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Pyroresistive response of percolating conductive polymer composites
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The pyroresistive response of conductive polymer composites (CPCs) has attracted much interest because of
its potential applications in many electronic devices requiring a significant responsiveness to changes in external
physical parameters such as temperature or electric fields. Although extensive research has been conducted to
study how the properties of the polymeric matrix and conductive fillers affect the positive temperature coefficient
pyroresistive effect, the understanding of the microscopic mechanism governing such a phenomenon is still
incomplete. In particular, to date, there is little body of theoretical research devoted to investigating the effect
of the polymer thermal expansion on the electrical connectivity of the conductive phase. Here, we present the
results of simulations of model CPCs in which rigid conductive fillers are dispersed in an insulating amorphous
matrix. By employing a meshless algorithm to analyze the thermoelastic response of the system, we couple
the computed strain field to the electrical connectedness of the percolating conductive particles. We show that
the electrical conductivity responds to the local strains that are generated by the mismatch between the thermal
expansion of the polymeric and conductive phases and that the conductor-insulator transition is caused by a
sudden and global disconnection of the electrical contacts forming the percolating network.
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I. INTRODUCTION

Functional materials exhibiting combinations of mechani-
cal, thermal, and electrical properties present great interest for
various technological applications that require electrical ma-
terials that are lightweight, flexible, wearable, or that respond
in a controlled manner to external stimuli. In this context,
conductive polymer composites (CPCs) fulfill several of these
requirements and have been exploited in a wide range of
technological applications.

In this class of composites, the electrical conductivity is
established by the incorporation of conductive fillers into the
otherwise insulating polymer matrix, forming a network of
electrically connected conductive particles spanning the entire
system [1]. Typical examples of CPCs are polymers blended
with carbon black particles, carbon fibers, carbon nanotubes,
and graphene-related materials, but also with metallic fillers
such as Ag or Ni particles. By tuning the amount, size, disper-
sion, and shape of the conductive fillers, CPCs can be tailored
to combine advantageous properties of the polymer matrix
(e.g., flexibility, toughness, processability, low density, etc.)
with appropriate levels of electrical conductivity.

*Corresponding author: claudio.grimaldi@epfl.ch

Among the several properties that are of interest for indus-
trial application, a range of CPCs also exhibit a pronounced
pyroresistive effect, manifested by a sharp increase in elec-
trical resistivity with increasing temperature—a phenomenon
known as the positive temperature coefficient (PTC) effect—
which is exploited in current limiting devices and thermal
switchers [2–5].

The PTC effect is generally understood as being due to the
mismatch between the temperature-induced volume change
of the polymer and the conducting phase. As the tempera-
ture increases, the larger thermal expansion of the polymer
compared to that of the conducting particles entails a greater
separation between the fillers, thus weakening or even break-
ing the macroscopic conducting path through the composite.
This results in a sharp increase in electrical resistivity upon
heating, often converting the CPC material from an electrical
conductor to an insulator.

Typically, the onset (or switching) temperature of the
PTC effect (hereafter, T0) corresponds to the temperature Tm

at which the polymer experiences a phase transition (e.g.,
melting of the crystalline phase, a glass transition, or a rubber-
liquid transition) accompanied by a sudden expansion of the
polymeric matrix [6–10]. In a few cases, though, significantly
lower values of T0 compared to Tm have been documented
within a specific range of filler content and as a function of
the content itself. Such unusual results have been primarily
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observed in CPCs charged with metal particles, typically of
micrometric size, at relatively high loadings, and when sub-
jected to very low heating rates [9–16].

It is not surprising that the particle size plays a role in the
pyroresistive response, as it generally influences the overall
behavior of the electrical transport in composites. In addi-
tion to the higher specific surface area of small particles
that may affect the conductive phase’s dispersion within the
polymer, the tunneling decay length ξ , which ranges from a
fraction to a few nanometers, represents a discriminating fac-
tor. Conductive particles of dimensions much larger than ξ can
be considered electrically connected only if they essentially
touch each other; so the electrical conductivity of the com-
posite is nonzero only if there exists a percolating cluster of
particles at contact that spans the entire composite [17]. In this
case, even a small increase in the particle separation would
entail a significant enhancement of the interparticle resistance
and eventually the disruption of the conducting network. On
the contrary, in composites with nanometric fillers, the in-
terparticle tunneling processes may extend beyond nearest
neighbors [18], thereby increasing the number of conductive
pathways and making the conductive network more resilient
to small increases in particle separation. In such instances,
the PTC effect is expected only if the polymer undergoes
a significant volume expansion, induced, for example, by a
structural transition.

Besides the size of fillers used in CPCs, other factors influ-
ence the pyroresistive response. These include, among others,
the shape and aspect ratio of the conducting fillers [19], their
thermal conductance, the degree of polymer crystallization,
or the type of dispersion of the conductive particles inside
the polymer matrix. The combination of these factors and
the incomplete understanding of their relative importance in
influencing the pyroresistive response preclude a fully quanti-
tative explanation of the PTC effect and how to systematically
control it [20].

In particular, on the theoretical side, there is a lack of
in-depth studies exploring the microscopic mechanism of py-
roresistivity and how the interparticle connectivity evolves
in response to uneven strain fields induced by the mismatch
between the thermal expansion of the polymer and the con-
ducting phase. This is especially important for CPCs with
large conductive fillers (of the order of a micrometer or more)
since, as mentioned above, in this case, the electrical con-
nectivity between the particles is expected to be particularly
sensitive to the local thermal expansion of the polymer matrix.

Here we explore the pyroresistive response of a continu-
ous model of percolating CPCs by considering the coupling
between local thermal strains of the polymer matrix and the
electrical connectivity of rigid spherical conductive particles.
By numerically computing the strain field within the contin-
uous matrix, we calculate the strain-induced displacement of
the conductive spheres to obtain the pyroresistive response for
different volume fractions, thermal strains, and dispersions of
the conductive phase.

II. MODEL AND SIMULATIONS

In general, conductor-insulator composites with conduc-
tive fillers with dimensions of the order of a micrometer or

more can be treated as bona fide percolating systems, in which
two neighboring conductive particles can be considered either
electrically connected or disconnected depending on whether
they are physically in contact or not. This must be contrasted
to the electrical connectivity between conducting particles
with nanometric dimensions, in which even for particles that
do not physically touch each other, their mean separation can
be such that electrons can still flow from one particle to the
others via tunneling processes.

As mentioned in the Introduction, percolating composites
typically exhibit a greater sensitivity of the electrical con-
nectivity to the thermal expansion of the polymeric phase
compared to those primarily governed by tunneling, assuming
similar conductive particle loadings. Hence, we focus our
analysis on percolating CPCs (that is, CPCs charged with mi-
crometric conductive fillers) as these enable the calculation of
the pyroresistive effect even with minor volume expansions,
where linear elasticity remains applicable.

A direct consequence of assuming an on-off mechanism of
electrical connectivity between the fillers is that the electrical
conductivity of the composite is nonzero only if there exists
a macroscopic cluster of connected particles that spans the
entire composite [17,18]. This is reflected by a sharp increase
of the bulk conductivity σ when the amount of the conducting
phase increases beyond a critical value φc, commonly referred
to as the percolation threshold [21]. For values of the volume
fraction φ close but above φc, the conductivity follows, in this
case, a power law of the form [21,22]

σ ∝ (φ − φc)t , (1)

where t is a universal critical exponent taking the value t �
2.0 for all three-dimensional percolating systems, regardless
of the microscopic details [22].

Contrary to the exponent t , the percolation threshold value
strongly depends on the shape of the conductive fillers and
their dispersion within the insulating matrix. CPCs prepared
with high aspect-ratios fillers, such as carbon fibers and
carbon nanotubes, have systematically smaller percolation
thresholds than CPCs with spherically shaped fillers [23–25].
The latter, however, can display comparatively small values of
φc if the conductive phase is not homogeneously dispersed in
the matrix but is instead segregated within a smaller region
of space, for instance, the amorphous phase of semicrys-
talline polymers or one of the phases of immiscible polymer
blends [26].

In the following, we focus, in particular, on the difference
in the pyroresistive response between model systems of homo-
geneous and segregated dispersions of spherical conductive
particles in an amorphous (polymer) matrix.

A. Contact algorithm

In formulating a model of percolating CPCs which can
display a range of φc values, we construct distributions of
impenetrable and identical spherical conductive particles of
diameter D that are randomly dispersed with different de-
grees of heterogeneity within a continuum insulating medium
representing an amorphous polymer phase. To this end, we
introduce an off-lattice percolation algorithm which generates
arrangements of nonoverlapping spheres in contact, starting
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from a random arrangement of particles [27]. We start by pop-
ulating a cubic box of edge L with N spheres having centers
drawn randomly from a uniform distribution. To each pair of
overlapping spheres, we associate a compressed linear spring
of unitary stiffness that connects the two particle centers and
minimize the following potential:

V =
∑
i, j

1

2
�2

i j, (2)

where the sum runs over all pairs of overlapping spheres and

�i j =
{

ri j − D if ri j < D

0 if ri j � D,
(3)

where ri j is the distance between two sphere centers. To min-
imize V , we use a gradient descent iterative algorithm applied
to the subset of overlapping spheres. During the iteration, ini-
tially nonoverlapping spheres remain untouched unless they
interfere with neighboring particles, in which case they are
included in the summation of Eq. (2). The iteration stops when
the pair that overlaps the most is such that |�i j |/D � δ, where
δ is a tolerance that we have fixed at 0.1%. The final config-
uration is constituted by a dispersion of N spheres within a
cubic box of linear size L that are either nonoverlapping or
in contact (with a 0.1% tolerance), so the volume fraction of
such spherical fillers is φ = π (N/L3)D3/6.

The configurations obtained by running the contact algo-
rithm are characterized by fairly homogeneous dispersions of
the conductive phase and represent CPCs in which micromet-
ric fillers are dispersed into an amorphous polymer matrix.

B. Aggregation algorithm

To simulate the effect of aggregation of the conducting
phase, we adopt an algorithm applied to the configuration
obtained by the contact algorithm described above. The aggre-
gation algorithm starts by identifying the component, denoted
C, formed by the largest number of particles in contact (for
more information, see Ref. [27]). A particle i, randomly se-
lected from the subset of particles not belonging to C, is then
subject to the following criterion. If its center is at a distance
ri j smaller than λD, with λ � 1, from the center of the closest
particle, j, of the cluster, then i is moved into contact with j
and the cluster C is updated. If instead ri j > λD, the particle i
can grow its own cluster, separated from C, by following the
same procedure. Once the aggregation algorithm is iterated
and completed, some particles might overlap. We then rerun
the contact algorithm to ensure that the final particle arrange-
ment contains no overlapping spheres.

The resulting dispersions of conductive fillers are char-
acterized by regions of linear size ∼λD that are devoid of
conductive spheres, which are instead segregated into regions
of higher local concentration than the average φ. For such
types of randomly segregated distributions, the percolation
threshold φc decreases as λ increases.

C. Volume expansion algorithm

The essential ingredient governing the phenomenology of
the pyroresistive responses in CPCs is the uneven volume

expansion of the polymer and conducting phases during the
heating of the composite. To focus on this aspect, we will
not explicitly consider the thermal response of the polymer
matrix, i.e., how the polymer expands as a function of temper-
ature, but rather impose an isotropic strain ε0 to the continuum
matrix to simulate the effect of a polymer volume expansion,
whereas the spherical particles that constitute the conductive
phase will be considered perfectly stiff.

We calculate the strain field within the composite and the
resulting displacement of the spherical particles by using a
meshless method based on the reproducing kernel particle
method of Ref. [28]. For more details about the algorithm, see
Ref. [27]. One of the advantages of meshless shape functions
over finite element ones is that the approximation is con-
structed entirely over nodes without the need for a tessellation
or a mesh. This feature is crucial for domains with spheres in
contact, where meshing between spheres is almost impossible.
The price is a slight increase in computational costs because a
meshless method requires a neighbor search between nodes
and evaluation points in the continuum. Also, it requires a
matrix inversion at each evaluation point. However, an appro-
priate space-partitioning data structure (k-d tree) minimizes
the computational burden of neighbor search, and an iterative
algorithm based on the Sherman-Morrison formula speeds up
the matrix inversions [29].

D. Resistor network

For each configuration of the conductive particles gen-
erated by the contact and aggregation algorithms described
above, we construct a resistor network where the nodes repre-
sent the centers of the spherical particles and assign to each
pair of nodes of particles at contact a conductance of unit
value. We apply a unit voltage drop between two electrodes
placed at the two opposite sides of the cubic simulation box
and check if a cluster of electrically connected nodes has
terminal nodes in contact with the two electrodes. We then
numerically solve the Kirchhoff equation by matrix inversion
to obtain the node voltages Vi. Since the edges linking two
connected nodes have unitary resistance, the bond currents are
given simply by Ii j = Vi − Vj .

The network equivalent current Ieq is obtained by summing
over the currents of all bonds connected with the terminal
nodes of one side of the simulation box. Because of Kirch-
hoff’s current law, this sum is equal to the sum of all bond
currents of the nodes on the opposite side, so the network
equivalent resistance is Req = 1/Ieq and, finally, the resistivity
is calculated from ρ = Req L [27].

III. RESULTS

A. Percolation threshold

The electrical connectivity of our model composite is es-
tablished only if there exists a system-spanning cluster formed
by particles at contact. To calculate the percolation threshold
φc above which such a cluster exists, we run several con-
figurations of the system for a fixed volume fraction of the
conductive fillers and enumerate the number of times that a
cluster of particles at contact spans the simulation box from
one side to the opposite one. Figure 1(a) shows the resulting
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FIG. 1. Percolation threshold of homogeneous (λ = 0) and segregated (λ > 0) composites. (a) Spanning probability as a function of the
filler volume fraction φ for different values of the aggregation length λ in units of the sphere radius of the fillers. The critical volume fraction
φc is determined by the spanning probability equal to 50%. (b) The critical volume fraction φc as a function of λ. As the degree of segregation
increases, the critical volume fraction decreases monotonously from φc � 23.5% to φc � 4%.

spanning probability as a function of φ for fixed aggregation
radii λ obtained from 100 configurations in a simulation box
of linear size L = 70 in units of the particle radius red circles.
To calculate the percolation threshold, we adopt the criterion
that φc is the value of φ such that the spanning probability
equals 50% [30]. This can be obtained by fitting the data with
a sigmoid function (solid lines) of the form

1

2

(
1 + tanh

[
φ − φc(L)

�

])
, (4)

where φc(L) is the percolation threshold for the simulation
box of size L and � is the width of the percolation transition.
In the case of homogeneous dispersions of particles, λ = 0,
we obtain φc � 23.5%, which is comparable to the critical
volume fraction (� 20 %) of a random close packing of
insulating and conductive spheres [31]. Increasing λ systemat-
ically shifts the spanning probability towards smaller values of
φ, thereby leading to smaller percolation thresholds than the
homogeneous case. This feature is systematically observed
in numerical studies of segregated systems [32–35] or other
highly nonhomogeneous dispersions of particles [36].

Figure 1(b) shows the computed values of φc as a function
of the aggregation radius λ. Clearly, larger values of λ entail
smaller values of φc, as expected from the effect of segregation
of the conductive phase. In particular, we find that φc initially
decreases with λ, eventually reaching the asymptotic value of
φc � 4% for λ larger than about 40. The reduction of the per-
colation threshold of over 80% indicates that the segregated
percolating network is much more robust than homogeneous
ones. Such robustness derives from the fact that, for a given
volume fraction, the average number of contacts per particle
increases as the conducting phase is increasingly segregated
in narrower regions of the volume space [34].

In the following, we will narrow our analysis to two spe-
cific scenarios: the homogeneous dispersion of particles (λ =
0) and the highly segregated case achieved with λ = 35. To
assess the impact of the finite size of the simulation box
on their percolation thresholds, Fig. 1(a) shows the spanning
probability calculated for L = 70 alongside those computed
for L = 60 and L = 80. These box sizes are large enough

to prevent significant variations in φc(L). We find an overall
change in the percolation threshold of only 0.5% for λ = 0
and 4% for λ = 35.

B. Resistivity

Figure 2 shows the steps to calculate the network resistivity
resulting from one realization of the spherical filler dispersion
obtained from the contact algorithm. The percolating con-
nected component is represented by the set of blue dots in
Fig. 2(a) and the terminal nodes are represented in Fig. 2(b)
by the red and green circles. Figure 2(c) shows the resulting
node voltages Vi obtained by the matrix inversion.

Figure 3 shows the composite resistivity calculated as a
function of the spherical filler volume fraction φ for homoge-
neous dispersions (λ = 0, filled circles) and a representative
case of segregated composites obtained by the aggregation
algorithm with aggregation distance equal to λ = 35 (filled
squares). For each value of φ, the box size is fixed at L = 70
in units of the sphere radius and the resistivity data are the
average over 100 independent configurations. As seen from
Fig. 3, the resistivity of both types of composites increases
monotonically as φ decreases, in qualitative agreement with
the percolative behavior ρ ∝ (φ − φc)−t , although the finite
size of the simulation box entails finite values of ρ even
for volume fractions smaller than the percolation thresholds
of Fig. 1. To mitigate the finite-size effects and get a more
quantitative analysis of the power-law behavior of the elec-
trical transport, we plot in the insets of Fig. 3 the difference
between the conductivity computed at φ and that computed at
the percolation threshold values obtained from Fig. 1, �σ =
σ (φ) − σ (φc) [37]. From fitting to �σ ∝ (φ − φc)t , the crit-
ical exponents for the homogeneous (λ = 0) and segregated
(λ = 35) systems were found to be equal to t = 2.07 ± 0.03
(in agreement with the universal value t � 2) and t � 1,
respectively.

C. Polymer expansion effects on the resistivity

Having established how the type of dispersion of the con-
ducting phase into the polymer matrix affects the resistivity
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FIG. 2. Percolating component. (a) Network of contact particles. Dots are the vertices (sphere centers) and lines are the edges; the spheres
forming the percolating cluster are highlighted in blue. (b) The percolating cluster with terminal nodes, where the red circles represent the
ground nodes (voltage set to zero) and the green circles are terminal nodes with the voltage set to 1. (c) Voltage distribution at the network
nodes.

behavior, we now turn to addressing the effect of the polymer
expansion on the transport properties of our model of CPCs.
We are particularly interested in the local expansion of the
polymer matrix, since this directly affects the connectivity
of the conducting spherical particles. To understand why the
local rather than the average polymer expansion matters, it
suffices to realize that, ideally, any two particles initially at
contact would be instantaneously separated by a perfectly
homogeneous expansion of the polymer matrix. In this case,
even an infinitesimal increase in the particle separations would
disrupt any connected component, thereby leading to an elec-
trically insulating composite. In terms of a temperature-driven

FIG. 3. Calculated resistivity ρ obtained from numerical solu-
tions of the Kirchhoff equation for homogeneous (λ = 0) and highly
segregated distributions of conductive fillers (λ = 35). The insets
highlight the power-law behavior of the electrical conductivity σ .

polymer expansion, this situation would correspond to a
conductor-insulator transition for any infinitesimal increase of
T . In a more realistic modeling of CPCs, however, the mis-
match between the volume expansion of the conducting and
insulating phases would build a highly heterogeneous stress
field, which results in a spatially varying strain field within the
composite. In response to such a heterogeneous strain field,
some particles initially at contact would be separated (positive
strain), whereas others would still be in contact (zero strain),
or new connections might be realized from particles that were
initially slightly separated (negative strain).

This situation is illustrated in Fig. 4, which shows the
distribution of the strain field calculated by imposing a strain
of pure polymer equal to ε0 = 1%. For both homogeneous
(λ = 0) and segregated (λ = 35) dispersions of fillers with
φ = 25% [Fig. 4(a)], the strain distribution is strongly peaked
around ε = 0.03 − 0.05%, with a small shoulder extending
up to ε � 1% and a significant contribution (about 16% and
10% of the total weight) from negative strains down to about
−0.1%. Although the two distributions are similar for φ =
25%, the strain distribution of the segregated system exhibits
a smaller peak compared to the homogeneous system and
slightly greater weight at larger ε. This trend also persists
at larger values of the thermal strain, as shown in the inset
of Fig. 4(a) for ε0 = 2.5%. Notably, in this case the strain
distribution extends significantly beyond 2.5%, with the seg-
regated systems displaying a larger weight in this range. This
translates into a higher average local strain for the segregated
system (ε̄ = 1.5%) compared to the homogeneous system
(ε̄ = 1.1%).

At a volume fraction of only 8.5% [Fig. 4(b)], the strain
distribution of both types of systems gets significantly broad-
ened and skewed toward positive values of ε because the
polymer expansion is less restrained by such a small con-
centration of rigid fillers (although a small contribution from
negative strains is still present). However, the ε-distribution
of the segregated system displays a broad plateau extending
from ε ∼ 0.5% to ε ∼ 1%, whereas the distribution for the
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FIG. 4. Distribution function of the maximum principal strain
ε obtained from the numerical solution of the thermoelastic equa-
tions for homogeneous (λ = 0) and highly segregated (λ = 35)
dispersions of the conductive spherical fillers in the insulating poly-
mer matrix. The thermal strain is set equal to ε0 = 1%. (a) The
volume fraction is equal to φ = 25%, for which both cases are above
their respective percolation threshold. (b) φ = 8.5%. For this value of
φ, only the homogeneous system is below the percolation threshold.

homogeneous system is significantly smaller in the same
range. The overall behavior shown in Fig. 4 suggests, there-
fore, that, although the segregated system is more robust
against a change of filler content compared to the homoge-
neous one, as seen from the smaller value of φc, the response
to the thermal strain appears to be comparable for the two
types of filler dispersion, with actually the segregated system
being more responsive to the thermal strain than the homoge-
neous one.

The electrical transport response to the thermal strain is
shown in Fig. 5, where we plot the computed resistivity ρ as
a function of the thermal strain ε0 for both the homogeneous
and segregated dispersions of fillers with φ = 25%. For values
of the thermal strain up to about 1%, ρ undergoes only a mod-
erate change for both λ = 0 and λ = 35, with the segregated
composite showing slightly enhanced resistivity compared to
the homogeneous one. This modest change in resistivity for

FIG. 5. Resistivity ρ calculated as a function of the thermal
strain for homogeneous (λ = 0) and highly segregated (λ = 35) dis-
persions of the conductive fillers with φ = 25%. Note that for the
segregated system, ρ starts to already increase for ε0 � 1%, despite
being far above the percolation threshold.

ε0 = 1% is coherent with the strain field distribution depicted
in Fig. 4(a). Upon increasing ε0 beyond 1%, the segregated
system exhibits a significant rise in the resistivity, eventually
becoming an insulator for ε0 > 2.85 %, whereas the resistivity
of the homogeneous dispersions starts to increase only for ε >

1.5% with the transition to the insulating state at ε0 � 3.15%.
Furthermore, the resistivity increase of the segregated system
is steeper than that of the homogeneous one. This is even more
relevant if we consider that at φ = 25% the filler loading of
the segregated system is far above the percolation threshold
(φc = 4%), implying, therefore, that the percolating network
is more fragile under a polymer volume expansion when the
fillers are segregated into the polymer.

The strain distribution function shown in Fig. 4(b) suggests
that the conductive network can be disrupted for smaller ther-
mal strains when the filler content approaches the percolation
threshold. This is confirmed in Fig. 6, where we show the
calculated resistivity as a function of the thermal strain for
the segregated composite with φ = 25%, 15%, and 8.5%. The
switching value of the strain becomes smaller as φ approaches
φc = 4%, demonstrating that the resistivity response can be
tuned by the filler loading.

This phenomenon has been observed in CPCs incorporat-
ing micrometric metallic fillers [9–16], wherein a decrease
in metallic content leads to lower values of the switching
temperature T0. For instance, in CPCs containing Ag and Cu
particles, the volume expansion measured at T0 implies a ther-
mal strain in the range 0.4%–0.6% [9,13]. This is below the
large strains accompanying the polymer structural transition
and is comparable to those of Figs. 5 and 6.

To better understand the interplay between the local strain
and the network connectivity, we plot in Fig. 7 the average
coordination number Z as a function of the thermal strain
ε0 for the segregated system at φ = 25%. The quantity Z
gives the average number of particles at contact with any
given particle. It provides a less coarse-grained measure of the
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FIG. 6. Resistivity ρ calculated as a function of the thermal strain
a highly segregated (λ = 35) dispersion of the conductive fillers
for different values of the nominal volume fraction φ. As the filler
content approaches the percolation threshold at φc � 4%, the thermal
strain at which the resistivity increases shifts to smaller values.

local connectedness than φ and, for this reason, it represents
a better tool to analyze how local changes of the percolating
network influence the conductivity. This is particularly evi-
dent in Fig. 7, which shows that Z rapidly decreases from
Z � 2 at ε0 = 0% to Z = 0 for ε0 � 3%, thus paralleling the
decrease of the conductivity with ε0, whereas φ diminishes of
only ∼1.6% in the same range (inset of Fig. 7).

FIG. 7. Average coordination number Z and the electrical con-
ductivity σ calculated for a highly segregated system (λ = 35) as
a function of the thermal strain ε0. The nominal volume fraction
is equal to 25%. Inset: the corresponding effective volume fraction
plotted against ε0.

The concomitant vanishing of Z and σ in Fig. 7 differs
drastically from what is expected when a conductor-insulator
system is driven towards the percolation threshold φc by low-
ering the amount of the conducting fillers. In that case, at the
percolation threshold, the conductivity vanishes, whereas the
average coordination number attains a finite (critical) value Zc,
which depends on the local connectivity properties. For exam-
ple, Zc � 2.8 for random distributions of penetrable spheres
or Zc � 1 for penetrable particles of high aspect ratios such
as slender spherocylinders. In Fig. 7, we see instead that the
transition to the insulating state is accompanied by the average
coordination number going to zero, suggesting that the effect
of the thermal expansion is that of a global disruption of the
percolating network (basically, all links get disconnected at
the same time) as opposed to the gradual disruption when the
filler volume fraction is reduced, where the weakest pathways
of the network are disconnected first.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have shed some light on the microscopic
mechanism of the pyroresistive response of CPCs by nu-
merically analyzing the coupling between the thermoelastic
response of the composite and the electrical transport prop-
erties. We have shown that for CPCs that can be modeled as
percolating networks formed by contacts between conductive
fillers, the local strain built up by an isotropic thermal expan-
sion of the pure polymer governs the electrical connectedness
of the conductive phase. The difference between the thermal
volume expansion of the insulating medium (the polymer) and
the conductive fillers induces a highly heterogeneous local
strain field, which can separate particles that were initially in
contact, eventually leading to the breakdown of the conductive
network and the consequent divergence of the resistivity. This
conductor-insulator transition depends on the volume fraction
φ of the conductive phase, such that the closer φ is to the
percolation threshold, the smaller the thermal strain at which
the resistivity diverges. However, in sharp contrast to the
percolating behavior of transport when φ → φc, we find in
this case that the divergence of the resistivity is driven by the
mean number of particles at contact going to zero, indicating
a sudden disruption of the conductive network rather than a
gradual one. Furthermore, we have shown that the type of dis-
persion of the conductive fillers can have important effects on
the pyroresistive response. In particular, highly heterogeneous
distributions of the conductive phase, as typically found in
segregated CPC systems, are more fragile under a polymer
volume expansion than homogeneous ones, even though seg-
regated composites typically have much smaller percolation
thresholds.

Although our paper focuses on a simple model of CPCs in
which the polymeric phase is amorphous and the conductive
fillers are identical spheres, we are not aware of other analyses
in which the effects of the local volume change of the polymer
are explicitly coupled to the electrical connectivity of the
conductive particles. This has allowed us to compute the local
strain fields, which are the ultimate drivers of the filler dis-
placements within the composite, and to quantify the change
in resistivity of the percolating network. More realistic mod-
els of CPCs would, however, consider several characteristics
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of real materials whose effects on the pyroresistance we
have chosen to postpone to later studies. For example, as
mentioned in the Introduction, the size of the conductive
fillers might play an important role in the phenomenology
of the PTC effect, as it is well-known that the electrical
connectivity between nanometric conductive particles is gov-
erned by the tunneling decay length. In this case, the
connectivity can extend beyond first neighbors and open
additional conductive pathways that can influence the pyrore-
sistive response. Modeling the polymer as a homogeneous
continuous medium, as done in this paper, does not conform
with those CPCs in which the polymer is partially crystalline.
Furthermore, the volume expansion of the crystalline phase
upon heating differs from that of the amorphous phase, thus
influencing the onset of the PTC effect. Finally, another fea-
ture worth studying concerns the thermal conductance of the
conductive phase. In fact, metallic fillers have higher thermal
conductance than carbon-based ones and can, therefore, in-
duce a stronger local volume expansion of the polymer.

For a more theoretical understanding of the nature of
the strain-induced conductor-insulator transition, it would be
interesting to study in more detail the evolution of the conduc-
tivity as a function of the number of particles at contact when
the system is under a thermal strain. To this end, a finite-size
analysis could shed light on whether the transition is sharp
but still of second-order or, instead, the system undergoes a
discontinuous (i.e., first-order) transition.

In conclusion, the present paper represents an attempt to
understand the microscopic mechanism at the origin of the
pyroresistive behavior of CPCs. Our results may guide the
designing of optimal CPC pyroresistors and stimulate further
numerical simulations to improve our understanding of the
PCT effect.
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