i > 0.8). On the other hand, a greater concen-
tration of the linear component (L6) is required to meet this

self-aggregation threshold, occurring for ϕL6 � 0.4 (ϕC36 =
1 − ϕL6 � 0.6). For intermediate compositions (0.3 � ϕC36 �
0.6), both the linear and cyclic components form simulation-
box spanning aggregates. We note that the greatest values of
�χ Ñ |ODT also occur in this composition range. Outside this
window, the minority component is dispersed into smaller
clusters and individual chains. Qualitatively similar conclu-
sions can be drawn from blends of C24/L18 and C8/L16 (see
Figs. S3 and S5 in the Supplemental Material [52]).

The aggregation behavior inferred from our cluster analysis
is confirmed visually by considering simulation snapshots in
Fig. 6 at distinct concentrations of the C36/L6 blend (see
Figs. S4 and S6 in the Supplemental Material for similar
snapshots for the C24/L12 and C8/L16 blends [52]). The
first and second columns of Fig. 6 represent clusters of C36
and L6 alone, respectively, while the third column shows both
clusters together. The last column represents the top view of a
cross section of the simulation. The top, middle, and bottom
rows in this figure indicate results at blend compositions of
ϕC36 = 0.1, 0.5, and 0.9, respectively, representing the three
clustering conditions identified in Fig. 5. As surmised above,
for ϕC36 = 0.1 and 0.9, the minority component, the cyclic
polymer for ϕC36 = 0.1 and the linear polymer for ϕC36 = 0.9,
exists in smaller clusters dispersed in the majority component,
which forms a simulation-box spanning cluster (Fig. 6). For
ϕC36 = 0.5, it appears that each blend component preferen-
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(a)

(b)

(c)

FIG. 7. Interchain radial distribution function among the A beads
in the cyclic chain, and A beads in linear chains for blends (a)
C36/L6, (b) C24/L12, and (c) C8/L16 at ϕcyc = 0.5 and their re-
spective χ Ñ |ODT

− values. For blend C24/L12, the overlap between the
RDFs for linear and cyclic chains for most radial distances indicates
that the two coexisting structures, formed by linear chains and cyclic
chains, are commensurate with each other, while such coexisting
structures are more incommensurate in blends with greater size
mismatch between their blend components (C36/L6 and C8/L16)
alluded by their nonoverlapping RDFs. All plot symbols are defined
in the legend.

tially associates with itself to form a simulation-box spanning
cluster.

In Fig. 7(a), we report the interchain RDF gAA(r) for C36
and for L6 at ϕC36 = 0.5 at χ Ñ |ODT

− . In turn, gAA(r) is equiv-
alent to gBB(r) by symmetry. We find that the cyclic chains,
C36, exhibit significant long-range structure as indicated by
the periodic maxima and minima in gAA(r). While the linear
chains, L6, also exhibit maxima and minima, the amplitude of
these oscillations is considerably weaker than that observed
for its cyclic counterpart. This suggests that the structure of
the blend at this composition is dominated by the larger cyclic
component (α = 3.6), while the smaller linear component
appears more dispersed. Similar observations can be made
for the case of C8/L16 (α = 0.27 ≈ 1/3.6 = 0.28) blends
where again the larger chains, now linear (L16), dominate
the structure [Fig. 7(c)]. Furthermore, the positions of the

FIG. 8. Method used to quantify the characteristic length associ-
ated with the structure formed by the linear chains in the blend at a
given χ Ñ . The first crossover between the interbead RDFs calculated
between like beads and unlike beads gives an estimate for this length
(
L6). All plot symbols are defined in the legend. The system shown
here is a C36/L6 blend with ϕC36 = 0.4 at χ Ñ |ODT

− .

maxima and minima for each component gAA(r) are out of
phase in the blends with large size mismatch (C36/L6, α =
3.6 and C8/L16, α = 0.27), whereas the components of a
blend with minimal size mismatch (C24/L12, α = 1.1), form
a harmonious structure, with oscillations coinciding beyond
the first peak [Fig. 7(b)]. The offset between the positions of
the maxima and minima for blend components indicates the
presence of mismatched larger-scale structures formed by the
components in the blend.

C. Incommensurability between the coexisting structures

Based on our observations, we hypothesize that the
blended polymers form incommensurate structures near the
ODT in the disordered phase, disrupting the long-range order
within the sample. As a result, higher segregation strengths
are needed to reduce this incommensurability and enforce
the mesoscale structure of the blend, resulting in positive
deviations from ideal mixing in χ Ñ |ODT. Here, we quantify
the “incommensurability” between the blended polymers in
terms of a characteristic length associated with each compo-
nent domain, denoted as 
i for component i. The value of 
i

is taken as the first crossing point of interbead gAA(r) and
gAB(r) for that component. The calculation of the chacterisitic
lengths associated with linear polymer domains for a C36/L6
blend is illustrated in Fig. 8. We evaluated the characteristic
lengths of C36 domains and L6 domains at varying values of
χ Ñ , above and below the ODT, across the composition range
0.1 � ϕC36 � 0.7.

Taking the ratio of blend-component characteristic lengths
as a measure of size mismatch, we plot these values against
χ Ñ in Fig. 9. For all compositions, 
C36 and 
L6 both increase
as χ Ñ increases due to domain coarsening, but the two com-
ponents have different dependencies on χ Ñ such that the ratio

C36/
L6 decreases as χ Ñ increases, with χ Ñ |ODT occurring
when 1.25 >∼ 
C36/
L6>∼ 1.1. This trend is seen for C8/L16
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FIG. 9. The ratios of characteristic lengths corresponding to the
structures formed by cyclic chains and linear chains in C36/L6
blends plotted with χ Ñ at compositions between ϕC36 = 0 and
ϕC36 = 0.7. The blends at ϕC36 = 0.8 and ϕC36 = 0.9 are excluded
because at these compositions linear chains do not cluster enough
to have meaningful characteristic lengths associated with their struc-
tures. All plot symbols are defined in the legend.

and C24/L12 blends as well (see Figs. S7 and S8 in the
Supplemental Material [52]), suggesting that increasing com-
mensurability between coexisting structures is necessary for
the transition from disorder to order in BCP blends that form
single-period lamellae (in contrast to blends that macrophase
separate into short- and long-period lamellar phases). We can
rationalize the �χ Ñ |ODT phenomenon in size-mismatched
BCP blends in the following manner: For a single-period
lamellar phase to form, both components must conform (or
nearly conform) to a single lamellar period that is different
from their pure-component lamellar periods. Thus, a driving
force greater than that predicted by simple interpolation be-
tween the pure-component χN |ODT values is needed to drive
phase separation of a blend, giving rise to �χ Ñ |ODT.

In size-mismatched heterotopological linear–cyclic blends,
we see that the magnitude of �χ Ñ |ODT depends on which
component (linear or cyclic) is larger (Fig. 4) The pre-
cise thermodynamic origin of the topological contribution to
�χ Ñ |ODT is unclear but possibly related to differences in
conformational entropy changes of blend components through
the disorder to order transition. More specifically, the greater
�χ Ñ |ODT associated with the C36/L6 blend compared to
the L18/L6 and C10/L18 blends, despite having the same
size mismatch, implies that a larger enthalpic driving force
is needed to promote order in blends containing larger cyclic

BCPs; from this implication, we can infer that larger cyclic
BCPs experience greater conformational entropy loss upon
ordering than smaller linear or cyclic BCPs. Differences
in concentration fluctuations [18] between cyclic and linear
BCPs, which have been invoked to explain the difference
between pure linear and pure cyclic BCP ODTs (χN |ODT

cyc ≈
1.7 × χN |ODT

lin ), may also contribute to the dependence of
�χ Ñ |ODT on blend composition and size mismatch.

IV. CONCLUSIONS

We systematically studied the order-disorder transition
(ODT) in heterotopological block copolymer blends of linear
and cyclic BCPs with independently chosen chain lengths
ranging from N = 6 to N = 36. We found that the blend
ODT always occurs at a higher segregation strength than one
would predict from simple linear interpolation between pure-
component χN |ODT values. The magnitude of this deviation,
�χ Ñ |ODT, increases with increasing size mismatch between
blend components. Comparison of heterotopological blends
(linear–cyclic) to homotopological blends (linear–linear) at
the same size mismatch, α, revealed that the �χ Ñ |ODT

phenomenon depends on both the magnitude of α and the
topologies of the blend components. Specifically, �χ Ñ |ODT

is greater in heterotopological blends with α > 1, whereas
blends with α < 1 exhibit similar values of �χ Ñ |ODT as the
homotopological linear–linear blend at the same value of α.
Upon closer examination of the structures formed just above
and just below χ Ñ |ODT, we found that the blend components
self-aggregate in the disordered phase, forming clusters with
different characteristic lengths. Ordering is most hindered at
intermediate compositions (i.e., around ϕ = 0.5), where both
components form simulation-box spanning clusters in the dis-
ordered phase, and the onset of order only occurs only when
sufficient commensurability is achieved between the charac-
teristic lengths associated with these clusters. As blending
BCPs is an attractive strategy to manipulate feature sizes for
nanolithograplic applications, these insights provide helpful
guidance and understanding with respect to the impacts of
polymer size mismatch and topology on the ordering transi-
tion for self-assembly of BCP blends.

ACKNOWLEDGMENT

We gratefully acknowledge support from the National
Science Foundation (Grant No. NSF CMMI–1825881) for
supporting this research.

[1] E. M. Gordon, Proc. SPIE 2439 (1995).
[2] M. Neisser, J. Microelectron. Manuf. 1, 1 (2018).
[3] R. R. Dammel, J. Photopolym. Sci. Technol. 24, 33 (2011).
[4] Editorial, Nat. Photonics 3, 361 (2009).
[5] C. M. Bates, M. J. Maher, D. W. Janes, C. J. Ellison, and C. G.

Willson, Macromolecules 47, 2 (2014).
[6] T.-Y. Lo, M. R. Krishnan, K.-Y. Lu, and R.-M. Ho, Prog. Polym.

Sci. 77, 19 (2018).
[7] G. G. Yang, H. J. Choi, K. H. Han, J. H. Kim, C. W. Lee, E. I.

Jung, H. M. Jin, and S. O. Kim, ACS Appl. Mater. Interfaces
14, 12011 (2022).

[8] E. R. Gottlieb, A. Guliyeva, and T. H. Epps, III, ACS Appl.
Polym. Mater. 3, 4288 (2021).

[9] F. S. Bates, Science 251, 898 (1991).
[10] Intermolecular and Surface Forces, 3rd ed., edited by N. I. Jacob

(Academic Press, Boston, 2011), pp. 503.
[11] A. N. Semenov, Macromolecules 26, 6617 (1993).
[12] A. E. Likhtman and A. N. Semenov, Europhys. Lett. 51, 307

(2000).
[13] A. N. Semenov, Zh. Eksp. Teor. Fiz. 88, 1242 (1985).
[14] D. Borah, R. Senthamaraikannan, S. Rasappa, B. Kosmala, J.

D. Holmes, and M. A. Morris, ACS Nano 7, 6583 (2013).

045603-9

https://doi.org/10.1117/12.209195
https://doi.org/10.33079/jomm.18010204
https://doi.org/10.2494/photopolymer.24.33
https://doi.org/10.1038/nphoton.2009.100
https://doi.org/10.1021/ma401762n
https://doi.org/10.1016/j.progpolymsci.2017.10.002
https://doi.org/10.1021/acsami.1c22836
https://doi.org/10.1021/acsapm.1c00680
https://doi.org/10.1126/science.251.4996.898
https://doi.org/10.1021/ma00076a047
https://doi.org/10.1209/epl/i2000-00353-8
https://doi.org/10.1021/nn4035519


RAHUL KUMAR et al. PHYSICAL REVIEW MATERIALS 8, 045603 (2024)

[15] A. D. Goodson, M. S. Rick, J. E. Troxler, H. S. Ashbaugh, and
J. N. L. Albert, ACS Appl. Polym. Mater. 4, 327 (2022).

[16] J. E. Poelma, K. Ono, D. Miyajima, T. Aida, K. Satoh, and C. J.
Hawker, ACS Nano 6, 10845 (2012).

[17] A. D. Goodson, J. E. Troxler, M. S. Rick, H. S. Ashbaugh, and
J. N. L. Albert, Macromolecules 52, 9389 (2019).

[18] J. F. Marko, Macromolecules 26, 1442 (1993).
[19] G. Zhang, Z. Fan, Y. Yang, and F. Qiu, J. Chem. Phys. 135,

174902 (2011).
[20] J. U. Kim, Y.-B. Yang, and W. B. Lee, Macromolecules 45, 3263

(2012).
[21] H.-J. Qian, Z.-Y. Lu, L.-J. Chen, Z.-S. Li, and C.-C. Sun,

Macromolecules 38, 1395 (2005).
[22] T. Herschberg, J.-M. Y. Carrillo, B. G. Sumpter, E. Panagiotou,

and R. Kumar, Macromolecules 54, 7492 (2021).
[23] A. Takano, O. Kadoi, K. Hirahara, S. Kawahara, Y. Isono, J.

Suzuki, and Y. Matsushita, Macromolecules 36, 3045 (2003).
[24] A. K. Khandpur, S. Foerster, F. S. Bates, I. W. Hamley, A. J.

Ryan, W. Bras, K. Almdal, and K. Mortensen, Macromolecules
28, 8796 (1995).

[25] T. Hashimoto, K. Yamasaki, S. Koizumi, and H. Hasegawa,
Macromolecules 26, 2895 (1993).

[26] M. W. Matsen, J. Chem. Phys. 103, 3268 (1995).
[27] G. Floudas, D. Vlassopoulos, M. Pitsikalis, N. Hadjichristidis,

and M. Stamm, J. Chem. Phys. 104, 2083 (1996).
[28] R. D. Groot and T. J. Madden, J. Chem. Phys. 108, 8713 (1998).
[29] R. D. Groot, T. J. Madden, and D. J. Tildesley, J. Chem. Phys.

110, 9739 (1999).
[30] L.-J. Chen, Z.-Y. Lu, H.-J. Qian, Z.-S. Li, and C.-C. Sun, J.

Chem. Phys. 122, 104907 (2005).
[31] F. J. Martínez-Veracoechea and F. A. Escobedo, J. Chem. Phys.

125, 104907 (2006).
[32] A. R. Khokhlov and P. G. Khalatur, Chem. Phys. Lett. 461, 58

(2008).
[33] X. Li, I. V. Pivkin, H. Liang, and G. E. Karniadakis,

Macromolecules 42, 3195 (2009).
[34] H. Chen and E. Ruckenstein, Soft Matter 8, 1327 (2012).
[35] T. Klymko, V. Markov, A. Subbotin, and G. T. Brinke, Soft

Matter 5, 98 (2009).
[36] C.-I. Huang, C.-H. Liao, and T. P. Lodge, Soft Matter 7, 5638

(2011).
[37] A. A. Gavrilov, Y. V. Kudryavtsev, P. G. Khalatur, and A. V.

Chertovich, Chem. Phys. Lett. 503, 277 (2011).
[38] H. Tan, Z. Wang, J. Li, Z. Pan, M. Ding, and Q. Fu, ACS Macro

Lett. 2, 146 (2013).
[39] Y. Wang, B. Li, Y. Zhou, Z. Lu, and D. Yan, Soft Matter 9, 3293

(2013).
[40] W.-J. Lee, S.-P. Ju, Y.-C. Wang, and J.-G. Chang, J. Chem. Phys.

127, 064902 (2007).
[41] V. Ortiz, S. O. Nielsen, D. E. Discher, M. L. Klein, R.

Lipowsky, and J. Shillcock, J. Phys. Chem. B 109, 17708
(2005).

[42] C. Soto-Figueroa, M.-d.-R. Rodríguez-Hidalgo, J.-M.
Martínez-Magadán, and L. Vicente, Macromolecules 41,
3297 (2008).

[43] S. Roy, D. Markova, A. Kumar, M. Klapper, and F. Müller-
Plathe, Macromolecules 42, 841 (2009).

[44] X. Li, J. Guo, Y. Liu, and H. Liang, J. Chem. Phys. 130, 074908
(2009).

[45] K. Hagita, T. Murashima, H. Shiba, N. Iwaoka, and
T. Kawakatsu, Comput. Mater. Sci. 203, 111104
(2022).

[46] M. E. Cates and J. M. Deutsch, J. Phys. 47, 2121 (1986).
[47] M. Müller, J. P. Wittmer, and M. E. Cates, Phys. Rev. E 53,

5063 (1996).
[48] D. Richter, S. Gooßen, and A. Wischnewski, Soft Matter 11,

8535 (2015).
[49] J. D. Halverson, G. S. Grest, A. Y. Grosberg, and K. Kremer,

Phys. Rev. Lett. 108, 038301 (2012).
[50] M. Kruteva, J. Allgaier, and D. Richter, Macromolecules 56,

4835 (2023).
[51] C. I. Huang, L. F. Yang, C. H. Lin, and H. T. Yu, Macromol.

Theory Simul. 17, 198 (2008).
[52] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevMaterials.8.045603 for Dissipative particle
dynamics formalism; Procedure to obtain the experimental
�χN |ODT; Data for C8/L16 and C24/L12 blends; References
associated with Supplemental Material.

[53] P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett.
19, 155 (1992).

[54] J. M. V. A. Koelman and P. J. Hoogerbrugge, Europhys. Lett.
21, 363 (1993).

[55] P. Español and P. Warren, Europhys. Lett. 30, 191 (1995).
[56] R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423

(1997).
[57] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[58] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids

(Oxford University Press, Oxford, 2017).
[59] B. Efron and C. Stein, Ann. Stat. 9, 586 (1981).
[60] G. H. Fredrickson and E. Helfand, J. Chem. Phys. 87, 697

(1987).
[61] W. H. Jo and S. S. Jang, J. Chem. Phys. 111, 1712 (1999).
[62] L. Leibler, Macromolecules 13, 1602 (1980).
[63] T. Vidil, N. Hampu, and M. A. Hillmyer, ACS Cent. Sci. 3, 1114

(2017).
[64] T. M. Beardsley and M. W. Matsen, Eur. Phys. J. E 32, 255

(2010).
[65] W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14,

33 (1996).
[66] A. A. Gavrilov, Y. V. Kudryavtsev, and A. V. Chertovich, J.

Chem. Phys. 139, 224901 (2013).
[67] A. D. Goodson, G. Liu, M. S. Rick, A. W. Raymond, M. F.

Uddin, H. S. Ashbaugh, and J. N. L. Albert, J. Polym. Sci. Part
B: Polym. Phys. 57, 794 (2019).

045603-10

https://doi.org/10.1021/acsapm.1c01313
https://doi.org/10.1021/nn304217y
https://doi.org/10.1021/acs.macromol.9b02015
https://doi.org/10.1021/ma00058a038
https://doi.org/10.1063/1.3657437
https://doi.org/10.1021/ma202583y
https://doi.org/10.1021/ma0478658
https://doi.org/10.1021/acs.macromol.1c00780
https://doi.org/10.1021/ma021357l
https://doi.org/10.1021/ma00130a012
https://doi.org/10.1021/ma00063a039
https://doi.org/10.1063/1.470260
https://doi.org/10.1063/1.470965
https://doi.org/10.1063/1.476300
https://doi.org/10.1063/1.478939
https://doi.org/10.1063/1.1860351
https://doi.org/10.1063/1.2345652
https://doi.org/10.1016/j.cplett.2008.06.054
https://doi.org/10.1021/ma9000918
https://doi.org/10.1039/C2SM06968G
https://doi.org/10.1039/B809751H
https://doi.org/10.1039/c1sm05159h
https://doi.org/10.1016/j.cplett.2011.01.024
https://doi.org/10.1021/mz3005583
https://doi.org/10.1039/c3sm27396b
https://doi.org/10.1063/1.2751498
https://doi.org/10.1021/jp0512762
https://doi.org/10.1021/ma7028264
https://doi.org/10.1021/ma802263t
https://doi.org/10.1063/1.3077865
https://doi.org/10.1016/j.commatsci.2021.111104
https://doi.org/10.1051/jphys:0198600470120212100
https://doi.org/10.1103/PhysRevE.53.5063
https://doi.org/10.1039/C5SM01994J
https://doi.org/10.1103/PhysRevLett.108.038301
https://doi.org/10.1021/acs.macromol.2c02444
https://doi.org/10.1002/mats.200700068
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.8.045603
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1209/0295-5075/21/3/018
https://doi.org/10.1209/0295-5075/30/4/001
https://doi.org/10.1063/1.474784
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1214/aos/1176345462
https://doi.org/10.1063/1.453566
https://doi.org/10.1063/1.479431
https://doi.org/10.1021/ma60078a047
https://doi.org/10.1021/acscentsci.7b00358
https://doi.org/10.1140/epje/i2010-10651-x
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1063/1.4837215
https://doi.org/10.1002/polb.24834

